首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

F1FO ATP synthases catalyze the synthesis of ATP from ADP and inorganic phosphate driven by ion motive forces across the membrane. A number of ATP synthases have been characterized to date. The one from the hyperthermophilic bacterium Aquifex aeolicus presents unique features, i.e. a putative heterodimeric stalk. To complement previous work on the native form of this enzyme, we produced it heterologously in Escherichia coli.

Methods

We designed an artificial operon combining the nine genes of A. aeolicus ATP synthase, which are split into four clusters in the A. aeolicus genome. We expressed the genes and purified the enzyme complex by affinity and size-exclusion chromatography. We characterized the complex by native gel electrophoresis, Western blot, and mass spectrometry. We studied its activity by enzymatic assays and we visualized its structure by single-particle electron microscopy.

Results

We show that the heterologously produced complex has the same enzymatic activity and the same structure as the native ATP synthase complex extracted from A. aeolicus cells. We used our expression system to confirm that A. aeolicus ATP synthase possesses a heterodimeric peripheral stalk unique among non-photosynthetic bacterial F1FO ATP synthases.

Conclusions

Our system now allows performing previously impossible structural and functional studies on A. aeolicus F1FO ATP synthase.

General significance

More broadly, our work provides a valuable platform to characterize many other membrane protein complexes with complicated stoichiometry, i.e. other respiratory complexes, the nuclear pore complex, or transporter systems.  相似文献   

2.

Background

Thiol-mediated redox regulation of proteins plays a key role in many cellular processes.

Methods

To understand the redox status of cysteinyl thiol groups of the desired proteins, we developed a new maleimide reagent: a maleimide-conjugated single strand DNA, DNA-maleimide (DNA-Mal).

Results

DNA-Mal labelled proteins run as a distinct band on SDS-PAGE, with a discrete 9.32 kDa mobility shift per label regardless of the protein species or electrophoretic conditions.

Conclusions

DNA-Mal labels free thiols like standard maleimide reagents, but possesses practical advantages in titration of the number and relative content of free thiols in a protein.

General significance

The versatility of DNA molecule enhances the application of DNA-Mal in a broader range of cysteine containing proteins.  相似文献   

3.

Background

Cysteine and methionine are the two sulfur containing amino acids in proteins. While the roles of protein-bound cysteinyl residues as endogenous antioxidants are well appreciated, those of methionine remain largely unexplored.

Scope

We summarize the key roles of methionine residues in proteins.

Major conclusion

Recent studies establish that cysteine and methionine have remarkably similar functions.

General significance

Both cysteine and methionine serve as important cellular antioxidants, stabilize the structure of proteins, and can act as regulatory switches through reversible oxidation and reduction. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

4.

Background

(5R?) and (5S?) diastereomers of 1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxyhydantoin (5-OH-dHyd) and 1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxy-5-methylhydantoin (5-OH-5-Me-dHyd) are major oxidation products of 2′-deoxycytidine and thymidine respectively. If not repaired, when present in cellular DNA, these base lesions may be processed by DNA polymerases that induce mutagenic and cell lethality processes.

Methods

Synthetic oligonucleotides that contained a unique 5-hydroxyhydantoin (5-OH-Hyd) or 5-hydroxy-5-methylhydantoin (5-OH-5-Me-Hyd) nucleobase were used as probes for repair studies involving several E. coli, yeast and human purified DNA N-glycosylases. Enzymatic reaction mixtures were analyzed by denaturing polyacrylamide gel electrophoresis after radiolabeling of DNA oligomers or by MALDI-TOF mass spectrometry measurements.

Results

In vitro DNA excision experiments carried out with endo III, endo VIII, Fpg, Ntg1 and Ntg2, show that both base lesions are substrates for these DNA N-glycosylases. The yeast and human Ogg1 proteins (yOgg1 and hOgg1 respectively) and E. coli AlkA were unable to cleave the N-glycosidic bond of the 5-OH-Hyd and 5-OH-5-Me-Hyd lesions. Comparison of the kcat/Km ratio reveals that 8-oxo-7,8-dihydroguanine is only a slightly better substrate than 5-OH-Hyd and 5-OH-5-Me-Hyd. The kinetic results obtained with endo III indicate that 5-OH-Hyd and 5-OH-5-Me-Hyd are much better substrates than 5-hydroxycytosine, a well known oxidized pyrimidine substrate for this DNA N-glycosylase.

Conclusions

The present study supports a biological relevance of the base excision repair processes toward the hydantoin lesions, while the removal by the Fpg and endo III proteins are effected at better or comparable rates to that of the removal of 8-oxoGua and 5-OH-Cyt, two established cellular substrates.

General significance

The study provides new insights into the substrate specificity of DNA N-glycosylases involved in the base excision repair of oxidized bases, together with complementary information on the biological role of hydantoin type lesions.  相似文献   

5.

Background

Redox signaling is an important emerging mechanism of cellular function. Dysfunctional redox signaling is increasingly implicated in numerous pathologies, including atherosclerosis, diabetes, and cancer. The molecular messengers in this type of signaling are reactive species which can mediate the post-translational modification of specific groups of proteins, thereby effecting functional changes in the modified proteins. Electrophilic compounds comprise one class of reactive species which can participate in redox signaling. Electrophiles modulate cell function via formation of covalent adducts with proteins, particularly cysteine residues.

Scope of review

This review will discuss the commonly used methods of detection for electrophile-sensitive proteins, and will highlight the importance of identifying these proteins for studying redox signaling and developing novel therapeutics.

Major conclusions

There are several methods which can be used to detect electrophile-sensitive proteins. These include the use of tagged model electrophiles, as well as derivatization of endogenous electrophile–protein adducts.

General significance

In order to understand the mechanisms by which electrophiles mediate redox signaling, it is necessary to identify electrophile-sensitive proteins and quantitatively assess adduct formation. Strengths and limitations of these methods will be discussed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

6.

Background

IP3-mediated calcium mobilization from intracellular stores activates and translocates PKC-α from cytosol to membrane fraction in response to STa in COLO-205 cell line. The present study was undertaken to determine the involvement of cytoskeleton proteins in translocation of PKC-α to membrane from cytosol in the Escherichiacoli STa-mediated signaling cascade in a human colonic carcinoma cell line COLO-205.

Methods

Western blots and consequent densitometric analysis were used to assess time-dependent redistribution of cytoskeletal proteins. This redistribution was further confirmed by using confocal microscopy. Pharmacological reagents were applied to colonic carcinoma cells to disrupt the microfilaments (cytochalasin D) and microtubules (nocodazole).

Results

STa treatment in COLO-205 cells showed dynamic redistribution and an increase in actin content in the Triton-insoluble fraction, which corresponds to an increase in polymerization within 1 min. Moreover, pharmacological disruption of actin-based cytoskeleton greatly disturbed PKC-α translocation to the membrane.

Conclusions

These results suggested that the organization of actin cytoskeleton is rapidly rearranged following E. coli STa treatment and the integrity of the actin cytoskeleton played a crucial role in PKC-α movement in colonic cells. Depolymerization of tubulin had no effect on the ability of the kinase to be translocated to the membrane.

General significance

In the present study, we have shown for the first time that in colonic carcinoma cells, STa-mediated rapid changes of actin cytoskeleton arrangement might be involved in the translocation of PKC-α to membrane.  相似文献   

7.

Background

Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). Studies in the yeast Saccharomyces cerevisiae have provided valuable insights into the mechanisms of cellular dysfunction associated with the expression of faulty PD genes.

Methods

We developed a yeast model for full-length LRRK2 studies. We expressed wild-type (wt) LRRK2 and mutations and evaluated their role during oxidative stress conditions. The involvement of mitochondria was assessed by using rho-zero mutants and by evaluating reactive oxygen species (ROS) production and mitochondrial membrane potential by flow cytometry. The involvement of endocytosis was also studied by testing several endocytic mutants and by following the vacuolar delivery of the probe FM4-64.

Results

Expression of LRRK2 in yeast was associated to increased hydrogen peroxide resistance. This phenotype, which was dependent on mitochondrial function, was not observed for PD-mutants G2019S and R1441C or in the absence of the kinase activity and the WD40 repeat domain. Expression of the pathogenic mutants stimulated ROS production and increased mitochondrial membrane potential. For the PD-mutants, but not for wild-type LRRK2, endocytic defects were also observed. Additionally, several endocytic proteins were required for LRRK2-mediated protection against hydrogen peroxide.

Conclusions

Our results indicate that LRRK2 confers cellular protection during oxidative stress depending on mitochondrial function and endocytosis.

General significance

Both the loss of capacity of LRRK2 pathogenic mutants to protect against oxidative stress and their enhancement of dysfunction may be important for the development of PD during the aging process.  相似文献   

8.

Background

Proteins in human tissues and body fluids continually undergo spontaneous oxidation and glycation reactions forming low levels of oxidation and glycation adduct residues. Proteolysis of oxidised and glycated proteins releases oxidised and glycated amino acids which, if they cannot be repaired, are excreted in urine.

Scope of Review

In this review we give a brief background to the classification, formation and processing of oxidised and glycated proteins in the clinical setting. We then describe the application of stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) for measurement of oxidative and glycation damage to proteins in clinical studies, sources of error in pre-analytic processing, corroboration with other techniques – including how this may be improved – and a systems approach to protein damage analysis for improved surety of analyte estimations.

Major conclusions

Stable isotopic dilution analysis LC-MS/MS provides a robust reference method for measurement of protein oxidation and glycation adducts. Optimised pre-analytic processing of samples and LC-MS/MS analysis procedures are required to achieve this.

General significance

Quantitative measurement of protein oxidation and glycation adducts provides information on level of exposure to potentially damaging protein modifications, protein inactivation in ageing and disease, metabolic control, protein turnover, renal function and other aspects of body function. Reliable and clinically assessable analysis is required for translation of measurement to clinical diagnostic use. Stable isotopic dilution analysis LC-MS/MS provides a “gold standard” approach and reference methodology to which other higher throughput methods such as immunoassay and indirect methods are preferably corroborated by researchers and those commercialising diagnostic kits and reagents. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

9.

Background

Farnesyl pyrophosphate synthase (FPPS) is a key regulatory enzyme in the biosynthesis of cholesterol and in the post-translational modification of signaling proteins. It has been reported that non-bisphosphonate FPPS inhibitors targeting its allosteric binding pocket are potentially important for the development of promising anti-cancer drugs.

Methods

The following methods were used: organic syntheses of non-bisphosphonate quinoline derivatives, enzyme inhibition studies, fluorescence titration assays, synergistic effect studies of quinoline derivatives with zoledronate, ITC studies for the binding of FPPS with quinoline derivatives, NMR-based HAP binding assays, molecular modeling studies, fluorescence imaging assay and MTT assays.

Results

We report our syntheses of a series of quinoline derivatives as new FPPS inhibitors possibly targeting the allosteric site of the enzyme. Compound 6b showed potent inhibition to FPPS without significant hydroxyapatite binding affinity. The compound showed synergistic inhibitory effect with active-site inhibitor zoledronate. ITC experiment confirmed the good binding effect of compound 6b to FPPS, and further indicated the binding ratio of 1:1. Molecular modeling studies showed that 6b could possibly bind to the allosteric binding pocket of the enzyme. The fluorescence microscopy indicated that these compounds could get into cancer cells.

Conclusions

Our results showed that quinoline derivative 6b could become a new lead compound for further optimization for cancer treatment.

General significance

The traditional FPPS active-site inhibitors bisphosphonates show poor membrane permeability to tumor cells, due to their strong polarity. The development of new non-bisphosphonate FPPS inhibitors with good cell membrane permeability is potentially important.  相似文献   

10.

Background

Heme oxidative degradation has been extensively investigated in peroxidases but not in catalases. The verdoheme formation, a product of heme oxidation which inactivates the enzyme, was studied in Proteus mirabilis catalase.

Methods

The verdoheme was generated by adding peracetic acid and analyzed by mass spectrometry and spectrophotometry.

Results

Kinetics follow-up of different catalase reactional intermediates shows that i) the formation of compound I always precedes that of verdoheme, ii) compound III is never observed, iii) the rate of compound II decomposition is not compatible with that of verdoheme formation, and iv) dithiothreitol prevents the verdoheme formation but not that of compound II, whereas NADPH prevents both of them. The formation of verdoheme is strongly inhibited by EDTA but not increased by Fe3+ or Cu2+ salts. The generation of verdoheme is facilitated by the presence of protein radicals as observed in the F194Y mutated catalase. The inability of the inactive variant (H54F) to form verdoheme, indicates that the heme oxidation is fully associated to the enzyme catalysis.

Conclusion

These data, taken together, strongly suggest that the verdoheme formation pathway originates from compound I rather than from compound II.

General significance

The autocatalytic verdoheme formation is likely to occur in vivo.  相似文献   

11.

Background

Vitamin B6 synthesis requires a functional Pdx1 assembly that is dodecameric in vivo. We have previously shown that mutation of a catalytic lysine in the plasmodial Pdx1 protein results in a protein that is both inactive and hexameric in vitro.

Methods

Static and dynamic light scattering, circular dichroism, co-purification and enzyme assays are used to investigate the role of a glycine conserved in all Pdx1 family members.

Results

Static light scattering indicates that a glycine to alanine mutant is present as a hexamer in vitro. Subsequent circular dichroism experiments demonstrate that a significant change in secondary structure content is induced by this mutation. However, this mutant is still competent to bind and support Pdx2 activity.

Conclusions

As the mutated glycine occupies an unrestricted region of the Ramachandran plot the additional stereo-chemical restrictions imposed on alanine residues strongly support our hypothesis that significant structural rearrangement of Pdx1 is required during the transition from hexamer to dodecamer.

General significance

The presented results demonstrate that reduction in the mobility of this region in Pdx1 proteins is required for formation of the in vivo dodecamer, negatively affecting the activity of Pdx1, opening the possibility of allosteric Pdx1 inhibitors.  相似文献   

12.

Background

Over the years, the N-glycosylation of both human and bovine lactoferrin (LF) has been studied extensively, however not all aspects have been studied in as much detail. Typically, the bovine LF complex-type N-glycans include certain epitopes, not found in human LF N-glycans, i.e. Gal(α1-3)Gal(β1-4)GlcNAc (αGal), GalNAc(β1-4)GlcNAc (LacdiNAc), and N-glycolylneuraminic acid (Neu5Gc). The combined presence of complex-type N-glycans, with αGal, LacdiNAc, LacNAc [Gal(β1-4)GlcNAc], Neu5Ac (N-acetylneuraminic acid), and Neu5Gc epitopes, and oligomannose-type N-glycans complicates the high-throughput analysis of such N-glycoprofiles highly.

Methods

For the structural analysis of enzymatically released N-glycan pools, containing both LacNAc and LacdiNAc epitopes, a prefractionation protocol based on Wisteria floribunda agglutinin affinity chromatography was developed. The sub pools were analysed by MALDI-TOF-MS and HPLC-FD profiling, including sequential exoglycosidase treatments.

Results

This protocol separates the N-glycan pool into three sub pools, with (1) free of LacdiNAc epitopes, (2) containing LacdiNAc epitopes, partially shielded by sialic acid, and (3) containing LacdiNAc epitopes, without shielding by sialic acid. Structural analysis by MALDI-TOF-MS and HPLC-FD showed a complex pattern of oligomannose-, hybrid-, and complex-type di-antennary structures, both with, and without LacdiNAc, αGal and sialic acid.

Conclusions

Applying the approach to bovine LF has led to a more detailed N-glycome pattern, including LacdiNAc, αGal, and Neu5Gc epitopes, than was shown in previous studies.

General significance

Bovine milk proteins contain glycosylation patterns that are absent in human milk proteins; particularly, the LacdiNAc epitope is abundant. Analysis of bovine milk serum proteins is therefore excessively complicated. The presented sub fractionation protocol allows a thorough analysis of the full scope of bovine milk protein glycosylation. This article is part of a Special Issue entitled Glycoproteomics.  相似文献   

13.

Background

Insight into protein–protein interactions (PPIs) is highly desirable in order to understand the physiology of cellular events. This understanding is one of the challenges in biochemistry and molecular biology today, especially for eukaryotic membrane proteins where hurdles of production, purification and structural determination must be passed.

Scope of review

We have explored the common strategies used to find medically relevant interaction partners of aquaporins (AQPs). The most frequently used methods to detect direct contact, yeast two-hybrid interaction assay and co-precipitation, are described together with interactions specifically found for the selected targets AQP0, AQP2, AQP4 and AQP5.

Major conclusions

The vast majority of interactions involve the aquaporin C-terminus and the characteristics of the interaction partners are strikingly diverse. While the well-established methods for PPIs are robust, a novel approach like bimolecular fluorescence complementation (BiFC) is attractive for screening many conditions as well as transient interactions. The ultimate goal is structural evaluation of protein complexes in order to get mechanistic insight into how proteins communicate at a molecular level.

General significance

What we learn from the human aquaporin field in terms of method development and communication between proteins can be of major use for any integral membrane protein of eukaryotic origin. This article is part of a Special Issue entitled Aquaporins.  相似文献   

14.

Background

Ginseng is a traditional Chinese herb that has been used for thousands of years. In the present study, effects and mechanisms of AD-1 were evaluated for its development as a novel anti-lung cancer drug.

Methods

The cytotoxic activity was evaluated by MTT assay. Flow cytometry was employed to detect cell cycle, apoptosis and ROS. Western blot and immunohistochemistry were used to analyze signaling pathways. Lung cancer xenograft models were established by subcutaneous implantation of A549 or H292 cells into nude mice.

Results

AD-1 concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger — N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis. Treatment with NAC reduces AD-1-induced p38 phosphorylation, which indicates that ROS generation is involved in the AD-1-induced p38 activation. In mice, oral administration of AD-1 (10–40 mg/kg) dose-dependently inhibited the growth of xenograft tumors without affecting body weight and decreases the expression of VEGF, MMP-9 and CD34 in tumor tissue. TUNEL staining confirms that the tumors from AD-1 treated mice exhibit a markedly higher apoptotic index.

Conclusions and general significance

These data support development of AD-1 as a potential agent for lung cancer therapy.  相似文献   

15.

Background

There is no doubt that future discoveries in the field of biochemistry will depend on the implementation of novel biosensing techniques, able to record biophysiological events with minimal biological interference. In this respect, organic electronics may represent an important new tool for the analysis of structures ranging from single molecules up to cellular events. Specifically, organic field-effect transistors (OFET) are potentially powerful devices for the real-time detection/transduction of bio-signals. Despite this interest, up to date, the experimental data useful to support the development of OFET-based biosensors are still few and, in particular, n-type (electron-transporting) devices, being fundamental to develop highly-performing circuits, have been scarcely investigated.

Methods

Here, films of N,N′-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2) molecules, a recently-introduced and very promising n-type semiconductor, have been evaporated on glass and silicon dioxide substrates to test the biocompatibility of this compound and its capability to stay electrically-active even in liquid environments.

Results

We found that PDIF-CN2 transistors can work steadily in water for several hours. Biocompatibility tests, based on in-vitro cell cultivation, remark the need to functionalize the PDIF-CN2 hydrophobic surface by extra-coating layers (i.e. poly-l-lysine) to favor the growth of confluent cellular populations.

Conclusions

Our experimental data demonstrate that PDIF-CN2 compound is an interesting organic semiconductor to develop electronic devices to be used in the biological field.

General significance

This work contributes to define a possible strategy for the fabrication of low-cost and flexible biosensors, based on complex organic complementary metal-oxide-semiconductor (CMOS) circuitry including both p- (hole-transporting) and n-type transistors. This article is part of a Special Issue entitled Organic Bioelectronics—Novel Applications in Biomedicine.  相似文献   

16.

Background

Multifunctional l-amino acid oxidases (LAAOs) occur widely in snake venoms.

Methods

The l-AAO from Bothrops leucurus (Bl-LAAO) venom was purified using a combination of molecular exclusion and ion-exchange chromatographies. We report some biochemical features of Bl-LAAO associated with its effect on platelet function and its cytotoxicity.

Results

Bl-LAAO is a 60 kDa monomeric glycoprotein. Its N-terminal sequence shows high homology to other members of the snake-venom LAAO family. Bl-LAAO catalyzes oxidative deamination of l-amino acids with the generation of H2O2. The best substrates were: l-Met, l-Norleu, l-Leu, l-Phe and l-Trp. The effects of snake venom LAAOs in hemostasis, especially their action on platelet function remain largely unknown. Bl-LAAO dose-dependently inhibited platelet aggregation of both human PRP and washed platelets. Moreover, the purified enzyme exhibited a killing effect in vitro against Leishmania sp., promastigotes, with a very low EC50 of 0.07 μM. Furthermore, the cytotoxicity of Bl-LAAO was observed in the stomach cancer MKN-45, adeno carcinoma HUTU, colorectal RKO and human fibroblast LL-24 cell lines. The enzyme released enough H2O2 in culture medium to induce apoptosis in cells in a dose- and time-dependent manner. The biological effects were inhibited by catalase.

Conclusion

Bl-LAAO, a major component of B. leucurus venom, is a cytotoxin acting primarily via the generation of high amounts of H2O2 which kill the cells.

General significance

These results allow us to consider the use of LAAOs as anticancer agents, as tools in biochemical studies to investigate cellular processes, and to obtain a better understanding of the envenomation mechanism.  相似文献   

17.

Background

Lectins are a diverse group of carbohydrate-binding proteins exhibiting numerous biological activities and functions.

Methods

Two-step serial carbohydrate affinity chromatography was used to isolate a lectin from the edible mushroom clouded agaric (Clitocybe nebularis). It was characterized biochemically, its gene and cDNA cloned and the deduced amino acid sequence analyzed. Its activity was tested by hemagglutination assay and carbohydrate-binding specificity determined by glycan microarray analysis. Its effect on proliferation of several human cell lines was determined by MTS assay.

Results

A homodimeric lectin with 15.9-kDa subunits agglutinates human group A, followed by B, O, and bovine erythrocytes. Hemagglutination was inhibited by glycoprotein asialofetuin and lactose. Glycan microarray analysis revealed that the lectin recognizes human blood group A determinant GalNAcα1–3(Fucα1–2)Galβ-containing carbohydrates, and GalNAcβ1–4GlcNAc (N,N'-diacetyllactosediamine). The lectin exerts antiproliferative activity specific to human leukemic T cells.

Conclusions

The protein belongs to the ricin B-like lectin superfamily, and has been designated as C. nebularis lectin (CNL). Its antiproliferative effect appears to be elicited by binding to carbohydrate receptors on human leukemic T cells.

General significance

CNL is one of the few mushroom ricin B-like lectins that have been identified and the only one so far shown to possess immunomodulatory properties.  相似文献   

18.

Background

The concentration of extracellular nucleotides is regulated by enzymes that have their catalytic site facing the extracellular space, the so-called ecto-enzymes.

Methods

We used LLC-PK1 cells, a well-characterized porcine renal proximal tubule cell line, to biochemically characterize ecto-ATPase activity in the luminal surface. The [γ-32P]Pi released after reaction was measured in aliquots of the supernatant by liquid scintillation.

Results

This activity was linear with time up to 20 min of reaction and stimulated by divalent metals. The ecto-ATPase activity measured in the presence of 5 mM MgCl2 was (1) optimum at pH 8, (2) insensitive to different inhibitors of intracellular ATPases, (3) inhibited by 1 mM suramin, an inhibitor of ecto-ATPases, (4) sensitive to high concentrations of sodium azide (NaN3) and (5) also able to hydrolyze ADP in the extracellular medium. The ATP:ADP hydrolysis ratio calculated was 4:1. The ecto-ADPase activity was also inhibited by suramin and NaN3. The dose–response of ATP revealed a hyperbolic profile with maximal velocity of 25.2 ± 1.2 nmol Pi x mg− 1 x min− 1 and K0.5 of 0.07 ± 0.01 mM. When cells were submitted to ischemia, the E-NTPDase activity was reduced with time, achieving 71% inhibition at 60 min of ischemia.

Conclusion

Our results suggest that the ecto-ATPase activity of LLC-PK1 cells has the characteristics of a type 3 E-NTPDase which is inhibited by ischemia.

General Significance

This could represent an important pathophysiologic mechanism that explains the increase in ATP concentration in the extracellular milieu in the proximal tubule during ischemia.  相似文献   

19.

Background

The protein S4 of the smaller ribosomal subunit is centrally important for its anchorage role in ribosome assembly and rRNA binding. Eubacterial S4 also facilitates synthesis of rRNA, and restrains translation of ribosomal proteins of the same polycistronic mRNA. Eukaryotic S4 has no homolog in eubacterial kingdom, nor are such extraribosomal functions of S4 known in plants and animals even as genetic evidence suggests that deficiency of S4X isoform in 46,XX human females may produce Turner syndrome (45,XO).

Methods

Recombinant human S4X and rice S4 were used to determine their enzymatic action in the cleavage of synthetic peptide substrates and natural proteins. We also studied autoproteolysis of the recombinant S4 proteins, and examined the growth and proliferation of S4-transfected human embryonic kidney cells.

Results

Extraribosomal enzyme nature of eukaryotic S4 is described. Both human S4X and rice S4 are cysteine proteases capable of hydrolyzing a wide spectrum of peptides and natural proteins of diverse origin. Whereas rice S4 also cleaves the -XXXD↓- consensus sequence assumed to be specific for caspase-9 and granzyme B, human S4 does not. Curiously, both human and rice S4 show multiple-site autoproteolysis leading to self-annihilation. Overexpression of human S4 blocks the growth and proliferation of transfected embryonic kidney cells, presumably due to the extraribosomal enzyme trait reported.

Conclusions

The S4 proteins of humans and rice, prototypes of eukaryota, are non-specific cysteine proteases in the extraribosomal milieu.

General significance

The enzyme nature of S4 is relevant toward understanding not only the origin of ribosomal proteins, but also processes in cell biology and diseases.  相似文献   

20.

Aims

Curcumin is one of the most important constituent of Curcuma longa L. with antioxidant, anti-inflammatory and anticancer effects. In this study, we investigated potential intracellular targets of curcumin by affinity chromatography based on target deconvolution. Identification of curcumin interacting proteins may help in evaluating biological and side effects of this natural compound.

Main methods

Curcumin was immobilized through a linker to sepharose beads as solid matrix. Pull down assay was performed by passing tissue lysate of mouse brain through the column to enrich and purify curcumin interacting proteins. Then proteins were separated using two-dimensional gel electrophoresis and identified using MALDI/TOF/TOF mass spectrometry.

Key findings

Our results show that curcumin physically binds to a wide range of cellular proteins including structural proteins, metabolic enzymes and proteins involved in apoptosis pathway.

Significance

Finding curcumin interacting proteins may help in understanding a part of curcumin pharmacological effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号