首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The universal enzymatic cofactor vitamin B6 can be synthesized as pyridoxal 5-phosphate (PLP) by the glutamine amidotransferase Pdx1. We show that Saccharomyces cerevisiae Pdx1 is hexameric by analytical ultracentrifugation and by crystallographic 3D structure determination. Bacterial homologues were previously reported to exist in hexamer:dodecamer equilibrium. A small sequence insertion found in yeast Pdx1 elevates the dodecamer dissociation constant when introduced into Bacillus subtilis Pdx1. Further, we demonstrate that the yeast Pdx1 C-terminus contacts an adjacent subunit, and deletion of this segment decreases enzymatic activity 3.5-fold, suggesting a role in catalysis.

Structured summary

MINT-7147859: PDX1 (uniprotkb:P16451) and PDX1 (uniprotkb:P16451) bind (MI:0407) by cosedimentation in solution (MI:0028)MINT-7147899: PDX1 (uniprotkb:P37528) and PDX1 (uniprotkb:P37528) bind (MI:0407) by cosedimentation in solution (MI:0028)  相似文献   

2.
Most organisms synthesise the B6 vitamer pyridoxal 5-phosphate (PLP) via the glutamine amidotransferase PLP synthase, a large enzyme complex of 12 Pdx1 synthase subunits with up to 12 Pdx2 glutaminase subunits attached. Deletion analysis revealed that the C-terminus has four distinct functionalities: assembly of the Pdx1 monomers, binding of the pentose substrate (ribose 5-phosphate), formation of the reaction intermediate I320, and finally PLP synthesis. Deletions of distinct C-terminal regions distinguish between these individual functions. PLP formation is the only function that is conferred to the enzyme by the C-terminus acting in trans, explaining the cooperative nature of the complex.

Structured summary

MINT-7994448: PfPdx1 (uniprotkb:C6KT50) and PfPdx1 (uniprotkb:C6KT50) bind (MI:0407) by molecular sieving (MI:0071)MINT-7994425, MINT-7994413, MINT-7994435: PfPdx1 (uniprotkb:C6KT50) and PfPdx1 (uniprotkb:C6KT50) bind (MI:0407) by cosedimentation in solution (MI:0028).  相似文献   

3.

Background

Malaria is a devastating disease and Plasmodium falciparum is the most lethal parasite infecting humans. Understanding the biology of this parasite is vital in identifying potential novel drug targets. During every 48-hour intra-erythrocytic asexual replication cycle, a single parasite can produce up to 32 progeny. This extensive proliferation implies that parasites require substantial amounts of lipid precursors for membrane biogenesis. Glycerol kinase is a highly conserved enzyme that functions at the interface of lipid synthesis and carbohydrate metabolism. P. falciparum glycerol kinase catalyzes the ATP-dependent phosphorylation of glycerol to glycerol-3-phosphate, a major phospholipid precursor.

Methods

The P. falciparum glycerol kinase gene was disrupted using double crossover homologous DNA recombination to generate a knockout parasite line. Southern hybridization and mRNA analysis were used to verify gene disruption. Parasite growth rates were monitored by flow cytometry. Radiolabelling studies were used to assess incorporation of glycerol into parasite phospholipids.

Results

Disruption of the P. falciparum glycerol kinase gene produced viable parasites, but their growth was significantly reduced to 56.5 ± 1.8% when compared to wild type parasites. 14C-glycerol incorporation into the major phospholipids of the parasite membrane, phosphatidylcholine and phosphatidylethanolamine, was 48.4 ± 10.8% and 53.1 ± 5.7% relative to an equivalent number of wild type parasites.

Conclusions

P. falciparum glycerol kinase is required for optimal intra-erythrocytic asexual parasite development. Exogenous glycerol may be used as an alternative carbon source for P. falciparum phospholipid biogenesis, despite the lack of glycerol kinase to generate glycerol-3-phosphate.

General significance

These studies provide new insight into glycerolipid metabolism in P. falciparum.  相似文献   

4.

Aims

The purposes of this study were to determine whether Cervi Pantotrichum Cornu (CPC) has osteogenic activities in human osteoblastic MG-63 cells and to investigate the underlying molecular mechanism.

Main methods

The effects of CPC on alkaline phosphatase activity, collagen synthesis, and calcium deposits were measured. The COL1A1, ALPL, BGLAP, and SPP1 expressions were measured by real-time PCR. Phosphorylated MAP kinases (ERK1/2, JNK1/2, p38, ELK1, and cJUN) were studied by western blot analysis. The involvement of MAPK pathway in osteogenic gene expressions was determined by using each selective MAPK inhibitor (PD98059, SP600125, and SB203580).

Key findings

CPC increased alkaline phosphatase activity, collagen synthesis, and calcium deposits. CPC activated ERK1/2, JNK1/2, p38, and ELK1 phosphorylation except cJUN. CPC increased the COL1A1, ALPL, BGLAP, and SPP1 gene expressions. The elevated COL1A1 and BGLAP expressions were inhibited by PD98059, SP600125 or SB203580. The elevated ALPL expression was blocked by SB203580. The elevated SPP1 expression was inhibited by SP600125 or SB203580. CPC increased COL1A1 and BGLAP expressions via ERK1/2, JNK1/2, and p38 MAPKs pathways and SPP1 expression via JNK1/2 and p38 pathways. p38 pathway is needed for ALPL expression.

Significance

These results imply that MAPK signaling pathway is an indispensable factor for bone matrix genes expression of CPC in MG-63 human osteoblast-like cells.  相似文献   

5.

Background

Microbial degradation of acetylated plant hemicelluloses involves besides enzymes cleaving the glycosidic linkages also deacetylating enzymes. A detailed knowledge of the mode of action of these enzymes is important in view of the development of efficient bioconversion of plant materials that did not undergo alkaline pretreatment leading to hydrolysis of ester linkages.

Methods

In this work deacetylation of hardwood acetylglucuronoxylan by acetylxylan esterases from Streptomyces lividans (carbohydrate esterase family 4) and Orpinomyces sp. (carbohydrate esterase family 6) was monitored by 1H-NMR spectroscopy.

Results

The 1H-NMR resonances of all acetyl groups in the polysaccharide were fully assigned. The targets of both enzymes are 2- and 3-monoacetylated xylopyranosyl residues and, in the case of the Orpinomyces sp. enzyme, also the 2,3-di-O-acetylated xylopyranosyl residues. Both enzymes do not recognize as a substrate the 3-O-acetyl group on xylopyranosyl residues α-1,2-substituted with 4-O-methyl-d-glucuronic acid.

Conclusions

The 1H-NMR spectroscopy approach to study positional and substrate specificity of AcXEs outlined in this work appears to be a simple way to characterize catalytic properties of enzymes belonging to various CE families.

Significance

The results contribute to development of efficient and environmentally friendly procedures for enzymatic degradation of plant biomass.  相似文献   

6.
Guan T  Liu C  Ma Z  Ding S 《Gene》2012,503(1):137-139

Objective

To understand the region point mutations and single nucleotide polymorphisms characteristic of keratoconus candidate gene in Chinese population, the TGFBI.

Methods

Polymerase chain reaction–single strand conformation polymorphism and DNA direct sequencing were performed on blood samples from 30 cases of keratoconus patients and 30 normal controls. 17 exons from the coding region of TGFBI gene were examined for point mutations and single nucleotide polymorphisms.

Results

Two types of base mutation were found in exon 12, which were both heterozygous. In 1 patient the site 535 showed GGA→TGA substitution, which was the change from glycine to stop codon (G535X). This was not found in all control cases. In 2 patients and 1 control case the site 540 showed TTT→TTC substitutions without changing of the coding for phenylalanine (F540F), suggesting for the polymorphism.

Conclusion

The candidate keratoconus gene TGFB1 showed genetic variation and mutation in keratoconus population. The gene might play a role in the development of keratoconus in Chinese population.  相似文献   

7.

Background

The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron–sulfur cluster (Fe–S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe–S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function.

Methods

The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe–S cluster containing enzymes.

Results

Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe–S cluster containing enzyme activities.

Conclusions

Despite the presence of oxidative stress and accumulated iron, activation of Fe–S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe–S cluster biogenesis in S. pombe.

General Significance

We provide evidence that suggests that dysregulated Fe–S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia.  相似文献   

8.

Background

There is no doubt that future discoveries in the field of biochemistry will depend on the implementation of novel biosensing techniques, able to record biophysiological events with minimal biological interference. In this respect, organic electronics may represent an important new tool for the analysis of structures ranging from single molecules up to cellular events. Specifically, organic field-effect transistors (OFET) are potentially powerful devices for the real-time detection/transduction of bio-signals. Despite this interest, up to date, the experimental data useful to support the development of OFET-based biosensors are still few and, in particular, n-type (electron-transporting) devices, being fundamental to develop highly-performing circuits, have been scarcely investigated.

Methods

Here, films of N,N′-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2) molecules, a recently-introduced and very promising n-type semiconductor, have been evaporated on glass and silicon dioxide substrates to test the biocompatibility of this compound and its capability to stay electrically-active even in liquid environments.

Results

We found that PDIF-CN2 transistors can work steadily in water for several hours. Biocompatibility tests, based on in-vitro cell cultivation, remark the need to functionalize the PDIF-CN2 hydrophobic surface by extra-coating layers (i.e. poly-l-lysine) to favor the growth of confluent cellular populations.

Conclusions

Our experimental data demonstrate that PDIF-CN2 compound is an interesting organic semiconductor to develop electronic devices to be used in the biological field.

General significance

This work contributes to define a possible strategy for the fabrication of low-cost and flexible biosensors, based on complex organic complementary metal-oxide-semiconductor (CMOS) circuitry including both p- (hole-transporting) and n-type transistors. This article is part of a Special Issue entitled Organic Bioelectronics—Novel Applications in Biomedicine.  相似文献   

9.

Background

Plants, fungi, bacteria and the apicomplexan parasite Plasmodium falciparum are able to synthesize vitamin B6 de novo, whereas mammals depend upon the uptake of this essential nutrient from their diet. The active form of vitamin B6 is pyridoxal 5-phosphate (PLP). For its synthesis two enzymes, Pdx1 and Pdx2, act together, forming a multimeric complex consisting of 12 Pdx1 and 12 Pdx2 protomers.

Methodology/Principal Findings

Here we report amino acid residues responsible for stabilization of the structural and enzymatic integrity of the plasmodial PLP synthase, identified by using distinct mutational analysis and biochemical approaches. Residues R85, H88 and E91 (RHE) are located at the Pdx1:Pdx1 interface and play an important role in Pdx1 complex assembly. Mutation of these residues to alanine impedes both Pdx1 activity and Pdx2 binding. Furthermore, changing D26, K83 and K151 (DKK), amino acids from the active site of Pdx1, to alanine obstructs not only enzyme activity but also formation of the complex. In contrast to the monomeric appearance of the RHE mutant, alteration of the DKK residues results in a hexameric assembly, and does not affect Pdx2 binding or its activity. While the modelled position of K151 is distal to the Pdx1:Pdx1 interface, it affects the assembly of hexameric Pdx1 into a functional dodecamer, which is crucial for PLP synthesis.

Conclusions/Significance

Taken together, our data suggest that the assembly of a functional Pdx1:Pdx2 complex follows a defined pathway and that inhibition of this assembly results in an inactive holoenzyme.  相似文献   

10.
Bayram S 《Gene》2012,498(2):264-269

Aim

The tumor suppressor gene Ras association domain family 1 isoform A (RASSF1A) regulates cell cycle regulation, apoptosis and microtubule stability and is inactivated by promoter hypermethylation at a high frequency in hepatocellular carcinoma (HCC). A guanine (G)/thymine (T) common single nucleotide polymorphism (SNP) at first position of codon 133 in RASSF1A gene determines an alanine (Ala) to serine (Ser) (Ala133Ser) amino acidic substitution which may alter cancer risk by influencing the function of RASSF1A protein.

Methods

To determine the association of the RASSF1A Ala133Ser polymorphism with the risk of HCC development in a Turkish population, a hospital-based case–control study was designed consisting of 236 subjects with HCC and 236 cancer-free control subjects matched for age, gender, smoking and alcohol status. The genotype frequency of the RASSF1A Ala133Ser polymorphism was determined by using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay.

Results

Allele and genotype associations of RASSF1A Ala133Ser polymorphism with HCC susceptibility were observed in comparisons between the patient and control samples (P < 0.001). Risk of HCC development in this Turkish population was significantly increased in carriers of the Ser133 variant allele of Ala133Ser polymorphism (Ala/Ser and Ser/Ser genotypes) when compared with homozygote Ala/Ala genotype (OR = 5.47, 95% CI = 3.63–8.25, P = 0.001).

Conclusion

Because our results suggest for the first time that the Ser133 allele of RASSF1A Ala133Ser polymorphism may be a genetic susceptibility factor for HCC in the Turkish population, further independent studies are required to validate our findings in a larger series, as well as in patients of different ethnic origins.  相似文献   

11.
12.

Background

(5R?) and (5S?) diastereomers of 1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxyhydantoin (5-OH-dHyd) and 1-[2-deoxy-β-d-erythro-pentofuranosyl]-5-hydroxy-5-methylhydantoin (5-OH-5-Me-dHyd) are major oxidation products of 2′-deoxycytidine and thymidine respectively. If not repaired, when present in cellular DNA, these base lesions may be processed by DNA polymerases that induce mutagenic and cell lethality processes.

Methods

Synthetic oligonucleotides that contained a unique 5-hydroxyhydantoin (5-OH-Hyd) or 5-hydroxy-5-methylhydantoin (5-OH-5-Me-Hyd) nucleobase were used as probes for repair studies involving several E. coli, yeast and human purified DNA N-glycosylases. Enzymatic reaction mixtures were analyzed by denaturing polyacrylamide gel electrophoresis after radiolabeling of DNA oligomers or by MALDI-TOF mass spectrometry measurements.

Results

In vitro DNA excision experiments carried out with endo III, endo VIII, Fpg, Ntg1 and Ntg2, show that both base lesions are substrates for these DNA N-glycosylases. The yeast and human Ogg1 proteins (yOgg1 and hOgg1 respectively) and E. coli AlkA were unable to cleave the N-glycosidic bond of the 5-OH-Hyd and 5-OH-5-Me-Hyd lesions. Comparison of the kcat/Km ratio reveals that 8-oxo-7,8-dihydroguanine is only a slightly better substrate than 5-OH-Hyd and 5-OH-5-Me-Hyd. The kinetic results obtained with endo III indicate that 5-OH-Hyd and 5-OH-5-Me-Hyd are much better substrates than 5-hydroxycytosine, a well known oxidized pyrimidine substrate for this DNA N-glycosylase.

Conclusions

The present study supports a biological relevance of the base excision repair processes toward the hydantoin lesions, while the removal by the Fpg and endo III proteins are effected at better or comparable rates to that of the removal of 8-oxoGua and 5-OH-Cyt, two established cellular substrates.

General significance

The study provides new insights into the substrate specificity of DNA N-glycosylases involved in the base excision repair of oxidized bases, together with complementary information on the biological role of hydantoin type lesions.  相似文献   

13.

Background

Glutathione transferase (GST) catalyzes a major step in the xenobiotic detoxification pathway. We previously identified a novel, unclassified GST that is upregulated in an insecticide-resistant silkworm (Bombyx mori) upon insecticide exposure. Here, we sought to further characterize this GST, bmGSTu, by solving and refining its crystal structure and identifying its catalytic residues.

Methods

The structure of wild-type bmGSTu was determined with a resolution of 2.1 Å by synchrotron radiation and molecular modeling. Potential catalytic residues were mutated to alanine by means of site-directed mutagenesis, and kinetic data determined for wild-type and mutated bmGSTu.

Results

We found that bmGSTu occurred as a dimer, and that, like other GSTs, each subunit displayed a G-site and an H-site in the active center. Bound glutathione could be localized at the G-site. Kinetic data of the mutated forms of bmGSTu show that Val55, Glu67, and Ser68 in the G-site are important for catalysis. Furthermore, the H-site showed some unique features.

Conclusions

This is the first study to our knowledge to elucidate the molecular conformation of this B. mori GST. Our results indicate that residues Val55, Glu67, and Ser68, as well as Tyr7 and Ser12, in the glutathione-binding region of bmGSTu are critical for catalytic function.

General Significance

Our results, together with our previous finding that bmGSTu was preferentially induced in an insecticide-resistant strain, support the idea that bmGSTu functions in the transformation of exogenous chemical agents. Furthermore, the unique features observed in bmGSTu may shed light on mechanisms of insecticide resistance.  相似文献   

14.

Background

Melatonin is well-established as a powerful reducing agent of oxidant generated in the cell medium. We aimed to investigate how readily melatonin is oxidized by peroxyl radicals ROO⋅ generated by the thermolysis of 2,2′-azobis(2-amidinopropane) hydrochloride (AAPH) and the role of glutathione (GSH) during the reaction course.

Methods

Chromatographic, mass spectroscopy, and UV–visible spectrometric techniques were used to study the oxidation of melatonin by ROO⋅ or horseradish peroxidase (HRP)/H2O2. Our focus was the characterization of products and the study of features of the reaction.

Results

We found that N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and a monohydroxylated derivative of melatonin were the main products of the reaction between melatonin and ROO⋅. Higher pH or saturation of the medium with molecular oxygen increased the yield of AFMK but did not affect the reaction rate. Melatonin increased the depletion of intracellular GSH mediated by AAPH. Using the HRP/H2O2 as the oxidant system, the addition of melatonin promoted the oxidation of GSH to GSSG.

Conclusions

These results show, for the first time, that melatonin radical is able to oxidize GSH.

General significance

We propose that this new property of melatonin could explain or be related to the recently reported pro-oxidant activities of melatonin.  相似文献   

15.

Background

The S. cerevisiae α-factor receptor, Ste2p, is a G-protein coupled receptor that plays key roles in yeast signaling and mating. Oligomerization of Ste2p has previously been shown to be important for intracellular trafficking, receptor processing and endocytosis. However the role of ligand in receptor oligomerization remains enigmatic.

Methods

Using functional recombinant forms of purified Ste2p, atomic force microscopy, dynamic light scattering and chemical crosslinking are applied to investigate the role of ligand in Ste2p oligomerization.

Results

Atomic force microscopy images indicate a molecular height for recombinant Ste2p in the presence of α-factor nearly double that of Ste2p alone. This observation is supported by complementary dynamic light scattering measurements which indicate a ligand-induced increase in the polydispersity of the Ste2p hydrodynamic radius. Finally, chemical cross-linking of HEK293 plasma membranes presenting recombinant Ste2p indicates α-factor induced stabilization of the dimeric form and higher order oligomeric forms of the receptor upon SDS-PAGE analysis.

Conclusions

α-factor induces oligomerization of Ste2p in vitro and in membrane.

General significance

These results provide additional evidence of a possible role for ligand in mediation of Ste2p oligomerization in vivo.  相似文献   

16.

Background

DNA replication represents a critical step of the cell cycle which requires highly controlled and ordered regulatory mechanisms to ensure the integrity of genome duplication. Among a plethora of elements, post-translational modifications (PTMs) ensure the spatiotemporal regulation of pivotal proteins orchestrating cell division. Despite increasing evidences showing that O-GlcNAcylation regulates mitotic events, the impact of this PTM in the early steps of the cell cycle remains poorly understood.

Methods and results

Quiescent MCF7 cells were stimulated by serum mitogens and cell cycle progression was determined by flow cytometry. The levels of O-GlcNAc modified proteins, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) were examined by Western blotting and OGA activity was measured during the progression of cells towards S phase. A global decrease in O-GlcNAcylation was observed at S phase entry, concomitantly to an increase in the activity of OGA. A combination of two-dimensional electrophoresis, Western blotting and mass spectrometry was then used to detect and identify cell cycle-dependent putative O-GlcNAcylated proteins. 58 cytoplasmic and nuclear proteins differentially O-GlcNAcylated through G1/S transition were identified and the O-GlcNAc variations of Cytokeratin 8, hnRNP K, Caprin-1, Minichromosome Maintenance proteins MCM3, MCM6 and MCM7 were validated by immunoprecipitation.

Conclusions

The dynamics of O-GlcNAc is regulated during G1/S transition and observed on key proteins involved in the cytoskeleton networks, mRNA processing, translation, protein folding and DNA replication.

General significance

Our results led us to propose that O-GlcNAcylation joins the PTMs that take part in the regulation of DNA replication initiation.  相似文献   

17.

Background

Ceramides are intracellular lipid mediator implicated in various cellular responses, including oxidative stress and programmed cell death. Studies demonstrated strong links between ceramide and the mitochondria in the regulation of apoptosis. However, the mechanism of apoptosis induced by ceramides is not fully understood. The present study delineates importance of the redox state of cytochrome c for release of cytochrome c and apoptosis of human mammary adenocarcinoma MCF-7 and MDA-MB-231 cells induced by ceramides.

Methods

The study uses MCF-7 and MDA-MB-231 cells, isolated mitochondria, submitochondrial particles, and oxidized and reduced cytochrome c. Methods used include flow cytometry, immunoblotting, spectroscopy, and respirometry.

Results

We show that ceramides induce mitochondrial oxidative stress and release of cytochrome c from the mitochondria of these cells. Our findings show that ceramides react with oxidized cytochrome c whereas reduced cytochrome c does not react with ceramides. We also show that oxidized cytochrome c reacted with ceramides exerts lower reducibility and function to support mitochondrial respiration. Furthermore, our data show that glutathione protects cytochrome c of reacting with ceramides by increasing the reduced state of cytochrome c.

Conclusions

Ceramides induce oxidative stress and apoptosis in human mammary adenocarcinoma cells by interacting with oxidized cytochrome c leading to the release of cytochrome c from the mitochondria. Our findings suggest a novel mechanism for protective role of glutathione.

General significance

Our study suggests that the redox state of cytochrome c is important in oxidative stress and apoptosis induced by ceramides.  相似文献   

18.

Background

Heme oxygenase catalyzes the conversion of heme to iron, carbon monoxide and biliverdin employing oxygen and reducing equivalents. This enzyme is essential for heme-iron utilization and contributes to virulence in Leptospira interrogans.

Methods

A phylogenetic analysis was performed using heme oxygenases sequences from different organisms including saprophytic and pathogenic Leptospira species. L. interrogans heme oxygenase (LepHO) was cloned, overexpressed and purified. The structural and enzymatic properties of LepHO were analyzed by UV–vis spectrophotometry and 1H NMR. Heme-degrading activity, ferrous iron release and biliverdin production were studied with different redox partners.

Results

A plastidic type, high efficiently ferredoxin-NADP+ reductase (LepFNR) provides the electrons for heme turnover by heme oxygenase in L. interrogans. This catalytic reaction does not require a ferredoxin. Moreover, LepFNR drives the heme degradation to completeness producing free iron and α-biliverdin as the final products. The phylogenetic divergence between heme oxygenases from saprophytic and pathogenic species supports the functional role of this enzyme in L. interrogans pathogenesis.

Conclusions

Heme-iron scavenging by LepHO in L. interrogans requires only LepFNR as redox partner. Thus, we report a new substrate of ferredoxin-NADP+ reductases different to ferredoxin and flavodoxin, the only recognized protein substrates of this flavoenzyme to date. The results presented here uncover a fundamental step of heme degradation in L. interrogans.

General significance

Our findings contribute to understand the heme-iron utilization pathway in Leptospira. Since iron is required for pathogen survival and infectivity, heme degradation pathway may be relevant for therapeutic applications.  相似文献   

19.

Background

Lectins are a diverse group of carbohydrate-binding proteins exhibiting numerous biological activities and functions.

Methods

Two-step serial carbohydrate affinity chromatography was used to isolate a lectin from the edible mushroom clouded agaric (Clitocybe nebularis). It was characterized biochemically, its gene and cDNA cloned and the deduced amino acid sequence analyzed. Its activity was tested by hemagglutination assay and carbohydrate-binding specificity determined by glycan microarray analysis. Its effect on proliferation of several human cell lines was determined by MTS assay.

Results

A homodimeric lectin with 15.9-kDa subunits agglutinates human group A, followed by B, O, and bovine erythrocytes. Hemagglutination was inhibited by glycoprotein asialofetuin and lactose. Glycan microarray analysis revealed that the lectin recognizes human blood group A determinant GalNAcα1–3(Fucα1–2)Galβ-containing carbohydrates, and GalNAcβ1–4GlcNAc (N,N'-diacetyllactosediamine). The lectin exerts antiproliferative activity specific to human leukemic T cells.

Conclusions

The protein belongs to the ricin B-like lectin superfamily, and has been designated as C. nebularis lectin (CNL). Its antiproliferative effect appears to be elicited by binding to carbohydrate receptors on human leukemic T cells.

General significance

CNL is one of the few mushroom ricin B-like lectins that have been identified and the only one so far shown to possess immunomodulatory properties.  相似文献   

20.

Background

Reactive oxygen species (ROS), including superoxide anion radical, induce chronic risk of oxidative damage to many cellular macromolecules resulting in damage to cells. Superoxide dismutases (SODs) catalyze the dismutation of superoxide to oxygen and hydrogen peroxide and are a primary defense against ROS. Vibrio parahaemolyticus, a marine bacterium that causes acute gastroenteritis following consumption of raw or undercooked seafood, can survive ROS generated by intestinal inflammatory cells. However, there is little information concerning SODs in V. parahaemolyticus. This study aims to clarify the role of V. parahaemolyticus SODs against ROS.

Methods

V. parahaemolyticus SOD gene promoter activities were measured by a GFP reporter assay. Mutants of V. parahaemolyticus SOD genes were constructed and their SOD activity and resistance to oxidative stresses were measured.

Results

Bioinformatic analysis showed that V. parahaemolyticus SODs were distinguished by their metal cofactors, FeSOD (VP2118), MnSOD (VP2860), and CuZnSOD (VPA1514). VP2118 gene promoter activity was significantly higher than the other SOD genes. In a VP2118 gene deletion mutant, SOD activity was significantly decreased and could be recovered by VP2118 gene complementation. The absence of VP2118 resulted in significantly lowered resistance to ROS generated by hydrogen peroxide, hypoxanthine–xanthine oxidase, or Paraquat. Furthermore, both the N- and C-terminal SOD domains of VP2118 were necessary for ROS resistance.

Conclusion

VP2118 is the primary V. parahaemolyticus SOD and is vital for anti-oxidative stress responses.

General significance

The V. parahaemolyticus FeSOD VP2118 may enhance ROS resistance and could promote its survival in the intestinal tract to facilitate host tissue infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号