首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 781 毫秒
1.
研究秦岭南坡东段8、25、35、42和61年生油松人工林碳、氮储量和分配格局.结果表明: 油松人工林不同林龄乔木层碳、氮含量为441.40~526.21和3.13~3.99 g·kg-1,灌木层为426.06~447.25和10.62~12.45 g·kg-1,草本层为301.37~401.52和10.35~13.33 g·kg-1,枯落物层为382.83~424.71和8.69~11.90 g·kg-1,土壤层(0~100 cm)为1.51~18.17和0.29~1.45 g·kg-1.树干和树枝分别是乔木层的主要碳库和氮库,占乔木层碳储量的48.5%~62.7%和氮储量的39.2%~48.4%.林龄对生态系统碳、氮储量均有显著影响.生态系统碳储量随林龄增加而增加,35年时达最大值146.06 t·hm-2,成熟后碳储量有所下降.5个林龄段油松林生态系统氮储量的最大值为25年时的10.99 t·hm-2.植被层平均碳、氮储量分别为45.33 t·hm-2和568.55 kg·hm-2,土壤层平均碳、氮储量分别为73.12和8.57 t·hm-2,且土壤层中碳、氮的积累具有明显的表层富集现象.研究区油松人工林生态系统碳、氮储量主要分布在土壤层,其次为乔木层.生态系统碳储量空间分配格局为:土壤层(64.1%)>乔木层(30.0%)>灌草层和枯落物层(5.9%),氮储量为土壤层(93.2%)>乔木层(5.3%)>灌草层和枯落物层(1.5%).  相似文献   

2.
豫西黄土丘陵区不同林龄栎类和侧柏人工林碳、氮储量   总被引:2,自引:0,他引:2  
利用空间代替时间样地调查法,分析了豫西黄土丘陵区栎类和侧柏人工林生态系统碳、氮储量的分布格局,以及不同土层碳储量和氮储量随林龄的动态变化.结果表明:随着树龄的增加,两类人工林乔木层和枯落物层碳储量均增加,土壤碳储量和氮储量主要在表层(0~20 cm)汇聚,且各土层碳储量和氮储量随着林龄增加表现为减少-增加-减少的趋势.各林龄栎类人工林土壤表层碳、氮储量分别为20.31~50.07和1.68~2.12 t·hm-2;不同林龄侧柏人工林土壤表层碳、氮储量分别为23.99~48.76和1.59~2.34 t·hm-2;各林龄栎类和侧柏人工林生态系统的碳储量分别为52.04~275.82和62.18~279.81 t·hm-2;侧柏人工林碳汇能力略高于栎类人工林.土壤C/N随着造林年限的增加呈增加趋势.  相似文献   

3.
川西亚高山不同森林生态系统碳氮储量及其分配格局   总被引:6,自引:0,他引:6  
刘顺  罗达  刘千里  张利  杨洪国  史作民 《生态学报》2017,37(4):1074-1083
森林采伐和恢复是影响森林碳氮储量的重要因素。以川西亚高山岷江冷杉原始林、粗枝云杉阔叶林、天然次生林和粗枝云杉人工林为研究对象,采用样地调查和生物量实测的方法,研究了不同森林生态系统各组分碳、氮储量及其分配特征。结果表明岷江冷杉原始林、粗枝云杉阔叶林、天然次生林和粗枝云杉人工林生态系统碳储量分别为611.18、252.31、363.07 tC/hm~2和239.06 tC/hm~2;氮储量分别为16.44、12.11、15.48 tN/hm~2和8.92 tN/hm~2。恢复林分与原始林碳储量在土壤—植被的分配格局发生了变化,而氮储量未发生变化。岷江冷杉原始林以植被碳储量为主,恢复林分以土壤为主,氮储量均以土壤为主。乔木层碳储量分别占生态系统总储量的56.65%、17.63%、13.57%和22.05%,土壤层(0—80 cm)分别占32.03%、69.87%、76.20%和72.12%;土壤层氮储量占生态系统总储量的76.80%—92.58%。植物残体碳氮储量分别占生态系统总储量的4.40%—9.83%和2.94%—7.08%,林下植被所占比例最小。空间格局上,岷江冷杉原始林植被部分具有较高的碳储量,应进行保护。3种恢复林分具有较高的碳汇潜力,且地上/地下碳储量较低,表明其碳汇潜力尤其表现在地上部分。天然次生林利于土壤有机碳的积累,而人工林乔木层碳储量较高。  相似文献   

4.
黄土丘陵区退耕还林地刺槐人工林碳储量及分配规律   总被引:4,自引:0,他引:4  
申家朋  张文辉 《生态学报》2014,34(10):2746-2754
采用样地调查与生物量实测方法,研究了甘肃黄土丘陵区不同坡向(阳坡、阴坡)和退耕年限(退耕5a、8a和11a)刺槐人工林乔木不同器官、灌草层、枯落物层和土壤层的碳含量,以及刺槐人工林乔木层、灌草层、枯落物层和土壤层碳储量及其分配特征。结果表明:刺槐不同器官碳含量均值变化范围为43.02%—50.89%%,从高到低排列顺序为树干细枝中枝粗枝叶根桩大根粗根小根中根树皮细根;灌木层碳含量为35.76%—42.74%;草本层碳含量为35.83%—43.64%;枯落物层碳含量为39.55%—41.77%;土壤层(0—100 cm)碳含量均值变化范围0.22%—0.99%,随退耕年限增加而增大,土壤深度的增加而逐渐下降。刺槐人工林生态系统碳库空间分布序列为土壤层(0—100 cm)植被层枯落物层。阳坡和阴坡退耕5a、8a、11a刺槐林生态系统碳储量分别为52.52、58.93、73.72 t/hm2和49.95、61.83、79.03 t/hm2。退耕年限和坡向是影响刺槐人工林碳储量增加的主要因素。刺槐人工林具有良好的固碳效益,是黄土丘陵区的理想树种。  相似文献   

5.
湘潭锰矿废弃地不同林龄栾树人工林碳储量变化趋势   总被引:1,自引:1,他引:0  
对湘潭锰矿区废弃地植被恢复区的3年生、5年生和9年生栾树林,进行了不同时间序列栾树林生物量和碳储量的时空变化研究。结果表明:随着林龄的增长,林木和各器官生物量增加,树干生物量所占比例逐渐增大,林下植被层生物量随林龄增长而增加,且以草本植被为主;不同林龄栾树人工林乔木层碳含量在0.51—0.53gC/g之间,并高于林下植被层碳含量;不同林龄林地土壤层碳含量变化范围为0.01—0.03gC/g,同一林龄不同深度土层碳含量没有显著差异,相同深度不同林龄土层碳含量存在差异;3年生、5年生和9年生栾树碳储量分别为:1.66、18.32和49.87t/hm2,随林龄增长而增加,其中树干碳储量贡献率最大,所占比例由3年生的27.71%增长到9年生的43.43%;不同林龄栾树林生态系统总碳储量分别为77.76、101.63和149.86t/hm2,其中土壤层碳储量变化范围为76.09—99.93t/hm2,占总储量的66.68%—97.85%,死地被物层碳储量为0.01—0.04t/hm2,占总储量0.001%—0.02%,植被层碳储量为1.67—49.89t/hm2,占总碳储量的2.15%—33.29%,植被层中乔木层为1.66—49.87t/hm2,占植被层碳储量的99%以上。各林龄栾树林生态系统碳储量空间分布序列为土壤层植被层死地被物层。研究结果可为我国矿区植被恢复地的森林资源和碳汇管理提供科学依据。  相似文献   

6.
为阐明黄土高原中西部刺槐人工林碳密度区域分布特征及其主要影响因子,基于野外样地调查和室内样品分析估算了黄土高原中西部4个栽培区域的刺槐人工林生态系统碳密度及其分布特征,并利用相关性分析和主成分分析分析了影响生态系统碳密度的主要因子(林分、地形、土壤和气候等)。结果表明:调查区5个林龄的刺槐人工林生态系统生物量为34.13—133.08t/hm~2,不同区域之间各组分生物量存在显著性差异。植被层平均碳含量为221.93—454.67 g/kg,总体上表现为乔木层平均碳含量高于灌、草层,枯落物层平均碳含量最低,不同区域乔木、灌木、草本平均碳含量均存在显著性差异。刺槐人工林生态系统碳密度均值为106.86 t/hm~2,其中土壤层碳密度占刺槐人工林生态系统总碳密度的64.09%,是刺槐人工林生态系统碳密度的主要组成部分。植被层碳密度为38.68 t/hm~2,其中乔木层碳密度(33.88 t/hm~2)占植被层碳密度的87.58%,灌木、草本、枯落物所占比例依次为1.98%(0.77 t/hm~2)、2.00%(0.77 t/hm~2)、8.43%(3.26 t/hm~2)。不同区域土壤、生态系统碳密度均存在显著性差异。相关性分析和主成分分析表明,刺槐人工林生态系统碳密度与林龄、降水量呈显著正相关关系,与林分密度、平均气温、海拔和坡度的相关关系不显著,上述林分因子、地形因子和环境因子转化的主成分方差累积贡献率为91.07%,其中林龄和降水量是影响刺槐人工林生态系统碳密度的主要因子,方差贡献率为37.22%。  相似文献   

7.
黄土丘陵区不同林龄刺槐人工林碳、氮储量及分配格局   总被引:4,自引:0,他引:4  
对黄土丘陵区9、17、30和37年生刺槐人工林进行调查,研究刺槐人工林生态系统碳、氮储量随林龄的变化动态及分配格局.结果表明:各林龄刺槐人工林乔木层碳、氮含量分别为435.9~493.4 g·kg-1和6.8~21.0 g·kg-1;草本层和凋落物层碳、氮含量分别为396.3~459.2 g·kg-1和14.2~23.5 g·kg-1;土壤层碳、氮含量分别为2.7~10.7 g·kg-1和0.2~0.7 g·kg-1.树干是乔木层主要的碳、氮库,分别占乔木层碳、氮储量的46.9%~63.3%和39.3%~57.8%;37年生刺槐人工林0~20 cm土层碳、氮储量最大,分别为30.1和1.8 Mg·hm-2.刺槐人工林生态系统的总碳、氮储量随林龄增加而逐渐增大,均在37年生时达到最大值,分别为127.9 Mg·hm-2和6512.8 kg·hm-2;土壤层是刺槐人工林生态系统的主要碳、氮库,分别占人工林生态系统总碳、氮的63.3%~83.3%和80.3%~91.4%.  相似文献   

8.
量化橡胶树和桉树人工林碳储量, 为评价海南地区碳汇功能和可持续管理功能提供重要依据。在海南省儋州市选择不同林龄的橡胶树和桉树人工林, 设置样地测算乔木层、林下植被和枯落物的生物量, 土壤分层采集0-100cm 土样,依据相对方程, 计算橡胶树和桉树人工林生态系统的碳含量和碳储量。结果表明: 不同林龄橡胶树和桉树人工林林下植被碳含量变化幅度为38.09%-45.31%, 枯落物碳含量为38.50%-47.52%之间。0-100 cm 土层碳含量变化幅度为0.31%-1.62%, 各林分土壤含碳率均随土层深度增加而减少, 除底层(50-100cm)土壤外, 其它层次不同林分土壤有机碳的含量均表现为橡胶林>桉树林。橡胶树、桉树人工林生态系统总碳储量分别为160.01 和86.33 tC·hm–2, 桉树人工林生态系统碳储量均表现为随林龄的增加而增加, 橡胶树各林龄碳储量均高于桉树。橡胶树、桉树人工林乔木碳储量分别占其总碳储量的36.87%和23.92%。橡胶树和桉树人工林下植被碳储量表现为橡胶树(0.78 tC·hm–2)>桉树(0.49 tC·hm–2), 枯落物碳储量分别占其总碳储量的1.00%和1.56%。橡胶树、桉树人工林土壤碳储量分别为96.22 和63.88 tC·hm–2, 橡胶树人工林土壤碳储量高于桉树, 0-50 cm 土层碳储量成为土壤的主体, 橡胶树0-50 cm 土层碳储量占其土壤总碳储量的64.39%, 桉树为54.35%。乔木层和土壤层碳储量是整个森林生态系统碳贮量的主要部分。橡胶人工林生态系统的固碳速率和固碳潜力分别为4.20 tC·hm–2·a–1 和64.78 tC·hm–2, 桉树人工林生态系统的固碳速率和固碳潜力分别为11.06 tC·hm–2·a–1和23.98 tC·hm–2。两个树种均具有较高的固碳能力, 是海南营造高效固碳人工林的理想树种。  相似文献   

9.
提高林分碳储量估测精度,对于研究区域尺度上森林固碳功能具有重要的意义。本文以上海外环林带女贞(Ligustrum lucidum)人工林为研究对象,构建了女贞立木及各器官(根、干、皮、枝、叶)生物量方程,并对9年生女贞人工林乔木层、地表枯落物层和土壤层(0~100 cm)碳储量进行了估测。结果表明,女贞立木及各器官生物量方程拟合效果较好(R20.9,P0.01)。女贞人工林生态系统总碳储量为169.89 t·hm-2,其中林分乔木层碳储量为10.48 t·hm-2,地表枯落物层碳储量为1.54 t·hm-2,林分土壤(0~100 cm)碳储量所占比例最大,为157.7 t·hm-2。在女贞人工林乔木层生物量中,树干占林木生物量的比例最大(40%),其次分别为枝(20%)、根(15%)、叶(11%)和皮(4%)。  相似文献   

10.
长沙市区马尾松人工林生态系统碳储量及其空间分布   总被引:3,自引:0,他引:3  
巫涛  彭重华  田大伦  闫文德 《生态学报》2012,32(13):4034-4042
采用样方法和取样法,研究了长沙市区13年生马尾松林生态系统碳含量、碳储量及其空间分布特征。结果表明:马尾松林木各器官平均碳含量为511.17 g/kg,从高到低排列顺序为叶>干>根>皮>枝;林下灌木层、草本层、枯落物层的平均碳含量分别为531.66、465.53、393.92g/kg。林地土壤层有机碳含量为9.40—24.73 g/kg,各层次碳素含量分布不均,表层(0—15cm)土壤碳素含量较高,并随土壤深度的增加而逐渐下降。生态系统碳库的空间分布序列为土壤层>植被层>枯落物层。植被层的碳储量为34.50t/hm2,占整个生态系统碳总储量的21.57%;乔木层碳储量占整个生态系统的20.27%,占植被层碳储量的93.97%。乔木层碳储量中,树干的碳储量最高,占乔木层碳储量的65.52%,其次为根,占乔木层碳储量的19.15%,树皮最少,仅占2.10%;枯落物层碳储量为3.81 t/hm2,仅占整个生态系统碳储量的2.38%;林地土壤层(0—60cm)碳储量相当可观,为121.62 t/hm2,占系统碳储量的76.05%。马尾松林年净生产力为4.88 t.hm-.2a-1,有机碳年净固定量为2.50 t.hm-.2a-1,折合成CO2的量为9.16 t.hm-.2a-1。  相似文献   

11.
研究比较了南亚热带6年生格木(Erythrophleum fordii)、马尾松(Pinus massoniana)幼龄人工纯林及马尾松与格木混交林生态系统碳氮储量及其分配特征。结果表明,生态系统总碳储量依次为马尾松-格木混交林(137.75 t/hm2)格木纯林(134.07 t/hm2)马尾松纯林(131.10 t/hm2),总氮储量则为格木纯林(10.19 t/hm2)马尾松-格木混交林(8.68 t/hm2)马尾松纯林(7.01 t/hm2)。3种人工林生态系统碳氮库空间分布基本一致,绝大部分储存于0—100 cm土壤层,平均占生态系统总储量的81.49%和96.91%,其次为乔木层(分别占17.52%和2.69%),林下植被和凋落物层所占比例最小。林地土壤碳主要集中于表土层,其中0—30 cm土层平均碳储量为52.52 t/hm2,占土壤总碳储量(0—100 cm)的47.99%,土壤氮的分布则无明显规律。相比于纯林,与固氮树种混交的营林方式表现出更大的碳储存能力。3种幼龄人工林生态系统较低的地上与地下部分碳氮分配比,表明其仍具有较强的碳氮固持潜力。  相似文献   

12.
孙轲  黎建强  杨关吕  左嫚  胡景 《生态学报》2021,41(8):3100-3110
为了更好地理解土壤碳氮对枯落物输入变化的响应,通过枯落物添加与去除实验(DIRT)对滇中高原云南松林枯落物输入变化对土壤碳氮储量及其分布格局的影响进行了研究。2018年3月至2019年2月分别设置6种枯落物输处理,分别为对照(CO)、去除枯落物(NL)、双倍枯落物(DL)、去除根系(NR)、无输入(NI)以及去除有机层与A层(O/A-Less),研究了不同处理条件下土壤剖面上碳氮储量的分布规律。研究结果表明:(1)不同处理全碳储量为134.49-170.92 t/hm2,全碳储量在不同处理间表现为:SC(NL)=170.92 t/hm2 > SC(CO)=168.10 t/hm2 > SC(NR)=153.26 t/hm2 > SC(NI)=147.20 t/hm2 > SC(O/A-Less)=143.54 t/hm2 > SC(DL)=134.49 t/hm2,不同处理0-20 cm土层全碳储量占0-60 cm土层全碳储量的40.86%-53.56%;不同处理全氮储量表现为:SN(CO)=11.83 t/hm2 > SN(NL)=9.70 t/hm2 > SN(DL)=8.70 t/hm2 > SN(NR)=8.35 t/hm2 > SN(O/A-Less)=8.21 t/hm2 > SN(NI)=8.09 t/hm2。不同处理0-20 cm土层的全氮储量占0-60 cm土层全氮储量的39.28%-46.04%。云南松林地枯落物添加去除实验发现去除枯落物短期内可以增加土壤碳储量,其他处理均在一定程度上减少了土壤碳氮储量。(2)地上枯落物输入对表层(0-20 cm)土壤碳氮影响显著,根系输入对深层(20-40 cm)土壤碳氮影响显著;(3)土壤C、N存在耦合关系,不同处理土壤全碳含量与全氮含量极显著正相关,并且土壤全碳含量与土壤各化学计量比均呈极显著正相关关系;土壤容重与土壤碳氮含量具有极显著负相关关系。  相似文献   

13.
高寒沙地乌柳防护林碳库随林龄的变化   总被引:2,自引:0,他引:2  
植被恢复是改善脆弱生态系统的有效方式。长期的植被恢复能够提高沙地生态系统的服务功能。以青海共和高寒沙地不同林龄乌柳(Salix cheilophila)防护林生态系统为研究对象,研究植被恢复过程中植被碳库与土壤碳库的动态变化,探讨乌柳防护林生态系统的碳汇功能。结果表明:随林龄增加,乌柳各组分碳浓度变化规律并不显著(P0.05),而碳贮量显著增加(P0.05),且不同林龄乌柳各组分碳库的分配比例不同,树干碳贮量占林分碳贮量的百分比最高。各林龄(6、11、16、21a)乌柳林碳贮量分别为4.95、9.93、14.67 t/hm2和21.99 t/hm2。土壤碳库随植被恢复时间的增加而增加,各林龄土壤碳库(0—200cm)分别为9.54、13.03、17.18和19.05 t/hm2。较之6、11a土壤碳库增加26.78%,16a较之11a提高24.16%,21a较16a提高9.82%。地被物层(植被残体)固碳量分别为0.27、0.29、0.33、0.43 t/hm2。不同林龄乌柳林生态系统碳库分别为14.76、23.25、32.18 t/hm2和41.48 t/hm2。各林龄乌柳植被层碳库分别占该林龄总碳库的33.54%、42.71%、45.59%和53.01%,土壤碳库分别占该林龄总碳库的64.63%、56.04%、53.39%和45.93%,而地被物层分别占该林龄总碳库的1.83%、1.25%、1.03%和1.03%。较之恢复前的,各林龄碳库依次增加57.05%、36.52%、27.75%和22.42%。植被恢复各阶段年净碳累积速率分别为1.41、1.70、1.79、1.86 t C hm-2a-1。乌柳防护林生态系统具有"碳汇"功能。  相似文献   

14.
南亚热带红锥、杉木纯林与混交林碳贮量比较   总被引:2,自引:0,他引:2  
造林再造林作为新增碳汇的一种有效途径,受到国际社会的广泛关注。如何通过改变林分树种组成,优化造林模式提高人工林生态系统碳贮量已成为国内外学者关注的重点。通过样方调查和生物量实测相结合的方法,对南亚热带26年生红锥纯林(PCH)、杉木纯林(PCL)及红锥×杉木混交林(MCC)生态系统各组分碳含量、碳贮量及其分配特征进行了比较研究。结果表明:杉木、红锥各器官平均碳含量分别为492.1—545.7 g/kg和486.7—524.1 g/kg。相同树种不同器官以及不同树种的相同器官间碳含量差异显著(P0.05)。红锥各器官碳含量的平均值(521.3 g/kg)高于杉木(504.7 g/kg)。不同林分间地被物碳含量大小顺序为PCHMCCPCL;不同树种之间的土壤碳含量差异显著(P0.05),0—100 cm土壤平均碳含量为PCLMCCPCH。生态系统碳贮量大小顺序为PCL(169.49 t/hm2)MCC(141.18 t/hm2)PCL(129.20 t/hm2),相同组分不同林分以及相同林分的不同组分碳贮量均存在显著差异(P0.05)。造林模式对人工林碳贮量及其分配规律有显著影响,营建混交林有利于红锥生物量和土壤碳的累积,而营建纯林有利于杉木人工林生物量碳的吸收,也有利于土壤碳的固定。因而,混交林的固碳功能未必高于纯林,在选择碳汇林的造林模式时,应以充分考虑不同树种的固碳特性。  相似文献   

15.
不同林龄麻栎林地下部分生物量与碳储量研究   总被引:1,自引:0,他引:1  
王霞  胡海波  张世豪  卢洪霖 《生态学报》2019,39(22):8556-8564
探讨不同林龄麻栎林地下部分根系的生物量与碳储量,为麻栎林的经营管理及碳汇管理等提供科学依据。以江苏省句容市不同林龄(幼龄林、中龄林、近熟林、成熟林)的麻栎林为研究对象,采用全根挖掘法获取麻栎各级根系及灌草层根系,并测定其生物量、碳含量,构建麻栎根系生物量模型,估算麻栎林地下部分根系碳储量及麻栎林群落碳储量。通过11种数学回归模型的比较,构建麻栎各级根系生物量幂回归模型,计算得到幼龄林、中龄林、近熟林、成熟林麻栎根系生物量分别为14.81t/hm~2、41.15t/hm~2、50.36t/hm~2、53.75t/hm~2,各级根系生物量大小顺序是:根桩粗根大根细根;灌木与草本植物根系生物量分别为0.48—1.71t/hm~2、0.13—0.60t/hm~2;不同林龄麻栎林群落根系生物量为15.42—56.06t/hm~2,且随林龄的增大而增大。麻栎根系碳含量大小顺序为:根桩粗根大根细根,且碳含量差异显著;灌木与草本植物根系碳含量分别为41.84%—43.79%、34.03%—38.48%,随林龄变化均无明显变化规律。麻栎林乔木根系碳储量随林龄增大而增大,幼龄林、中龄林、近熟林、成熟林根系碳储量分别为6.01t/hm~2、17.41t/hm~2、21.79t/hm~2、21.99t/hm~2;灌木与草本植物根系碳储量均随林龄增大而增大;幼龄林、中龄林、近熟林、成熟林群落根系碳储量分别为6.26t/hm~2、17.74t/hm~2、22.37t/hm~2、22.94t/hm~2,且乔木层灌木层草本层。麻栎林地下部分根系生物量与碳储量随林龄的增大而增大,幼龄林到近熟林生长过程中生物量与碳储量增加快速,近熟林后生物量与碳素积累缓慢,且与成熟林接近。  相似文献   

16.
广西马山岩溶次生林群落生物量和碳储量   总被引:1,自引:0,他引:1  
岩溶植被在岩溶生态系统碳循环和全球碳平衡中具有重要的作用。通过对马山县岩溶次生林年龄序列(幼龄林、中龄林和老龄林)3个演替阶段9个样地(20 m×50 m)的系统取样调查,研究了停止人为干扰后岩溶次生林生物量和碳储量的变化。结果表明:沿幼林、中林和老林群落的顺向演替发展,群落生物量显著增加(P0.05),从幼林群落的48.17 t/hm2、到中林群落113.47 t/hm2,再到老林群落242.59 t/hm2。老林生态系统的碳储量较高,平均为236.69 t/hm2,中林和幼林较低且非常相近,分别为225.17 t/hm2和224.76 t/hm2,各次生林生态系统的碳储量差异不显著(P0.05)。土壤碳储量的大小顺序为幼林(198.44 t/hm2)中林(167.39 t/hm2)老林(113.43 t/hm2)。沿群落正向演替,各次生林生态系统中植物碳储量和土壤碳储量的比例发生明显的变化。幼林的土壤碳储量占生态系统碳储量的88.29%,植物碳储量只占11.71%;中林相应为74.34%和25.66%;而老林为47.92%和52.08%。可见,随着岩溶植被的正向演替,土壤碳转变为植物碳的趋势十分明显,这是岩溶森林不同于酸性土森林的一个显著特征。  相似文献   

17.
秦岭中段南坡油松林生态系统碳密度   总被引:5,自引:3,他引:2  
沈彪  党坤良  武朋辉  朱成功 《生态学报》2015,35(6):1798-1806
在秦岭中段南坡油松林分布较为广泛的不同区域,采用典型取样的方法设置油松林标准地50块。通过样地调查和室内分析,对本区油松林生态系统植被层、枯落物层及土壤层有机碳密度进行了研究与估算,分析了油松林生态系统各层次的有机碳密度在不同立地因子下的分布规律。结果表明:秦岭中段南坡油松林生态系统总有机碳密度为150.12 t/hm2,其中土壤碳分库的碳密度占油松林生态系统总碳密度的56.74%,是构成油松林生态系统碳的主体组成部分。植被层碳密度为62.29 t/hm2,占油松林生态系统总碳密度的41.49%,高于我国森林生态系统植被碳密度平均值,且仍有较大的固碳潜力。枯落物层碳密度为2.66 t/hm2,占油松林生态系统总碳密度的1.77%。在植被碳分库中,乔木层碳密度是其主体构成部分,为61.22 t/hm2,占植被层碳密度的98.30%;灌木层、草本层碳密度及其所占植被层碳密度的比例分别为:0.65 t/hm2(1.04%)、0.41 t/hm2(0.66%)。碳在乔木不同器官中的分配大小顺序为:树干(55.82%)、树枝(21.25%)、树根(10.28%)、树叶(7.35%)、树皮(5.30%)。灌木层碳密度和草本层碳密度受地形因子影响不显著。随海拔的升高,乔木层碳密度呈先增后减的变化趋势,在海拔1500—1700 m处达到最大值,枯落物层碳密度、土壤层碳密度及总碳密度变化不显著;随着坡度的增大,油松林生态系统枯落物层碳密度、土壤层碳密度及总碳密度显著减小,乔木层碳密度呈先增后减的变化趋势,在坡度为26—35°范围达到最大值;下坡位土壤层碳密度高于中坡位和上坡位,而中坡位乔木层碳密度和生态系统总碳密度高于下坡位和上坡位,枯落物层碳密度受坡位影响不明显;阳坡乔木层碳密度大于阴坡,枯落物层碳密度、土壤层碳密度及总碳密度受坡向影响不明显。  相似文献   

18.
植被恢复模式对石漠化生态系统碳储量的影响   总被引:1,自引:0,他引:1  
为揭示石漠化生态系统碳储量对植被恢复模式的响应,在广西天等县中度石漠化山地,研究了吊丝竹纯林(Dendrocalamus minorD)、任豆纯林(Zenia insignis Z)、任豆、蚬木(Buerretiodendron hsienmu)和顶果木(Acrocarpus fraxinifolius)混交林(mixed plantation M),以及相应同龄封育林(D_(CK)、Z_(CK)、M_(CK))的碳储量。结果表明:人工林碳储量显著高于相应同龄封育林的碳储量,D、Z、M人工林碳储量分别为67.75、66.56、121.20 t/hm~2,而D_(CK)、Z_(CK)、M_(CK)封育林仅为49.75、52.89、60.86 t/hm~2。碳储量在乔木层、地被物层、土壤层分配排序因生态系统类型而异,如M:乔木层土壤层地被物层;D和Z:土壤层乔木层地被物层;D_(CK)、Z_(CK)和M_(CK):土壤层地被物层乔木层。此外,M、D、Z乔木层年平均碳储量差异显著,而封育林尚未形成乔木层,其植被碳储量则随封育时间的增加而提高,即M_(CK)Z_(CK)D_(CK)。可见,在中度石漠化山地,植被恢复模式显著影响生态系统碳储量及其分配。人工造林相对于封山育林更能快速促进植被恢复、形成乔木林,从而提高生态系统碳储量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号