首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
【背景】大豆疫霉根腐病作为大豆生产上的一种毁灭性病害已被美国、加拿大等多国报道,其病原菌大豆疫霉(Phtophthora sojae Kaufmann and Gerdemann)为典型的土传病原菌。近年来,土传病原菌与植物根系的互作成为研究土传病原菌寄主选择机制的主要方向。【目的】探究寄主大豆和非寄主菜豆根及根分泌物对大豆疫霉的不同影响,阐明这种影响与大豆疫霉对寄主选择的关系。【方法】应用原位土培法种植大豆疫霉感病品种Sloan、抗病品种Williams82和非寄主菜豆一点红,测定了单个大豆疫霉游动孢子对寄主大豆和非寄主菜豆幼根的侵染行为,收集了寄主及非寄主根分泌物,测定了根分泌物对大豆疫霉游动孢子的趋化作用,包括吸引游动孢子的能力以及对游动孢子成囊、孢囊萌发和芽管生长的影响。【结果】大豆疫霉单个游动孢子对寄主大豆幼根表现强烈趋向性,沿着根面进行多次试探性接触后在根尖伸长区快速成囊并萌发,产生的芽管顶端贴附在幼根表面,在感病大豆品种根面上的芽管比抗病大豆品种上的短且粗,而对非寄主菜豆幼根则不具有趋向性,接触一次后即远离,最终在距离幼根75μm的位置成囊萌发,且芽管生长不具有方向性。此外,大豆疫霉游动孢子对抗病、感病大豆和非寄主菜豆幼根的侵染行为差异完全在根分泌物试验中重现,即寄主大豆根分泌物对大豆疫霉游动孢子具有较强的趋向作用,能够有效吸引游动孢子,促进游动孢子快速成囊及萌发,抑制芽管的伸长,而非寄主菜豆根分泌物不具有上述作用。【结论】大豆疫霉对寄主的选择性与根分泌物有关,为进一步了解大豆疫霉的寄主选择机制提供理论依据。  相似文献   

2.
杨德卫  李生平  崔海涛  邹声浩  王伟 《遗传》2020,(3):278-286,I0002-I0009
近年来,大量的植物抗病基因和病原菌无毒基因被克隆,抗病基因和无毒基因的结构、功能及其互作关系的研究也取得重大进展。在植物中,由病原菌模式分子(pathogen-associated molecular patterns, PAMPs)引发的免疫反应(PAMP-triggered immunity, PTI)和由效应因子引发的免疫反应(effector-triggered immunity, ETI)是植物在长期进化过程中形成的两类抵抗病原物的机制。PTI反应主要通过细胞表面受体(patternrecognition receptors, PRRs)识别并结合PAMPs从而激活下游免疫反应,而在ETI反应中,则通过植物R基因(resistance gene,R)与病原菌无毒基因(avirulence gene, Avr)产物间的直接或间接相互作用来完成免疫反应。本文对植物PTI反应和ETI反应分别进行了概述,重点探讨了植物R基因与病原菌Avr基因之间的互作遗传机理,并对目前植物抗性分子遗传机制研究和抗病育种中的问题进行了探讨和展望。  相似文献   

3.
病原菌TAL效应子与寄主靶基因相互识别的分子密码   总被引:2,自引:0,他引:2  
黄单胞杆菌属TAL效应子类蛋白作为病原菌的毒性因子或无毒因子,能够与寄主靶基因DNA的启动子进行特异性识别,调控寄主的基因表达,引起致病或抗病反应。TAL效应子类蛋白识别靶基因DNA的模式,是2个氨基酸决定1个核苷酸的识别。这种新型的蛋白质-DNA互作方式有可能在基因治疗、植物抗病基因发掘、广谱抗病基因构建等生物医学工程和农业工程方面得到广泛应用。文中综述了TAL效应子类蛋白的发现及功能,TAL效应子与寄主靶基因识别的专一性及分子密码,并对该分子密码当前的应用现状及前景进行了讨论和展望。  相似文献   

4.
植物病原卵菌是一类农业生产上为害巨大的病原物,其分泌大量的RXLR效应分子进入寄主植物细胞并干扰植物免疫系统,以协助病原菌成功侵染。尽管有一小部分RXLR效应分子会被植物识别成为无毒蛋白,但大部分RXLR效应分子则会逃避识别和抑制植物免疫。随着高通量测序和蛋白互作技术的广泛应用,大量RXLR效应分子干扰植物免疫的分子机制已经被揭示。本文综述了RXLR效应分子操纵植物免疫系统的分子策略,探讨了RXLR效应分子与植物免疫互作的研究方向和应用前景。  相似文献   

5.
由致病疫霉(Phytophthora infestans(Mont.)de Bary)引起的晚疫病是马铃薯生产中最具毁灭性的病害。为了成功入侵和在寄主植物中繁衍,致病疫霉会向寄主细胞分泌一类RXLR效应蛋白以干扰植物免疫系统。自2005年克隆第一个晚疫病菌RXLR类无毒基因AVR3a以来,国内外学者从RXLR效应蛋白的结构、功能,以及与寄主靶标作用机理等多个方面展开了大量研究。随着高通量测序技术与效应子组学技术的发展,RXLR效应蛋白抑制植物免疫分子机制也取得了显著进展。RXLR效应蛋白的研究有助于揭示致病疫霉与马铃薯互作分子机制,并进一步为马铃薯抗病育种工作提供新思路。主要概述了致病疫霉RXLR效应蛋白的相关研究进展,重点介绍了致病疫霉AVR基因的克隆、定位、变异及功能等方面的最新进展,同时对未来值得关注的研究方向进行了探讨。  相似文献   

6.
植物的先天免疫主要包括模式识别受体对保守的微生物病原相关分子模式的识别和抗病蛋白对效应蛋白的识别。植物与病原体互作过程中存在广泛的信号交流,信号分子在植物与病原体的互作攻防中发挥了重要的调控作用,决定了二者的竞争关系。当前,大量植物与病原体互作中的信号分子被定位和克隆,其作用方式被揭示。本文总结了这些信号分子及其在植物免疫过程中的作用机制,主要包括植物细胞表面的模式识别受体分子对病原相关分子模式的识别与应答,植物抗病蛋白对病原体效应蛋白的识别与应答,以及免疫反应下游相关信号分子及其在植物抗病中的作用。此外,本文对未来相关研究提出了展望。  相似文献   

7.
效应子及其与小麦条锈菌致病性的关系   总被引:1,自引:0,他引:1  
植物病原菌和寄主植物竞争进化过程中分泌称为效应子(Effectors)的复杂的分子,其逃避或抑制寄主的免疫反应,干扰寄主的各种生理过程,从而有利于提高病原菌寄生适合度、定殖能力和传播能力。利用基因组序列和转录组测序数据预测小麦条锈菌中含有两千多个候选效应子,但由于小麦条锈菌缺乏有效的遗传转化体系,目前对其效应子功能的研究进展缓慢。在介绍效应子分类及其特征基础上,结合可运用于小麦条锈菌效应子功能研究的方法,从分子水平上阐释小麦条锈菌与寄主植物互作取得的进展,关注效应子靶定的寄主亚细胞成分及其与致病性的关系。这些进展有利于深入认识小麦条锈菌效应子的生物学功能,并为深入探讨小麦条锈菌的致病机制,制定新的防治策略提供方向。  相似文献   

8.
每种病原菌都有一些保守的特征性分子,也称病原菌相关分子模式(PAMPs)。植物细胞表面的模式识别受体PRRs通过识别病原菌的PAMPs而激发免疫反应(PTI)。目前,已发现多种PRRs/PAMPs的识别模式,如拟南芥FLS2识别细菌鞭毛蛋白、拟南芥EFR识别细菌延长因子Tu(EF-Tu)、水稻CEBiP/CERK1识别真菌几丁质、水稻抗病蛋白XA21识别白叶枯病菌的硫化蛋白Ax21等。这些识别模式都能激发植物的基础免疫反应以抵抗病原菌的侵染。但是病原菌为了成功侵染寄主植物,也进化出一些致病机制,例如向植物细胞中注入毒性效应蛋白阻断PTI途径,或者产生一种"自我伪装"机制以逃避PRRs的识别。因此,研究者们根据PAMPs的结构特性对PRRs重新改造,以期使植物获得持久、广谱和高效的抗性。综述目前已知的PAMPs分子类型、PRRs/PAMPs的识别机制及改造后的新型PRRs,并分析PTI研究中存在的问题及其发展前景。  相似文献   

9.
病原菌为了成功侵入并在寄主植物中繁殖,会分泌效应子作为入侵武器.不同病原菌的效应子具有一定的共性和异性.开展植物病原菌效应子的系统鉴定,深入揭示效应子对病原菌侵入和在植物发病中的作用以及解析效应子与植物抗病基因的互作,可为研究病原菌的致病机制及其与植物的互作提供重要的研究线索,在植物病理和抗病遗传育种研究中也具有重要理论价值和实践意义.近年来,随着测序技术的不断发展,基因组学和转录组学在植物抗病研究中的应用也日益广泛,其研究结果可为鉴定病原物致病基因、植物抗病基因、阐明病原菌与植物互作的分子机制提供重要信息.本文根据近年来植物包括树木中病原物效应子的研究进展,对效应子的特点、鉴定方法、功能及宿主抗病机理等进行了综述和比较,重点阐述了效应子的鉴定、致病功能及与植物抗病基因的分子互作和调控,并对效应子在植物抗病中的应用及其研究前景进行了展望.  相似文献   

10.
植物与病原微生物互作分子基础的研究进展   总被引:4,自引:0,他引:4  
Cheng X  Tian CJ  Li AN  Qiu JL 《遗传》2012,34(2):134-144
植物在与病原微生物共同进化过程中形成了复杂的免疫防卫体系。植物的先天免疫系统可大致分为两个层面。第一个层面的免疫基于细胞表面的模式识别受体对病原物相关分子模式的识别,该免疫过程被称为病原物相关分子模式触发的免疫(PAMP-triggered immunity,PTI),能帮助植物抵抗大部分病原微生物;第二个层面的免疫起始于细胞内部,主要依靠抗病基因编码的蛋白产物直接或间接识别病原微生物分泌的效应子并且激发防卫反应,来抵抗那些能够利用效应子抑制第一层面免疫的病原微生物,这一过程被称为效应子触发的免疫(Effector-triggered immunity,ETI)。这两个层面的免疫都是基于植物对"自我"及"非我"的识别,依靠MAPK级联等信号网络,将识别结果传递到细胞核内,调控相应基因的表达,做出适当的免疫应答。本文着重阐述了植物与病原微生物互作过程中不同层面的免疫反应所发生主要事件的分子基础及研究进展。  相似文献   

11.
植物与植食性昆虫防御与反防御的三个层次   总被引:3,自引:0,他引:3  
在植物与植食性昆虫长期的进化过程中,双方形成了一系列的防御与反防御策略。本文将这些策略归为3个层次:第一层次起始于植物对植食性昆虫相关分子模式的识别,并由此激活植食性昆虫分子模式相关的免疫反应。这种免疫反应对于不能产生效应子的植食性昆虫种群是有效的;第二层次是一些植食性昆虫种群可以通过释放特异性效应子抑制植物产生的植食性昆虫分子模式相关的免疫反应,从而在植物上正常生长与繁衍;第三层次是一些植物基因型可以通过特异抗性基因识别植食性昆虫的效应子,进而激活效应子诱导的免疫反应,表现出特异的抗虫性。深入揭示植物与植食性昆虫间的这种分子互作机制,不仅在理论上有助于理解昆虫与植物的协同进化机制,而且在实践上可为作物抗性品种的培育提供重要的技术指导。  相似文献   

12.
宿主细胞内的DNA识别受体可识别病毒核酸分子并激活细胞天然免疫反应,从而产生抗病毒效应;同时,病毒也进化出相应机制来逃避或抑制这种免疫反应。本文总结了宿主细胞内DNA识别受体PYHIN家族识别病毒核酸并激活细胞天然免疫反应的特点和分子机制,并讨论了病毒逃避宿主天然免疫应答的方式。  相似文献   

13.
《菌物学报》2017,(9):1233-1242
辣椒疫霉菌Phytophthora capsici引起的辣椒疫病是世界性蔬菜病害,该病害严重发生常给辣椒生产造成严重损失。植物病原卵菌侵染寄主植物过程中常分泌大量的效应分子来促进自身的侵染与定殖,其中Rx LR效应分子在病原卵菌侵染寄主及与寄主植物互作过程发挥着重要的作用。辣椒疫霉菌是一种重要的植物病原卵菌,本研究以辣椒疫霉菌标准菌株LT1534为材料,克隆鉴定了辣椒疫霉的一个效应分子,编号为Rx LR121504,然后将其构建至PBIN‐GFP2植物表达载体,利用农杆菌介导的瞬时表达技术、Western blot和亚细胞定位观察技术,较深入地开展了Rx LR121504功能特性的研究。结果表明,Rx LR121504能有效引起本氏烟寄主的过敏性坏死反应(HR),并对激发子INF1诱导的细胞坏死反应具明显的抑制效果,因此Rx LR121504可能参与了辣椒疫霉菌抑制寄主的免疫抗菌过程。但Rx LR121504对寄主植物的分子靶标尚未鉴定明确,该效应分子对寄主植物的分子机制有待进一步深入的研究。  相似文献   

14.
石添添  高英  王欢  刘君 《植物学报》2021,56(4):480-487
植物病害严重威胁全球粮食生产,研究植物对病原菌防御机制和病原菌对寄主作物的侵染过程和分子机制,有助于改良植物种源使其获得持久抗性。近年来, 日渐增多的研究表明, 一些抗病蛋白需要转移到细胞核内才能启动免疫反应,进而发挥抗病防御作用,而细胞核质转运受体是实现这些抗病蛋白核质转运必不可少的“载体”。因此,细胞核质转运及转运...  相似文献   

15.
采用叶碟诱捕法从2007年进口的美国大豆携带的土壤和2006年从黑龙江感病大豆田采集的土壤中分离出2株疫霉菌菌株,并对病原菌进行了形态特征、致病性、分子检测。结果表明:形态观察为疫霉属真菌;接种大豆后出现典型的大豆疫病症状;采用大豆疫霉的特异性引物PCR检测,2个菌株均能扩增出分子量为330 bp的特异性条带。结合形态、致病性测定和分子检测,2株病菌鉴定为大豆疫霉菌(Phytophthora sojaeKauf-mann et Gerdemann)。  相似文献   

16.
在植物与昆虫长期的互作过程中,植物建立起一系列精密而又复杂的防御机制以应对昆虫取食为害,并且能够识别不同取食类型昆虫的效应因子作出不同的防御应答。最近研究揭示了许多植物与蚜虫之间相互抗争的分子机制,这不仅包括植物激素介导的诱导防御途径、植物先天免疫系统和基于gene-for-gene的R抗性识别和作用机制,而且还包括蚜虫在取食过程中分泌的唾液成分,它有助于蚜虫取食韧皮部组织,抑制植物病原相关分子模式激活的免疫反应(Pathogen-associated molecular patterns triggered immunity,PTI)防御,以及被植物核苷酸结合位点区-亮氨酸重复序列区(NBS-LRR)膜受体识别激活效应因子免疫反应(ETI)防御等方面。本文综述了蚜虫诱导的植物防御途径、蚜虫诱导的植物免疫反应、蚜虫效应因子的鉴定与功能分析三方面的最近研究进展,提出了未来发展的研究方向。这些基于病原微生物提出的"zig-zag"模型为进一步理解植物先天免疫、诱导防御系统和蚜虫唾液腺组分的互作提供新理论支撑,为揭示了植物与蚜虫抗性互作的分子机制及有效安全地防治害虫提供了新思路。  相似文献   

17.
蚜虫诱导的植物免疫反应   总被引:1,自引:0,他引:1  
在植物与昆虫长期的互作过程中,植物建立起一系列精密而又复杂的防御机制以应对昆虫取食为害,并且能够识别不同取食类型昆虫的效应因子作出不同的防御应答。最近研究揭示了许多植物与蚜虫之间相互抗争的分子机制,这不仅包括植物激素介导的诱导防御途径、植物先天免疫系统和基于gene-for-gene的R抗性识别和作用机制,而且还包括蚜虫在取食过程中分泌的唾液成分,它有助于蚜虫取食韧皮部组织,抑制植物病原相关分子模式激活的免疫反应(Pathogen-associated molecular patterns triggered immunity,PTI)防御,以及被植物核苷酸结合位点区-亮氨酸重复序列区(NBS-LRR)膜受体识别激活效应因子免疫反应(ETI)防御等方面。本文综述了蚜虫诱导的植物防御途径、蚜虫诱导的植物免疫反应、蚜虫效应因子的鉴定与功能分析三方面的最近研究进展,提出了未来发展的研究方向。这些基于病原微生物提出的"zig-zag"模型为进一步理解植物先天免疫、诱导防御系统和蚜虫唾液腺组分的互作提供新理论支撑,为揭示了植物与蚜虫抗性互作的分子机制及有效安全地防治害虫提供了新思路。  相似文献   

18.
程曦  田彩娟  李爱宁  邱金龙 《遗传》2012,34(2):134-144
植物在与病原微生物共同进化过程中形成了复杂的免疫防卫体系。植物的先天免疫系统可大致分为两个层面。第一个层面的免疫基于细胞表面的模式识别受体对病原物相关分子模式的识别, 该免疫过程被称为病原物相关分子模式触发的免疫(PAMP-triggered immunity, PTI), 能帮助植物抵抗大部分病原微生物; 第二个层面的免疫起始于细胞内部, 主要依靠抗病基因编码的蛋白产物直接或间接识别病原微生物分泌的效应子并且激发防卫反应, 来抵抗那些能够利用效应子抑制第一层面免疫的病原微生物, 这一过程被称为效应子触发的免疫(Effector-triggered immunity, ETI)。这两个层面的免疫都是基于植物对“自我”及“非我”的识别, 依靠MAPK级联等信号网络, 将识别结果传递到细胞核内, 调控相应基因的表达, 做出适当的免疫应答。本文着重阐述了植物与病原微生物互作过程中不同层面的免疫反应所发生主要事件的分子基础及研究进展。  相似文献   

19.
豆科植物-根瘤菌共生固氮的免疫调控机制   总被引:1,自引:0,他引:1  
在长期进化中,根瘤菌与豆科植物形成一种独特的互惠共生关系——共生固氮。根瘤菌-豆科植物共生互作与病原细菌激发植物病原反应极为相似,然而根瘤菌的入侵和定殖并没有激发宿主豆科植物过度的防御反应,植物也进化出特殊的共生信号转导和根瘤发育途径来"邀请"根瘤菌的入侵和定殖。此外,植物防御反应也很大程度上调控根瘤菌与豆科植物共生的宿主特异性。越来越多的研究表明,植物防御反应在调控根瘤菌匹配识别、入侵、定殖以及类菌体发育等方面起关键调控作用。从植物免疫反应角度综述了根瘤菌与豆科植物共生互作的最新进展,通过与病原菌-植物互作的病原反应对比,论述了根瘤中植物感知微生物相关分子模式(MAMP,Microbe-Associated Molecular Patterns)和效应蛋白引起的免疫反应的调控机制。  相似文献   

20.
水稻抗稻瘟病天然免疫机制及抗病育种新策略   总被引:3,自引:0,他引:3  
何峰  张浩  刘金灵  王志龙  王国梁 《遗传》2014,36(8):756-765
稻瘟病是水稻最严重的病害之一,由子囊菌(Magnaporthe oryzae)引起。利用抗病品种是防治稻瘟病最经济、最有效的措施。近年来,稻瘟病已发展为研究植物与病原真菌分子互作机制的模式系统,在水稻与稻瘟菌互作和寄主抗性分子生物学、基因组学和蛋白组学等领域取得了一系列重要的研究成果。文章综述了近年来水稻抗稻瘟病两种天然免疫机制,即病原菌相关分子模式诱导和效应蛋白诱导的抗病机制研究的最新进展,讨论了GWAS、TALLEN、CRISPR和HIGS等基因组研究新方法和新技术在水稻抗病育种中的应用,并对目前稻瘟病抗性机制研究和抗病育种中的问题和挑战进行了探讨和展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号