首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 239 毫秒
1.
2.
AFLR, a zinc binuclear cluster DNA-binding protein, is required for activation of genes comprising the aflatoxin biosynthetic pathway inAspergillusspp. Transformation ofAspergillus parasiticuswith plasmids containing the intactaflRgene gave clones that produced fivefold more aflatoxin pathway metabolites than did the untransformed strain. When a 13-bp region in theaflRpromoter (positions −102 to −115 with respect to the ATG) was deleted, including a portion of a palindromic site previously shown to bind recombinant AFLR, metabolite production was 40% that of transformants with intactaflR.This result provides further evidence that this site may be involved in the autoregulation ofaflR.Overexpression of pathway genes could also result from increased quantities of AFLR titrating out a putative repressor protein. In AFLR, a 20-amino-acid acidic region near its carboxy-terminus resembles the region in yeast GAL4 required for GAL80 repressor binding. When 3 of the acidic amino acids in this region were deleted, levels of metabolites were even higher than those produced by transformants with intactaflR,as would be expected if repressor binding was suppressed in transformants containing this altered protein. Transformation with plasmids mutated at the AFLR zinc cluster (Cys to Trp at amino acid position 49) or at a putative nuclear localization signal region (RRARK deleted) gave clones with one-fifth the metabolite production of the untransformed fungus in spite of the transformants making the same or moreaflRmRNA. Since these transformants retained a copy of intactaflR,the latter results can be explained best by assuming that AFLR activates genes involved in aflatoxin production as a dimeric protein and that heterodimers containing both mutant and intact AFLR strands are inactive.  相似文献   

3.
Deuterolysin (EC 3.4.24.39; formerly designated as neutral proteinase II) from Aspergillus oryzae, which contains 1 g atom of zinc/mol of enzyme, is a single chain of 177 amino acid residues, includes three disulfide bonds, and has a molecular mass of 19,018 Da. Active-site determination of the recombinant enzyme expressed in Escherichia coli was performed by site-directed mutagenesis. Substitutions of His(128) and His(132) with Arg, of Glu(129) with Gln or Asp, of Asp(143) with Asn or Glu, of Asp(164) with Asn, and of Tyr(106) with Phe resulted in almost complete loss of the activity of the mutant enzymes. It can be concluded that His(128), His(132), and Asp(164) provide the Zn(2+) ligands of the enzyme according to a (65)Zn binding assay. Based on site-directed mutagenesis experiments, it was demonstrated that the three essential amino acid residues Glu(129), Asp(143), and Tyr(106) are catalytically crucial residues in the enzyme. Glu(129) may be implicated in a central role in the catalytic function. We conclude that deuterolysin is a member of a family of Zn(2+) metalloendopeptidases with a new zinc-binding motif, aspzincin, defined by the "HEXXH + D" motif and an aspartic acid as the third zinc ligand.  相似文献   

4.
5.
6.
A highly conserved histidine-rich region with unknown function was recognized in the large subunit of [NiFe] hydrogenases. The HxHxxHxxHxH sequence occurs in most membrane-bound hydrogenases, but only two of these histidines are present in the cytoplasmic ones. Site-directed mutagenesis of the His-rich region of the T. roseopersicina membrane-attached Hyn hydrogenase disclosed that the enzyme activity was significantly affected only by the replacement of the His104 residue. Computational analysis of the hydrogen bond network in the large subunits indicated that the second histidine of this motif might be a component of a proton transfer pathway including Arg487, Asp103, His104 and Glu436. Substitutions of the conserved amino acids of the presumed transfer route impaired the activity of the Hyn hydrogenase. Western hybridization was applied to demonstrate that the cellular level of the mutant hydrogenases was similar to that of the wild type. Mostly based on theoretical modeling, few proton transfer pathways have already been suggested for [NiFe] hydrogenases. Our results propose an alternative route for proton transfer between the [NiFe] active center and the surface of the protein. A novel feature of this model is that this proton pathway is located on the opposite side of the large subunit relative to the position of the small subunit. This is the first study presenting a systematic analysis of an in silico predicted proton translocation pathway in [NiFe] hydrogenases by site-directed mutagenesis.  相似文献   

7.
Sawaya R  Shuman S 《Biochemistry》2003,42(27):8240-8249
RNA guanylyltransferase is an essential enzyme that catalyzes the second of three steps in the synthesis of the 5'-cap structure of eukaryotic mRNA. Here we conducted a mutational analysis of the guanylyltransferase domain of the mouse capping enzyme Mce1. We introduced 50 different mutations at 22 individual amino acids and assessed their effects on Mce1 function in vivo in yeast. We identified 16 amino acids as being essential for Mce1 activity (Arg299, Arg315, Asp343, Glu345, Tyr362, Asp363, Arg380, Asp438, Gly439, Lys458, Lys460, Asp468, Arg530, Asp532, Lys533, and Asn537) and clarified structure-activity relationships by testing the effects of conservative substitutions. The new mutational data for Mce1, together with prior mutational studies of Saccharomyces cerevisiae guanylyltransferase and the crystal structures of Chlorella virus and Candida albicans guanylyltransferases, provide a coherent picture of the functional groups that comprise and stabilize the active site. Our results extend and consolidate the hypothesis of a shared structural basis for catalysis by RNA capping enzymes, DNA ligases, and RNA ligases, which comprise a superfamily of covalent nucleotidyl transferases defined by a constellation of conserved motifs. Analysis of the effects of motif VI mutations on Mce1 guanylyltransferase activity in vitro highlights essential roles for Arg530, Asp532, Lys533, and Asn537 in GTP binding and nucleotidyl transfer.  相似文献   

8.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

9.
Peptidases are important because they play a central role in pharmaceutical, food, environmental, and other industrial processes. A serine peptidase from Aspergillus terreus was isolated after two chromatography steps that showed a yield of 15.5%. Its molecular mass was determined to be 43 kD, by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). This peptidase was active between pH 5.0 to 8.0 and had maximum activity at pH 7.0, at 45°C. When exposited with 1 M of urea, the enzyme maintained 100% activity and used azocasein as substrate. The N-terminal (first 15 residues) showed 33% identity with the serine peptidase of Aspergillus clavatus ES1. The kinetics assays showed that subsite S2 did not bind polar basic amino acids (His and Arg) nonpolar acidic amino acids (Asp and Glu). The subsite S1 showed higher catalytic efficiency than the S2 and S3 subsites.  相似文献   

10.
Mutants of GAL4 protein altered in an activation function   总被引:68,自引:0,他引:68  
G Gill  M Ptashne 《Cell》1987,51(1):121-126
  相似文献   

11.
Newell JL  Fay PJ 《Biochemistry》2008,47(33):8786-8795
Factor VIII is activated by thrombin through proteolysis at Arg740, Arg372, and Arg1689. One region implicated in this exosite-dependent interaction is the factor VIII a2 segment (residues 711-740) separating the A2 and B domains. Residues 717-725 (DYYEDSYED) within this region consist of five acidic residues and three sulfo-Tyr residues, thus representing a high density of negative charge potential. The contributions of these residues to thrombin-catalyzed activation of factor VIII were assessed following mutagenesis of acidic residues to Ala or Tyr residues to Phe and expression and purification of the B-domainless proteins from stable-expressing cell lines. All mutations showed reduced specific activity from approximately 30% to approximately 70% of the wild-type value. While replacement of the Tyr residues showed little, if any, effect on rates of thrombin-catalyzed proteolysis of factor VIII and consequent activation, the acidic to Ala mutations Glu720Ala, Asp721Ala, Glu724Ala, and Asp725Ala showed decreased rates of proteolysis at each of the three P1 residues. Mutations at residues Glu724 and Asp725 were most affected with double mutations at these sites showing approximately 10-fold and approximately 30-fold reduced rates of cleavage at Arg372 and Arg1689, respectively. Factor VIII activation profiles paralleled the results assessing rates of proteolysis. Kinetic analyses revealed these mutations minimally affected apparent V max for thrombin-catalyzed cleavage but variably increased the K m for procofactor up to 7-fold, suggesting the latter parameter was dominant in reducing catalytic efficiency. These results suggest that residues Glu720, Asp721, Glu724, and Asp725 likely constitute an exosite-interactive region in factor VIII facilitating cleavages for procofactor activation.  相似文献   

12.
The catalytic residues of levansucrase (sucrose:2,6-beta-D-fructan 6-beta-D-fructosyltransferase, EC 2.4.1.10) from Zymomonas mobilis were analyzed by random mutation and site-directed mutagenesis. We found that substitution of Glu278 with Asp and His reduced the k(cat) for sucrose hydrolysis 30- and 210-fold, respectively, strongly suggesting Glu278 plays a key role in catalyzing this reaction. Given the likelihood that another acidic amino residue was also involved, we constructed variants in which acidic amino acids located within homologous regions among bacterial levansucrases and fructosyltransferases were substituted, and found that substitution of Asp194, located in homologous region III, abolished sucrose hydrolysis. In addition, Glu278 was determined to be situated within the DXXER motif in homologous region IV conserved among bacterial levansucrases and fructosyltransferases, while Asp194 was within the triplet RDP motif conserved among bacterial levansucrases, fructosyltransferases and fructofuranosidases. Finally, comparison of our findings with published data on other site-directed mutated enzymes indicated His296, also located in homologous region IV, is crucial for catalysis of the transfructosylation reaction.  相似文献   

13.
The nucleotide sequence of the gene for a highly alkaline, low-molecular-mass pectate lyase (Pel-15) from an alkaliphilic Bacillus isolate was determined. It harbored an open reading frame of 672 bp encoding the mature enzyme of 197 amino acids with a predicted molecular mass of 20 924 Da. The deduced amino-acid sequence of the mature enzyme showed very low homology (< 20.4% identity) to those of known pectinolytic enzymes in the large pectate lyase superfamily (the polysaccharide lyase family 1). In an integrally conserved region designated the BF domain, Pel-15 showed a high degree of identity (40.5% to 79.4%) with pectate lyases in the polysaccharide lyase family 3, such as PelA, PelB, PelC, and PelD from Fusarium solani f. sp. pisi, PelB from Erwinia carotovora ssp. carotovora, PelI from E. chrysanthemi, and PelA from a Bacillus strain. By site-directed mutagenesis of the Pel-15 gene, we replaced Lys20 in the N-terminal region, Glu38, Lys41, Glu47, Asp63, His66, Trp78, Asp80, Glu83, Asp84, Lys89, Asp106, Lys107, Asp126, Lys129, and Arg132 in the BF domain, and Arg152, Tyr174, Lys182, and Lys185 in the C-terminal region of the enzyme individually with Ala and/or other amino acids. Consequently, some carboxylate and basic residues selected from Glu38, Asp63, Glu83, Asp106, Lys107, Lys129, and Arg132 were suggested to be involved in catalysis and/or calcium binding. We constructed a chimeric enzyme composed of Ala1 to Tyr105 of Pel-15 in the N-terminal regions, Asp133 to Arg159 of FsPelB in the internal regions, and Gln133 to Tyr197 of Pel-15 in the C-terminal regions. The substituted PelB segment could also express beta-elimination activity in the chimeric molecule, confirming that Pel-15 and PelB share a similar active-site topology.  相似文献   

14.
His296 of Zymomonas mobilis levansucrase (EC 2.4.1.10) is crucial for the catalysis of the transfructosylation reaction. The three-dimensional structures of levansucrases revealed the His296 is involved in the substrate recognition and binding. In this study, nine mutants were created by site-directed mutagenesis, in which His296 was substituted with amino acids of different polarity, charge and length. The substitutions of His296 with Arg or Trp retained partial hydrolysis and transfructosylation activities. The positively charged Lys substitution resulted in a 2.5-fold increase of sucrose hydrolysis. Substitutions with short (Cys or Ser), negatively charged (Glu) or polar (Tyr) amino acids virtually abolished both the activities. Analysis of transfructosylation products indicated that the mutants synthesized different oligosaccharides, suggesting that amino acid substitutions of His296 strongly affected both the enzyme activity and transfructosylation products.  相似文献   

15.
Prolyl 4-hydroxylase (EC 1.14.11.2), an alpha2beta2 tetramer, catalyzes the formation of 4-hydroxyproline in collagens. We converted 16 residues in the human alpha subunit individually to other amino acids, and expressed the mutant polypeptides together with the wild-type beta subunit in insect cells. Asp414Ala and Asp414Asn inactivated the enzyme completely, whereas Asp414Glu increased the K(m) for Fe2+ 15-fold and that for 2-oxoglutarate 5-fold. His412Glu, His483Glu and His483Arg inactivated the tetramer completely, as did Lys493Ala and Lys493His, whereas Lys493Arg increased the K(m) for 2-oxoglutarate 15-fold. His501Arg, His501Lys, His501Asn and His501Gln reduced the enzyme activity by 85-95%; all these mutations increased the K(m) for 2-oxoglutarate 2- to 3-fold and enhanced the rate of uncoupled decarboxylation of 2-oxoglutarate as a percentage of the rate of the complete reaction up to 12-fold. These and other data indicate that His412, Asp414 and His483 provide the three ligands required for the binding of Fe2+ to a catalytic site, while Lys493 provides the residue required for binding of the C-5 carboxyl group of 2-oxoglutarate. His501 is an additional critical residue at the catalytic site, probably being involved in both the binding of the C-1 carboxyl group of 2-oxoglutarate and the decarboxylation of this cosubstrate.  相似文献   

16.
17.
Human deoxyribonuclease I (DNase I), an enzyme used to treat cystic fibrosis patients, has been systematically analyzed by site-directed mutagenesis of residues at the DNA binding interface. Crystal structures of bovine DNase I complexed with two different oligonucleotides have implicated the participation of over 20 amino acids in catalysis or DNA recognition. These residues have been classified into four groups based on the characterization of over 80 human DNase I variants. Mutations at any of the four catalytic amino acids His 134, His 252, Glu 78, and Asp 212 drastically reduced the hydrolytic activity of DNase I. Replacing the three putative divalent metal ion-coordinating residues Glu 39, Asp 168, or Asp 251 led to inactive variants. Amino acids Gln 9, Arg 41, Tyr 76, Arg 111, Asn 170, Tyr 175, and Tyr 211 were also critical for activity, presumably because of their close proximity to the active site, while more peripheral DNA interactions stemming from 13 other positions were of minimal significance. The relative importance of these 27 positions is consistent with evolutionary relationships among DNase I across different species, DNase I-like proteins, and bacterial sphingomyelinases, suggesting a fingerprint for a family of DNase I-like proteins. Furthermore, we found no evidence for a second active site that had been previously implicated in Mn2+-dependent DNA degradation. Finally, we correlated our mutational analysis of human DNase I to that of bovine DNase I with respect to their specific activity and dependence on divalent metal ions.  相似文献   

18.
A Yamaguchi  M Nakatani  T Sawai 《Biochemistry》1992,31(35):8344-8348
Of the 16 acidic amino acid residues located in the hydrophilic region of the metal-tetracycline/H+ antiporter of transposon Tn10, five glutamic acids and three aspartic acids are conserved among the tetracycline/H+ antiporters of Gram-negative bacteria. When these conserved acidic residues were each replaced by a neutral polar residue, glutamine or asparagine, only the Asp66 substitution mutants completely lost their transport activity. The substitution of Glu274, Asp120, Glu181, or Asp38 caused significant reduction of the transport activity, whereas the substitution of the other three residues had no detectable effect on the activity. These findings led to the conclusion that only Asp66 is essential for the transport function.  相似文献   

19.
We showed by immunofluorescence that the procaryotic DNA-binding protein LexA and a chimeric protein that contains the DNA-binding portion of LexA (amino acids 1 to 87) and a large portion (amino acids 74 to 881) of the Saccharomyces cerevisiae positive regulatory GAL4 protein (GAL4 gene product) are not preferentially localized in the nucleus in S. cerevisiae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号