首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 657 毫秒
1.
We report the crystal structure of a binary complex of human peroxisomal carnitine acetyltransferase and the substrate l-carnitine, refined to a resolution of 1.8 Angstrom with an R(factor) value of 18.9% (R(free)=22.3%). L-carnitine binds to a preformed pocket in the active site tunnel of carnitine acetyltransferase aligned with His(322). The quaternary nitrogen of carnitine forms a pi-cation interaction with Phe(545), while Arg(497) forms an electrostatic interaction with the negatively charged carboxylate group. An extensive hydrogen bond network also occurs between the carboxylate group and Tyr(431), Thr(444), and a bound water molecule. Site-directed mutagenesis and kinetic characterization reveals that Tyr(431), Thr(444), Arg(497), and Phe(545) are essential for high affinity binding of L-carnitine.  相似文献   

2.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

3.
Arginine vasotocin (VT) is the ortholog in all nonmammalian vertebrates of arginine vasopressin (AVP) in mammals. We have previously cloned an amphibian V1atype vasotocin receptor (VT1R) that exhibited higher sensitivity for VT than AVP, while the mammalian V1a type receptor (V1aR) responded better to AVP than VT. In the present study, we identified the amino acid residues that confer differential ligand selectivity for AVP and VT between rat V1aR and bullfrog VT1R (bfVT1R). A chimeric rat V1aR having transmembrane domain (TMD) VI to the carboxyl-terminal tail (C-tail) of bfVT1R showed a reverse ligand preference for AVP and VT, whereas a chimeric VT1R with TMD VI to the C-tail of rat V1aR showed a great increase in sensitivity for AVP. A single mutation (Ile(315(6.53)) to Thr) in TMD VI of V1aR increased the sensitivity for VT, while a single mutation (Phe(313(6.51)) to Tyr or Pro(334(7.33)) to Thr) reduced sensitivity toward AVP. Interestingly the triple mutation (Phe(313(6.51)) to Tyr, Ile(6.53) to Thr, and Pro(7.33) to Thr) of V1aR increased sensitivity to VT but greatly reduced sensitivity to AVP, behaving like bfVT1R. Further, like V1aR, a double mutant (Tyr(306(6.51)) to Phe and Thr(327(7.33)) to Pro) of bfVT1R showed an increased sensitivity to AVP. These results suggest that Phe/Tyr(6.51), Ile/Thr(6.53), and Pro/Thr(7.33) are responsible for the differential ligand selectivity between rat V1aR and bfVT1R. This information regarding the molecular interaction of VT/AVP with their receptors may have important implications for the development of novel AVP analogs.  相似文献   

4.
We describe a HPLC method coupled to electrospray ionization mass spectrometry (ESI/MS) for quantification and identification of pyrroloquinoline quinone (PQQ) and condensation products formed upon incubation of PQQ with amino acids (IPQ; imidazolopyrroloquinoline and I/OPQ/R; imidazolopyrroloquinoline with attached R-group). More importantly, using these methods we demonstrate the presence of both PQQ and IPQ in human milk in nanomolar to micromolar concentrations. PQQ was incubated with amino acids and condensation products were separated by HPLC. Fractions corresponding to each product were collected and molecular masses were determined using ESI/MS. Ala, Asp, Arg, Cys, Gly, Glu, Ser, Thr, Trp, and Tyr form IPQ upon incubation with PQQ. Yields of IPQ were low (<5%) for Asp and Glu, yet high (>60%) for Thr. In addition to IPQ, Ala, Arg, Cys, Ser, Trp, and Tyr formed IPQ/R derivatives. His, Ile, Leu, Glu, Leu, Lys, Met, and Phe form only IPQ/R derivatives. Proline did not react with PQQ. Mass spectra indicate that PQQ forms stable hydrated carbonyls and decarboxylates easily. Although mass spectra were complicated by the oxidation state of the quinone and decarboxylation of PQQ, these methods are invaluable for the rapid detection of the full range of PQQ adducts in biological matrices.  相似文献   

5.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

6.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

7.
cAMP-dependent protein kinase (PKA) forms an inactive heterotetramer of two regulatory (R; with two cAMP-binding domains A and B each) and two catalytic (C) subunits. Upon the binding of four cAMP molecules to the R dimer, the monomeric C subunits dissociate. Based on sequence analysis of cyclic nucleotide-binding domains in prokaryotes and eukaryotes and on crystal structures of cAMP-bound R subunit and cyclic nucleotide-free Epac (exchange protein directly activated by cAMP), four amino acids were identified (Leu203, Tyr229, Arg239 and Arg241) and probed for cAMP binding to the R subunits and for R/C interaction. Arg239 and Arg241 (mutated to Ala and Glu) displayed no differences in the parameters investigated. In contrast, Leu203 (mutated to Ala and Trp) and Tyr229 (mutated to Ala and Thr) exhibited up to 30-fold reduced binding affinity for the C subunit and up to 120-fold reduced binding affinity for cAMP. Tyr229Asp showed the most severe effects, with 350-fold reduced affinity for cAMP and no detectable binding to the C subunit. Based on these results and structural data in the cAMP-binding domain, a switch mechanism via a hydrophobic core region is postulated that is comparable to an activation model proposed for Epac.  相似文献   

8.
本文用手动逐步法,以Boc-Ala-OCH_2-Pam树脂为载体,Boc保护的α-氨基酸为原料合成了十一个hTGF-α(人体转化生长因子-α)类似物。经过HF裂解、透析、二硫键配对合环及HPLC纯化,得到平均收率为2.9%的纯品,其氨基酸组成分析及质谱数据均符合要求。在构效关系研究中,将合成的hTGF-α类似物进行与A431细胞膜上的EGF受体竞争性结合的试验。以半抑制浓度(IC-50)为指标,发现Tyr~(38)及Arg~(42)二个残基对hTGF-α竞争性与EGF受体结合的活性具有突出的作用。  相似文献   

9.
The first committed step of guanine nucleotide biosynthesis is the oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP) catalyzed by IMP dehydrogenase. The reaction involves the reduction of NAD(+) with the formation of a covalent enzyme intermediate (E-XMP). Hydrolysis of E-XMP requires the enzyme to adopt a closed conformation and is rate-limiting. Thr321, Arg418, and Tyr419 are candidates for the residue that activates water. The substitution of Thr321 has similar, but small, effects on both the hydride transfer and hydrolysis steps. This result suggests that Thr321 influences the reactivity of Cys319, either through a direct interaction or by stabilizing the structure of the active site loop. The hydrolysis of E-XMP is accelerated by the deprotonation of a residue with a pK(a) of approximately 8. A similar deprotonation stabilizes the closed conformation; this residue has a pK(a) of >or=6 in the closed conformation. The substitution of Tyr419 with Phe does not change the pH dependence of either the hydrolysis of E-XMP or the conformational change, which suggests that Tyr419 is not the residue that activates water. In contrast, the conformational change becomes pH-independent when Arg418 is substituted with Gln. Lys can replace the function of Arg418 in the hydrolysis reaction but does not stabilize the closed conformation. The simplest explanation for these observations is that Arg418 serves as the base that activates water in the IMPDH reaction.  相似文献   

10.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

11.
Nitric-oxide synthase (NOS) requires the cofactor, (6R)-5,6,7, 8-tetrahydrobiopterin (H4B), for catalytic activity. The crystal structures of NOSs indicate that H4B is surrounded by aromatic residues. We have mutated the conserved aromatic acids, Trp(676), Trp(678), Phe(691), His(692), and Tyr(706), together with the neighboring Arg(414) residue within the H4B binding region of full-length neuronal NOS. The W676L, W678L, and F691L mutants had no NO formation activity and had very low heme reduction rates (<0.02 min(-1)) with NADPH. Thus, it appears that Trp(676), Trp(678), and Phe(691) are important to retain the appropriate active site conformation for H4B/l-Arg binding and/or electron transfer to the heme from NADPH. The mutation of Tyr(706) to Leu and Phe decreased the activity down to 13 and 29%, respectively, of that of the wild type together with a dramatically increased EC(50) value for H4B (30-40-fold of wild type). The Tyr(706) phenol group interacts with the heme propionate and Arg(414) amine via hydrogen bonds. The mutation of Arg(414) to Leu and Glu resulted in the total loss of NO formation activity and of the heme reduction with NADPH. Thus, hydrogen bond networks consisting of the heme carboxylate, Tyr(706), and Arg(414) are crucial in stabilizing the appropriate conformation(s) of the heme active site for H4B/l-Arg binding and/or efficient electron transfer to occur.  相似文献   

12.
Replacement of Tyr52 with Val or Ala in Lactobacillus pentosus d-lactate dehydrogenase induced high activity and preference for large aliphatic 2-ketoacids and phenylpyruvate. On the other hand, replacements with Arg, Thr or Asp severely reduced the enzyme activity, and the Tyr52Arg enzyme, the only one that exhibited significant enzyme activity, showed a similar substrate preference to the Tyr52Val and Tyr52Ala enzymes. Replacement of Phe299 with Gly or Ser greatly reduced the enzyme activity with less marked change in the substrate preference. Except for the Phe299Ser enzyme, these mutant enzymes with low catalytic activity consistently stimulated NADH oxidation in the absence of 2-ketoacid substrates. However, the double mutant enzymes, Tyr52Arg/Phe299Gly and Tyr52Thr/Phe299Ser, did not exhibit synergically decreased enzyme activity or the substrate-independent NADH oxidation, but rather increased activities toward certain 2-ketoacid substrates. These results indicate that the coordinative combination of amino acid residues at two positions is pivotal in both the functional recognition of the 2-ketoacid side chain and the protection of the bound NADH molecule from the solvent. Multiplicity in such combinations appears to provide d-LDH-related 2-hydroxyacid dehydrogenases with a great variety of catalytic and physiological functions.  相似文献   

13.
V D Kumar  I T Weber 《Biochemistry》1992,31(19):4643-4649
The structure of the cyclic GMP-binding domain of the cyclic GMP-gated ion channel from bovine retinal rod photoreceptors has been modeled by analogy to the crystal structure of the homologous cyclic AMP-binding domain of catabolite gene activator protein (CAP). The modeled cyclic GMP-binding domain has a three-residue deletion and a five-residue insertion between beta strands compared to CAP. The major interactions of the ion channel with cyclic GMP are similar to those observed for cyclic AMP bound to CAP and predicted for cGMP bound to the cGMP-dependent protein kinase: Gly 543 and Glu 544 make hydrogen-bond interactions with the ribose 2'-OH, Arg 559 forms an ion pair with the charged phosphate oxygen, and Thr 560 forms hydrogen-bond interactions with an exocyclic phosphate oxygen and with the 2-amino group of cGMP. Three additional potential interactions were predicted from the model structure. Ile 545 O and Ser 546 OH form hydrogen-bond interactions with an exocyclic phosphate oxygen, and Phe 533 may interact with the aromatic ring of cGMP. This model is in agreement with both the analogue binding experiments and the mutational analysis of Thr 560.  相似文献   

14.
The purpose of this study was to characterize the physical, kinetic, and immunological properties of carnitine acyltransferases purified from mouse liver peroxisomes. Peroxisomal carnitine octanoyltransferase and carnitine acetyltransferase were purified to apparent homogeneity from livers of mice fed a diet containing the hypolipidemic drug Wy-14,643 [( 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]-acetic acid). Both enzymes have a molecular weight of 60,000 and a similar pH optimum. Carnitine octanoyltransferase had a maximum activity for C6 moieties while the maximum for carnitine acetyltransferase was with C3 and C4 moieties. The apparent Km values were between 2 and 20 microM for the preferred acyl-CoA substrates, and the Km values for L-carnitine varied depending on the acyl-CoA cosubstrates used. The Hill coefficient, n, was approximately 1 for all acyl-CoAs tested, indicating Michaelis-Menten kinetics. Carnitine octanoyltransferase retained its maximum activity when preincubated with 5,5'-dithiobis-(2-nitrobenzoate) at pH 7.0 or 8.5. Neither carnitine octanoyltransferase nor carnitine acetyltransferase were inhibited by malonyl-CoA. The immunology of carnitine octanoyltransferase is discussed. These data indicate that peroxisomal carnitine octanoyltransferase and carnitine acetyltransferase function in vivo in the direction of acylcarnitine formation, and suggest that the concentration of L-carnitine could influence the specificity for different acyl-CoA substrates.  相似文献   

15.
Jao SC  Huang LF  Hwang SM  Li WS 《Biochemistry》2006,45(6):1547-1553
Analysis of the pH-rate profile for catalysis of bradykinin cleavage by aminopeptidase P (AMPP), a manganese-containing hydrolase from Escherichia coli, was carried out to show that optimal catalytic function is obtained at neutral pH. On the basis of information derived from the crystal structure, peptidase sequence alignments, and the hydrolysis of organophosphate triesters, active site residues Arg153, Arg370, Trp88, Tyr387, and Arg404 were identified as potential catalytic residues. Site-directed mutagenesis was used to substitute these residues with Leu, Ala, Trp, Lys, or Phe. The kcat values for the Arg153, Arg370, and Trp88 mutants were nearly the same as that for the wild-type enzyme. The kcat values of the R404K, R404A, and Y387A mutants were lower by factors of 285, 400, and 16, respectively. Inductively coupled plasma mass spectrometry and circular dichroism spectroscopy showed that Arg404 is not required for metal chelation or stabilization of protein secondary structure. The hydrogen bond network observed between the side chains of conserved residues Asp260, Arg404, and Tyr387 indicated that Arg404 participates in proton relay. This was further evidenced by the return of activity in the R404A mutant by the addition of guanidine. Also, reduced catalytic efficiency in the R404K mutant, which conserves the positive charge at the bridge site, shows that only the arginine group of Arg404 (not the ammonium group of Lys404) can participate in the hydrogen bond network. The hydrogen bond interaction between the Arg404 and the Tyr387 ring hydroxyl group is suggested by the reduced catalytic efficiency of the Y387F mutant.  相似文献   

16.
Hepatocellular carcinoma is a common malignancy. The carcinoma cells express glypican‐3 (GPC‐3) on the cell membrane. GPC‐3 is also expressed in melanoma cells. Therefore, GPC‐3 might be a potential target for tumor imaging or therapy. Here, proteomic mass spectrometry was used to identify peptides that target GPC‐3‐expressing tumors. A mammalian expression vector expressing a FLAG‐GPC‐3 fusion protein was cloned for immunoprecipitation. With the use of liposomes, the vector was transfected into HepG2 (HepG2/FLAG‐GPC‐3) and HEK 293 cells, and the transfected cell lines were selected with geneticin. HepG2/FLAG‐GPC‐3 cells were used for immunoprecipitation of FLAG‐GPC‐3 fusion protein. Seven peptide candidates (L1–L7) were selected for GPC‐3‐targeting ligands by mass spectrometric analysis. The L5 peptide with 14 amino acids (Arg‐Leu‐Asn‐Val‐Gly‐Gly‐Thr‐Tyr‐Phe‐Leu‐Thr‐Thr‐Arg‐Gln) showed selective binding to the GPC‐3‐expressing tumor cells, as did a shortened L5 peptide (L5‐2) with seven amino acids (Tyr‐Phe‐Leu‐Thr‐Thr‐Arg‐Gln). These peptide ligands have potential as targeting moieties to GPC‐3‐expressing tumors for diagnostic and/or therapeutic purposes. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
During turnover, the catalytic tyrosine residue (Tyr10) of the sigma class Schistosoma haematobium wild-type glutathione-S-transferase is expected to switch alternately in and out of the reduced glutathione-binding site (G-site). The Tyrout10 conformer forms a pi-cation interaction with the guanidinium group of Arg21. As in other similar glutathione-S-transferases, the catalytic Tyr has a low pKa of 7.2. In order to investigate the catalytic role of Tyr10, and the structural and functional roles of Arg21, we carried out structural studies on two Arg21 mutants (R21L and R21Q) and a Tyr10 mutant, Y10F. Our crystallographic data for the two Arg21 mutants indicate that only the Tyrout10 conformation is populated, thereby excluding a role of Arg21 in the stabilisation of the out conformation. However, Arg21 was confirmed to be catalytically important and essential for the low pKa of Tyr10. Upon comparison with structural data generated for reduced glutathione-bound and inhibitor-bound wild-type enzymes, it was observed that the orientations of Tyr10 and Arg35 are concerted and that, upon ligand binding, minor rearrangements occur within conserved residues in the active site loop. These rearrangements are coupled to quaternary rigid-body movements at the dimer interface and alterations in the localisation and structural order of the C-terminal domain.  相似文献   

18.
Three hyperthermophilic sulfur-dependent heterotrophs were isolated from a shallow submarine hydrothermal system at an inlet of Kodakara-jima island, Kagoshima, Japan. The isolates grew at 60 to 97 degrees C, with the optimum temperatures at 85 to 90 degrees C. Sensitivity to rifampin and the existence of ether lipids indicated that the isolates are hyperthermophilic archaea. Partial sequencing of the genes coding for 16S rRNA showed that the three isolates are closely related to the genus Thermococcus. They grew on proteinaceous mixtures, such as yeast extract, Casamino Acids, and purified proteins (e.g., casein and gelatin), but not on carbohydrates or organic acids as sole carbon and energy sources. Nine amino acids were essential for growth of isolate KS-1 (Thr, Leu, Ile, Val, Met, Phe, His, Tyr, and Arg). Isolate KS-2 required Lys in addition to the nine amino acids, and KS-8 required Lys instead of Tyr. In comparative studies, it was shown that Thermococcus celer DSM 2476 required 10 amino acids (Thr, Leu, Ile, Val, Met, Phe, Tyr, Trp, Lys, and Arg) while Pyrococcus furiosus DSM 3638 required only Ile and Val. The hyperthermophilic fermentative eubacterium Thermotoga neapolitana DSM 4359 did not require any amino acids for growth.  相似文献   

19.
In a previous study, we prepared a monoclonal antibody (MoAb) to coagulation factor IX (FIX), designated 65-10, which interfered with the activation of FIX by the activated factor XI/Ca(2+) and neutralized the prolonged ox brain prothrombin time of hemophilia B(M) [11,12]. The location of the epitope on the FIX for 65-10 MoAb is (168) Ile-Thr-Gln-Ser-Thr-Gln-Ser-Phe-Asn-Asp-Phe-Thr-Arg-Val-Val(182) [21]. In this paper, we studied in more detail an epitope on FIX using the systematic substitution of different amino acids at each residue of the epitope peptides and the influence of the epitope peptide on the prolonged ox brain prothrombin time of the hemophilia B(M) plasma of 65-10 MoAb. In the replacement set of amino acids, peptides showing low or no reactivity to 65-10 were (175)Phe --> Asp, Glu, Gly, Lys, Arg, Thr, Val, (176)Asn --> Asp, Glu, Phe, Ile, Lys, Leu, Pro, Val, Tyr, (177)Asp --> Cys, Glu, Phe, Ile, Lys, Leu, Met, Pro, Gln, Arg, Ser, Thr, Val, Trp, Tyr, and (178) Phe --> Pro. These results imply that a hydrophobic molecule of (175) Phe, a hydrophilic molecule of (176)Asn, and a negative charge molecule of (177)Asp were important to the epitope. The 65-10 MoAb antibody neutralized the prolonged ox brain prothrombin time of hemophilia B(M) Nagoya 2 ((180)Arg -->Trp) and Kashihara ((181)Val --> Phe) as well as B(M) Kiryu ((313)Val --> Asp) and Niigata ((390)Ala --> Val). This reaction was inhibited by preincubation with a (168) Ile-Thr-Gln-Ser-Thr-Gln-Ser-Phe-Asn-Asp-Phe-Thr-Arg-Val-Val(182) peptide conjugated with bovine serum albumin (BSA). 65-10 MoAb that has been useful in detailing epitopes will be useful for qualitative analysis of hemophilia B(M).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号