首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Tree species inhabiting riparian forests under Mediterranean climate have evolved to face summer water shortage but may fail to cope with future increases in drought severity. Thus, understanding tree growth phenological variations in response to environmental conditions is necessary to assess the impact of seasonal drought in riparian forests. In this study, we investigated the response of stem radial growth to climate in the narrow-leaved ash (Fraxinus angustifolia) over its distribution in southern Europe. We simulated intra- and inter-annual growth patterns using the Vaganov-Shashkin (VS) model considering five sites subjected to summer drought but showing different climate conditions. The growth pattern in this species varied from unimodal in cool-wet sites to facultative bimodal in warm-dry sites. Bimodal patterns were characterized by two growth peaks coinciding with favorable climate conditions in spring and autumn. The spring growth peak occurs earlier (May) in warm-dry sites than in wet-cool sites (June–July). The variation in the season growth length and growth timing suggests different strategies adopted by this species to cope with summer drought. The VS model revealed different growth patterns across which would be relevant in predicting the response of this and other riparian tree species to climate warming and aridification. Differences in the length of the growing season, timings of growth peaks and the shift from unimodal to bimodal growth patterns should be considered when assessing growth adjustments to future climate scenarios.  相似文献   

2.
The proportion of planted forests in the Mediterranean Basin is one of the largest in the world. These plantations are dominated by pine species and present a series of characteristics such as low elevation, high competition or small tree size that make them more vulnerable to droughts. However, quantitative assessments of their post-drought growth resilience in accordance with species, site factors and tree characteristics are lacking. In this study we sampled 164 trees at four forest sites located in the drought-prone Sierra Nevada, southeastern Spain. We compared growth responsiveness to drought in rear-edge planted vs. relic natural Scots pine (Pinus sylvestris) and coexisting Pyrenean oak (Quercus pyrenaica) stands. Our objective was to characterize and compare the different growth responses to drought between species and sites and the effect of the main physiographic factors (altitude, aspect, and slope) on these responses since the influence of these factors on post-drought resistance and resilience has received little attention to date. Our results reveal that the planted pine sites with the lowest mean growth rates displayed greater resistance during drought, and that higher altitude was associated with improved resistance and/or resilience for all species and sites. Natural pine and Pyrenean oak stands were better adapted to the dry climatic conditions of the Mediterranean region where the study was undertaken, displaying greater resistance and/or resilience and lower influence of drought on growth in comparison to stands of planted pines. These results suggest that promoting the conservation of high-elevation pine plantations and enhancing the regeneration of natural pine and oak may improve the resistance and resilience of these drought-prone forest ecosystems.  相似文献   

3.
Climate transition zone is a sensitive area of climate change and ecological transition where forests are vulnerable to climate extremes. Extreme droughts are increasing in frequency and magnitude under climate change, resulting in structure and function changes of forest ecosystems. Here, to analyze climate-growth relationships and quantify tree resilience to extreme droughts, we developed six tree-ring-width chronologies from P. tabulaeformis and P. massoniana sampling sites in Mt. Jigong region, Central China. The results indicated that all chronologies from the two species had good consistency, precipitation in current April and mean temperature in current August or mean minimum temperature from current August to October were the main limiting factors of the two tree species growth, but the responses of P. massoniana ring-width to climatic factors was more complex than that of P. tabulaeformis. The results also showed that tree growth of 1999–2005 was the lowest growing period during 1979–2018, and P. massoniana grew better than P. tabulaeformis before 2005 and vice versa after 2005. Comparing low growth years of trees, we identified to study tree growth resilience. The calculations from 1988, 1999–2005 and 2011 drought years indicated that P. tabulaeformis had more increased resilience to extreme droughts than that of P. massoniana, and the two species had stronger ecological recovery and resilience under global warming and non-extreme drought conditions in the recent 40 years. These results have implications for predicting tree resilience and identifying tree species in heterogeneous forest landscapes vulnerable to future climate change in climatic transition zone.  相似文献   

4.
Forest dynamics will depend upon the physiological performance of individual tree species under more stressful conditions caused by climate change. In order to compare the idiosyncratic responses of Mediterranean tree species (Quercus faginea, Pinus nigra, Juniperus thurifera) coexisting in forests of central Spain, we evaluated the temporal changes in secondary growth (basal area increment; BAI) and intrinsic water-use efficiency (iWUE) during the last four decades, determined how coexisting species are responding to increases in atmospheric CO2 concentrations (C a) and drought stress, and assessed the relationship among iWUE and growth during climatically contrasting years. All species increased their iWUE (ca. +15 to +21 %) between the 1970s and the 2000s. This increase was positively related to C a for J. thurifera and to higher C a and drought for Q. faginea and P. nigra. During climatically favourable years the study species either increased or maintained their growth at rising iWUE, suggesting a higher CO2 uptake. However, during unfavourable climatic years Q. faginea and especially P. nigra showed sharp declines in growth at enhanced iWUE, likely caused by a reduced stomatal conductance to save water under stressful dry conditions. In contrast, J. thurifera showed enhanced growth also during unfavourable years at increased iWUE, denoting a beneficial effect of C a even under climatically harsh conditions. Our results reveal significant inter-specific differences in growth driven by alternative physiological responses to increasing drought stress. Thus, forest composition in the Mediterranean region might be altered due to contrasting capacities of coexisting tree species to withstand increasingly stressful conditions.  相似文献   

5.
During the past years, growth and productivity of different oak species have been constrained by water shortage in seasonally dry regions such as the Mediterranean Basin. Thinning could improve oak radial growth in these drought-prone regions through the reduction of tree competition for soil water in summer. However, we still lack adequate, long-term assessments on how lasting are thinning treatments effects and to what extent they contribute to oak growth recovery after drought. Here we aim: (i) to study the radial growth sensitivity to drought of Quercus subpyrenaica in the Spanish Pre-Pyrenees, and (ii) to verify if thinning represents a suitable option to enhance growth resistance to drought and post-drought growth recovery. We analysed basal area increment (BAI) trends in the period 1960–2020 of formerly coppiced oak stands thinned in 1984 and compared them with unthinned plots and also with coexisting Scots pine (Pinus sylvestris) growing in thinned plots. We used the Standardized Precipitation Evapotranspiration Index (SPEI) to estimate the severity of droughts and we also assessed climate-growth relationships. Oaks in thinned plots showed higher BAI (369 mm2) than those in unthinned plots (221 mm2). Growth rates remained higher in thinned than in unthinned plots also under severe drought stress. A severe summer drought in 1986 caused abrupt BAI reductions in both oaks (- 40.5%) and pines (- 40.1%). The positive effect of thinning on growth lasted for over 20 years and slightly declined as canopies closed. In the thinned plots, trees with smaller diameter showed the greatest growth release. Oaks in unthinned plots and Scots pine were more sensitive to short-term droughts in terms of growth reduction than oaks in thinned plots, while long term droughts have similar effects on oaks from both thinned and unthinned plots. Oaks were resilient to drought, showing recovery periods lasting from 1 to 2 years in both thinned and unthinned plots. However, intense and prolonged droughts could strongly reverse the expected growth enhancement of thinned plots, and a greater frequency of droughts would limit coppice growth and productivity thus lengthening the rotation periods.  相似文献   

6.
Drought entails important effects on tree physiology, which may result in short‐ to long‐term radial growth decreases. While the majority of studies have focused on annual drought‐related variability of growth, relatively little is known about sustained growth decreases following drought years. We apply a statistical framework to identify climatic factors that induce abrupt growth decreases and may eventually result in tree mortality. We used tree‐ring data from almost 500 standing dead trees and 200 living trees in eight sites of the Swiss network of strict forest reserves, including four of the most important Central European tree species (Abies alba, Picea abies, Fagus sylvatica and Quercus spp.). First, to assess short‐term growth responses to drought under various climate and site conditions, we calculated correlations and linear mixed‐effects models between ring‐width indices (RWIs) and drought based on the Standardized Precipitation Evapotranspiration Index (SPEI). Second, to quantify drought effects on abrupt growth decreases, we applied distributed lag nonlinear models (DLNMs), which account for both delayed effects and the nonlinear relationship between the SPEI and the occurrence of abrupt growth decreases. Positive correlations between RWIs and the SPEI indicated short‐term growth responses of all species, particularly at arid sites. Results of the DLNMs revealed species‐specific growth responses to drought. For Quercus spp., abrupt growth decreases were more likely to occur several years following severe drought, whereas for P. abies, A. alba, and F. sylvatica abrupt growth decreases started frequently immediately in the drought year. We conclude that the statistical framework allows for quantifying the effects of drought intensity on the probability of abrupt growth decreases, which ultimately contributes to an improved understanding of climate impacts on forest community dynamics.  相似文献   

7.
Mediterranean tree species have evolved to face seasonal water shortages, but may fail to cope with future increases in drought frequency and intensity. We investigated stem radial increment dynamics in two typical Mediterranean tree species, Aleppo pine (Pinus halepensis), a drought-avoiding species, and holm oak (Quercus ilex), a drought-tolerant species, in a mixed forest and on contrasting slope aspects (south- and north-facing). Intra- and inter-annual growth patterns were modelled using the VS-Lite2 model for each tree species and slope-aspect. Both species showed a bimodal growth pattern, with peaks coinciding with favourable conditions in spring and autumn. A bimodal growth pattern is always observed in P. halepensis, while in Q. ilex is facultative, which suggests different strategies adopted by these species to cope with summer drought. More specifically, trees on south-facing slope showed a more evident bimodal pattern and more intra-annual density fluctuations. In recent decades, the intensity of both growth peaks has diminished and drifted away due to the increased summer drought. The VS-Lite2 model reveals a niche partitioning between both species. Differences in growing season’s length and timings of growth peaks in both species are relevant for their coexistence and should be considered for estimating mixed-forest responses under climate change scenarios.  相似文献   

8.
Productivity of old‐growth beech forests in the Mediterranean Basin was measured by average stem basal area increment (BAI) of dominant trees at two mountain sites in the Italian Apennines. Both forests could be ascribed to the old‐growth stage, but they differed markedly with regard to elevation (1000 vs. 1725 m a.s.l.), soil parent material (volcanic vs. calcareous), mean tree age (less than 200 years vs. 300 years), and stand structure (secondary old‐growth vs. primary old‐growth forest). Drought at the two sites was quantified by the self‐calibrated Palmer Moisture Anomaly Index (Z‐index), and by the self‐calibrating Palmer Drought Severity Index (PDSI) for summer (June through August) and the growing season (May through September). Dendroclimatological analyses revealed a moisture limitation of beech BAI at interannual (water availability measured by Z‐index) and decadal scales (water availability measured by PDSI). Both BAI and water availability increased from 1950 to 1970, and decreased afterwards. Trees were grouped according to their BAI trends in auxological groups (growth‐type chronologies), which confirmed that growth of most trees at both sites declined in recent decades, in agreement with increased drought. Because BAI is not expected to decrease without an external forcing, the patterns we uncovered suggest that long‐term drought stress has reduced the productivity of beech forests in the central Apennines, in agreement with similar trends identified in other Mediterranean mountains, but opposite to growth trends reported for many forests in central Europe.  相似文献   

9.
Climate change has been unprecedented in the last half-century. Tree growth dynamics and responses to climate warming at different elevations vary by study area due to regional diversity in site-specific climatic conditions in the central Hengduan Mountains. A. georgei is the dominant species in high-elevation montane forests in the central Hengduan Mountains. To study the response of A. georgei radial growth to climate and identify tree growth trends at different elevations, tree-ring width chronologies at four elevations across the subalpine A. georgei forest belt were built and growth-climate relationships were analyzed. The primary findings of this study were as follows: (1) radial growth rates of A. georgei decreased with elevation; (2) warming alleviated the limitation of low temperatures and abundant precipitation on tree radial growth at the highest sampling site; and (3) unlike at other elevations, the trend of trees basal area increment (BAI) at the lowest sampling site showed a significant decline over the past 20 years. This suggests the presence of an elevational inflection point, likely between 3800 m and 4000 m, where tree growth trends diverge. These results confirmed that A. georgei at higher elevation in the central Hengduan Mountains currently benefits from higher temperatures. However, the effects of drought on A. georgei at lower elevations would cause radial growth to decrease with climate warming. Therefore, it is critical to establish effective management strategies based on how A. georgei responds to climate change at various elevations.  相似文献   

10.
Many tree species from Mediterranean regions have started to show increased rates of crown defoliation, reduced growth, and dieback associated with the increase in temperatures and changes in the frequency and intensity of drought events experienced during the last decades. In this regard, Quercus ilex L. subsp. ballota [Desf.] (Holm oak), despite being a drought-tolerant species widely distributed in the Mediterranean basin, it has recently started to show acute signs of decline, extended areas from Spain being affected. However, few studies have assessed the role of climatic variability (i.e., temperature, precipitation, and drought) on the decline and resilience of Holm oak. Here, we measured secondary growth of seventy Holm oaks from a coppice stand located in central Spain. Sampled trees had different stages of decline, so they were classified into four vigour groups considering their crown foliar lost: healthy (0%), low defoliated (<25%), highly defoliated (25–70%), and dying (70–100%). Our results showed that during the study period (1980–2009) the highly defoliated and dying Holm oaks grew significantly less than their healthy and low defoliated neighbours, suggesting permanent growth reduction in the less vigorous individuals. Despite these differences, all four vigour groups showed similar responses to climatic variations, especially during winter and late spring – early summer seasons, and similar resilience after severe drought events, managing to significantly recover to pre-drought growth rates after only two years. Our findings, hence, illustrate that tree vigour influences secondary growth but not responsiveness to climatic variability in Holm oak. Still, as reduced growth rates are frequently associated with the process of tree mortality, we conclude that the less vigorous Holm oaks might not be able to cope with future water stress conditions, leading to increased mortality rates among this emblematic Mediterranean species.  相似文献   

11.
The low-latitudinal range margins of many temperate and boreal tree species consist of scattered populations that persist locally in climate refugia. Recent studies have shown that such populations can be remarkably resilient, yet their past resilience does not imply that they are immune to threats from future climate change. The functioning of refugial tree populations therefore needs to be better understood if we are to anticipate their prospects correctly. We performed a detailed study of tree radial growth and vigor in a long-term climate refugial population of beech (Fagus sylvatica), comparing the observed trends with those of co-occurring pedunculate oak (Quercus robur). Annual growth rates (basal area increment, BAI) for both species were similar to those observed in range-core populations, but natural lifespan was half that in the mountains. The master chronologies spanning 1870–2015 revealed 22% (Fagus) and 20% (Quercus) increases in BAI until the 1980s and a smaller decrease (−6% for Fagus, −9% for Quercus) since then. Stable carbon isotope measurements (δ13C) revealed no effect of cambial age and an increase in water-use efficiency (iWUE) from 1870–2015 of about 50% for Fagus and 20% for Quercus. The trend continued until 2015 in Fagus, whereas Quercus reached its maximum in the 1980s. A detailed analysis of the relationship between climate and annual growth based on a 118-year meteorological record revealed a major role of water availability in the current and previous year. We used the observed climatic relationships to model future growth trends until 2100 for the IPCC scenarios RCP4.5 and RCP8.5. Most projections revealed no change in current growth rates, suggesting that this climate refugium will be able to provide suitable conditions for the persistence of Fagus and Quercus over the coming decades even under warmer and drier regional climate conditions. Overall, our study provides valuable insight into the precise climatic and biological mechanisms enhancing the persistence of refugial tree populations under ongoing climate change.  相似文献   

12.
Ongoing climate change has induced modification in the frequency and intensity of extreme climatic events, with consequent impact on tree and forest growth resilience. Araucaria araucana is an endangered Patagonian conifer, which provides several ecosystem services to local human societies and plays fundamental ecological roles in natural communities. These woodlands have historically suffered different types of anthropogenic disturbance, such as fire, logging and grazing, nevertheless the species resilience to extreme drought events remains still poorly understood. To fill this gap of knowledge, we applied dendrochronological methods to several A. araucana stands distributed along a steep bioclimatic gradient in order to reconstruct resilience capacity, in term of stem growth resistance and recovery, to three successive extreme spring-early summer droughts which occurred during the 20th century. Results showed an increase in the species recovery along the considered dry spells, whereas no clear trend emerged for resistance, suggesting no cumulative effect of drought upon resilience. Both resistance and recovery presented different values depending on bioclimatic settings, being xeric stands more sensitive to extreme episodes with respect to mesic woodlands, particularly during the more recent drought event when trees growing in drier environments were not able to reach pre-drought stem growth rates. Tree-level characteristics, such as age and growth trends prior to drought, modulated the species resilience, suggesting that future dry spells would possibly induce shifts in population dynamics, and furthermore be detrimental for fast-growing trees. Our analysis highlighted the response of a key Patagonian tree species to extreme drought events, providing bioclimatic-specific useful information for conservation plans of this natural resource.  相似文献   

13.
The expected increase in drought severity and frequency as a result of anthropogenic climate change leads to concerns about the ability of native tree species to cope with these changes. To determine the susceptibility of Fagus sylvatica (European beech) and Quercus robur (pedunculate oak) – the two dominant deciduous tree species in Central Europe – to drought, we quantified the climate sensitivity and drought-response of radial growth for both species using an array of dendroecological methods. Tree-ring data were collected from a site east of Coburg, Bavaria which had shown pronounced stress-symptoms (early leaf coloration) during the record drought of 2018. Climate-growth relationships were used to establish the sensitivity of radial growth to multiple climatic variables. The impact of specific drought events on tree growth was quantified using tolerance indices. In addition, we employed a Principal Component Gradient Analysis (PCGA) and remote sensing data (MODIS Normalized Difference Vegetation Index (NDVI)) to delineate the species specific drought responses. Using these methods we were able to show a clear difference in drought susceptibility between beech and oak. Beech displayed a higher sensitivity to temperature and the standardized precipitation evapotranspiration index (SPEI) and showed lower resistance and resilience to drought events than oak. In particular, beech was unable to fully recover from the 2003 drought, after which it expressed a stark growth decline, i.e. drought legacies, which was not observed for oak. The PCGA revealed a clear differentiation in the grouping of drought responses between beech and oak, supporting the findings of the climate-growth analysis and the tolerance indices. Correlations of NDVI and ring-width indices (RWI) indicated that under normal climatic conditions NDVI variability is linked to the start of the growing season. This is in contrast to drought years, such as 2003, where summer NDVI mirrored the drought response of beech and oak. These results reveal beech to have both a higher sensitivity to summer temperature and SPEI and a higher susceptibility to drought events. Although, in the past high plasticity and adaptability to drought have been attributed to both beech and oak, our study assigns beech a higher risk than oak to suffer from anticipated increases in drought frequency and intensity as a consequence of climate change.  相似文献   

14.
In contrast to most high elevation areas, plant growth at Mediterranean mountains is exposed to a summer drought period, which represents an additional climatic constraint to low temperatures. Although arboreal and shrubby conifers coexist at high altitudes, most dendroecological studies have focused on climatic responses of tree species, whereas those of shrubby species remain mostly unexplored. We built tree-ring width chronologies for two conifer species, a shrub (Juniperus sabina) and a tree (Pinus sylvestris), coexisting at three high-altitude localities of the Iberian System mountains, eastern Spain. We analyzed their climate–growth relationships for the period 1950–2009 using correlation analyses and multiple regressions. Coexisting species responded to year-to-year climatic variability in different ways. Radial growth in junipers and pines responded positively to April and May temperatures, respectively. Summer drought constrained growth in both cases, although its impact was stronger on junipers than on pines. Our findings suggest that junipers respond earlier than pines to spring temperatures due to their prostrate morphology which may enhance a fast warming of their cambial meristems after snowmelt. The higher dependence of J. sabina on summer rainfall as compared with co-occurring pines confirms that drought stress negatively impacts secondary growth in Mediterranean mountains. This sensitivity to water availability may be caused by the juniper shallow root systems, which mainly use superficial soil water. The climatic signal registered in J. sabina allows studying the response of other similar shrubby woody species growing in Mediterranean alpine areas to the ongoing climate warming, which could also reduce water availability.  相似文献   

15.
Reducing forest stand density through silvicultural thinning has demonstrated potential to mitigate drought impacts on growth; however, less has been studied on how changes in stand structure created by different thinning methods influence forest growth responses to drought. This research examined the growth responses to drought of natural-origin red pine in a long-term study contrasting thinning methods. Dendrochronological methods were used to examine growth responses during several drought events among stands where different thinning methods have been applied since 1950. Growth responses to drought were expressed as resistance (maintaining growth during drought), and resilience (regaining pre-drought growth). Results indicate that periodic thinning from above, which resulted in smaller diameters, has the potential to moderate drought-induced growth reductions. Larger tree diameters negatively influenced tree-level resistance and resilience across all treatments; however, the proportion of dominant trees in a stand had contrasting effects on stand-level drought responses. Stands thinned from above exhibited more complex vertical structure and increased stand-level resistance and resilience to drought-induced growth declines because competition is more stratified among smaller diameter trees. Opposite trends were observed in stands thinned from below, where the larger diameters and monolayered structure create greater competition among trees of similar size and crown position. The results of this study highlight the utility in managing for greater structural diversity to mitigate the negative effects of drought in red pine forest ecosystems.  相似文献   

16.
The resilience of forests to drought events has become a major natural resource sustainability concern, especially in response to climate change. Yet, little is known about the legacy effects of repeated droughts, and tree species ability to respond across environmental gradients. In this study, we used a tree-ring database (121 sites) to evaluate the overall resilience of tree species to drought events in the last century. We investigated how climate and geography affected the response at the species level. We evaluated temporal trends of resilience using a predictive mixed linear modeling approach. We found that pointer years (e.g., tree growth reduction) occurred during 11.3% of the 20th century, with an average decrease in tree growth of 66% compared to the previous period. The occurrence of pointer years was associated with negative values of the Standardized Precipitation Index (SPI, 81.6%) and Palmer Drought Severity Index (PDSI, 77.3%). Tree species differed in their resilience capacity, however, species inhabiting xeric conditions were less resistant but with higher recovery rates (e.g., Abies concolor, Pinus lambertiana, and Pinus jeffreyi). On average, tree species needed 2.7 years to recover from drought events, with extreme cases requiring more than a decade to reach pre-drought tree growth rates. The main abiotic factor related to resilience was precipitation, confirming that some tree species are better adapted to resist the effects of droughts. We found a temporal variation for all tree resilience indices (scaled to 100), with a decreasing resistance (−0.56 by decade) and resilience (−0.22 by decade), but with a higher recovery (+1.72 by decade) and relative resilience rate (+0.33 by decade). Our results emphasize the importance of time series of forest resilience, particularly by distinguishing the species-level response in the context of legacy of droughts, which are likely to become more frequent and intense under a changing climate.  相似文献   

17.
为评估气候和竞争对刺槐径向生长、抗性和弹性的影响,使用年轮气候学方法建立河南省民权和济源不同密度刺槐的生长年表,确定不同密度刺槐径向生长与气象因子的关联,利用胸高断面积增量变化获得干旱事件前后不同密度刺槐的干旱脆弱性,旨在确定气候和密度对刺槐径向生长和干旱脆弱性影响。结果表明:在生长前期,不同密度刺槐的径向生长无显著差异,随着树木的生长,高密度刺槐的年轮宽度和胸高断面积增量(BAI)开始显著低于低密度(P<0.05)。Pearson相关分析结果显示,生长季的标准化植被蒸散指数、降水、相对湿度、温度和饱和水汽压亏缺是影响刺槐生长的重要因素。路径分析结果显示降水和温度是年尺度上影响刺槐生长关键因素。受干旱事件的影响,刺槐的年轮宽度和BAI均下降,低密度刺槐恢复力、弹性、相对弹性均显著高于高密度(P<0.05),在第1次干旱事件发生后,不同密度刺槐均恢复生长,但无法恢复到干旱前的生长水平。在多次干旱事件后,高密度刺槐相对弹性趋于或小于0,表明受多次干旱影响,其生长不能恢复到干旱前水平。随着时间的推移,济源刺槐在经历3次干旱后仍保留一定的弹性,但民权高密度刺槐在第2次干旱事件后相对...  相似文献   

18.

Background and aims

A changing climate in the future with more severe drought events will affect the conditions for forest growth and vitality. Most knowledge on tree species response to drought is based on monocultures, even though many of the forests in the world consist of mixed stands. We aimed to investigate how trees respond to summer drought when grown in a three species mixture.

Methods

For two subsequent summers canopy throughfall, and subsequently soil water potential, was reduced using sub-canopy roofs in monocultures and mixtures of Betula pendula, Alnus glutinosa and Fagus sylvatica,.

Results

The overyielding of the mixed stand was not affected by the drought using either above or below ground production, standing fine root biomass or soil respiration as parameters. However, Alnus glutinosa was the most negatively affected when growing in monoculture, whereas this species was less affected when growing in mixture. In contrast, Betula pendula was most negatively affected when growing in mixture. Fagus sylvatica was least affected by the drought and maintained growth over the two years.

Conclusions

A water demanding species as Alnus glutinosa can perform well in a mixture during drought and not be outcompeted. This is opposite to what is assumed in most models of forest responses to climate change.
  相似文献   

19.
Changes in intrinsic water use efficiency (iWUE) were investigated in Fagus sylvatica and Nothofagus spp. over the last century. We combined dendrochronological methods with dual-isotope analysis to investigate whether atmospheric changes enhanced iWUE of Fagus and Nothofagus and tree growth (basal area increment, BAI) along latitudinal gradients in Italy and Chile. Post-maturation phases of the trees presented different patterns in δ13C, Δ13C, δ18O, Ci (internal CO2 concentration), iWUE, and BAI. A continuous enhancement in isotope-derived iWUE was observed throughout the twentieth century, which was common to all sites and related to changes in Ca (ambient CO2 concentration) and secondarily to increases in temperature. In contrast to other studies, we observed a general increasing trend of BAI, with the exception of F. sylvatica in Aspromonte. Both iWUE and BAI were uncoupled with the estimated drought index, which is in agreement with the absence of enduring decline in tree growth. In general, δ13C and δ18O showed a weak relationship, suggesting the major influence of photosynthetic rate on Ci and δ13C, and the minor contribution of the regulation of stomatal conductance to iWUE. The substantial warming observed during the twentieth century did not result in a clear pattern of increased drought stress along these latitudinal transects, because of the variability in temporal trends of precipitation and in specific responses of populations.  相似文献   

20.
In this study, we present the first tree-ring chronology for the tropical tree species Copaifera lucens and its climatic signal in southeastern Brazil. Tree-ring width series were compared with local climate indices using a drought index (Standardized Precipitation Evapotranspiration Index —SPEI), in monthly, bi-monthly and four-monthly scales. We also calculated negative pointer years over the time-span of the tree-ring width. The radial growth of C. lucens showed a positive correlation with the SPEI of the current summer and autumn in all the three analyzed time scales, while the negative pointer years matched with drier years. The species was highly sensitive to very low summer precipitation, which may lead to a 49% reduction in growth. We conclude that the long-living C. lucens has a great potential for dendrochronological studies as it shows a marked climatic signal. Our study also reinforces the importance of rainfall in regulating radial growth in tropical forests and sheds light on the local climate influence on tree growth in recent decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号