首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To examine the effects of thinning intensity on wind vulnerability and regeneration in a coastal pine (Pinus thunbergii) forest, thinning with intensities of 20%, 30% and 50% was conducted in December 1997; there was an unthinned treatment as the control (total 8 stands). We re-measured the permanent sites to assess the regeneration characteristics 11 years after thinning. In the 50% thinned stand, seedlings aged from 2 to 10 years exhibited the highest pine seedling density and growth. The age composition ranged from 1–3 years with densities of 9.9 and 5.1 seedlings m−2 in 30% and 20% thinned stands; only 1-year-old seedlings with a density of 6.1 seedlings m−2 in the unthinned stand. Similar trends were found for the regeneration of broadleaved species such as Robinia pseudoacacia and Prunus serrulata. We speculate that the canopy openness and moss coverage contributed to the regeneration success in the 50% thinned stand, while the higher litter depth and lack of soil moisture induced the regeneration failure in the unthinned stand. The stands thinned at 20% or 30% were less favourable for pine regeneration than the stands thinned at 50%. Therefore, thinning with less than 30% canopy openness (20% and 30% thinned stands) should be avoided, and thinning at higher than 30% canopy openness (50% thinned stand, approximately 1500 stems ha−1 at ages 40–50 years) is suggested for increasing regeneration in the coastal pine forest. The implications of thinning-based silviculture in the coastal pine forest management are also discussed. The ongoing development of the broadleaved seedlings calls for further observations.  相似文献   

2.
In this study, we provide a detailed analysis of tree growth and water status in relation to climate of three major species of forest trees in lower regions of Bavaria, Southern Germany: Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and common oak (Quercus robur). Tree-ring chronologies and latewood δ13C were used to derive measures for drought reaction across trees of different dimensions: growth reduction associated with drought years, long-term growth/climate relations and stomatal control on photosynthesis. For Scots pine, growth/climate relations indicated a stronger limitation of radial growth by high summer temperatures and low summer precipitation in smaller trees in contrast to larger trees. This is corroborated by a stronger stomatal control on photosynthesis for smaller pine trees under average conditions. In dry years, however, larger pine trees exhibited stronger growth reductions. For Norway spruce, a significantly stronger correlation of tree-ring width with summer temperatures and summer precipitation was found for larger trees. Additionally, for Norway spruce there is evidence for a change in competition mode from size-asymmetric competition under conditions with sufficient soil water supply to a more size-symmetric competition under dry conditions. Smaller oak trees showed a weaker stomatal control on photosynthesis under both dry and average conditions, which is also reflected by a significantly faster recovery of tree-ring growth after extreme drought events in smaller oak trees. The observed patterns are discussed in the context of the limitation-caused matter partitioning hypothesis and possible species-specific ontogenetic modifications.  相似文献   

3.
Global climate change is expected to further raise the frequency and severity of extreme events, such as droughts. The effects of extreme droughts on trees are difficult to disentangle given the inherent complexity of drought events (frequency, severity, duration, and timing during the growing season). Besides, drought effects might be modulated by trees’ phenotypic variability, which is, in turn, affected by long‐term local selective pressures and management legacies. Here we investigated the magnitude and the temporal changes of tree‐level resilience (i.e., resistance, recovery, and resilience) to extreme droughts. Moreover, we assessed the tree‐, site‐, and drought‐related factors and their interactions driving the tree‐level resilience to extreme droughts. We used a tree‐ring network of the widely distributed Scots pine (Pinus sylvestris) along a 2,800 km latitudinal gradient from southern Spain to northern Germany. We found that the resilience to extreme drought decreased in mid‐elevation and low productivity sites from 1980–1999 to 2000–2011 likely due to more frequent and severe droughts in the later period. Our study showed that the impact of drought on tree‐level resilience was not dependent on its latitudinal location, but rather on the type of sites trees were growing at and on their growth performances (i.e., magnitude and variability of growth) during the predrought period. We found significant interactive effects between drought duration and tree growth prior to drought, suggesting that Scots pine trees with higher magnitude and variability of growth in the long term are more vulnerable to long and severe droughts. Moreover, our results indicate that Scots pine trees that experienced more frequent droughts over the long‐term were less resistant to extreme droughts. We, therefore, conclude that the physiological resilience to extreme droughts might be constrained by their growth prior to drought, and that more frequent and longer drought periods may overstrain their potential for acclimation.  相似文献   

4.
In this study, we investigated the relationship between the seasonality of vegetation cover and that of fine root processes in a man-made forest in northern Belgium. Due to their contrasting foliar development, we expected different seasonal patterns of fine root growth and standing biomass between Pedunculate oak (Quercus robur L.), and Scots pine (Pinus sylvestris L.). Biomass and necromass of fine and small roots were estimated by repeated core sampling in February, April, June, August and October 2003. Measurements showed that Pedunculate oaks maintained more live fine roots in winter than Scots pines. However, Scots pines produced more than twice as much fine roots in spring, such that in summer both species had similar root mass. Scots pine root production started before-, but declined during leaf unfolding. Pedunculate oak roots, in contrast, started elongating only after bud break. For both species, fine root production peaked in JuneJuly, but was more than offset by drought-induced mortality at the end of July and early August. Summer drought in 2003 was exceptionally long and intense, significantly reducing leaf area, killing most new roots, and inhibiting root decomposition, such that the obtained results cannot be typical for this forest.  相似文献   

5.
This paper presents an empirical model for the distribution of diameter growth along the stem in Scots pine (Pinus sylvestris L.) and for the consequent stem form over time. First, the distribution of annual mass growth in the stem is determined as a function of the total annual growth in stem mass, current stem mass and the distribution of the latter along the stem. Second, the distribution of diameter growth is obtained by converting the fraction of annual growth in the stem mass at a given height in the stem into the thickness of the annual ring at the same height. Application of the model to Scots pine data sets including both young and mature trees not used in parameter estimation showed that the model was capable of reconstructing the distribution of diameter growth from the stem butt to the apex and from the pith to the stem surface at any height in the stem in both young and mature trees. The resulting empirical model was also linked to a physiological, process-based model in order to study its performance in a simulated stand. Simulations representing trees grown in unthinned and thinned Scots pine stands with trees of different status (from dominant to suppressed) showed that the response in tree growth to thinning in terms of the distribution of diameter growth along the stem was quite realistic relative to measured data.  相似文献   

6.
Planting of beech in old Scots pine plantations could facilitate the extension of adjoining small natural populations of beech in the centre of the Iberian Peninsula. To be successful the survival and growth of seedlings after outplanting must be compatible with microclimatic conditions within thinned pine woods. The present paper deals with water relations in beech seedlings following the variation of available radiation and water as a result of thinning. The seedlings were established under an old Scots pine plantation. After pine felling, four situations were generated in terms of radiation. Hemispherical photographs were taken, and global relative irradiance was calculated for every treatment. During two growing seasons predawn water potential (Opd) was measured and leaf water parameters were derived from P-V curves. The Opd diminished through the season in all four situations, and the highest values were found when pine density was lowest. Osmotic potential at turgor lost (O?o) was higher in early summer. A negative relationship was found between osmotic potential at full turgor (O?full) and symplast solute content on a dry weight basis (Ns). Under the lowest irradiance (unthinned pine trees), O?full and O?o were the highest and the bulk modulus of elasticity ()max) the lowest; )max decreased in response to the lowest Opd measured at the end of summer 1998. It was followed by a reduction in the symplastic relative water content and Ns, irrespective of the irradiance. Osmotic adjustment, as a drought tolerance mechanism, was limited under shade conditions (unthinned pine trees), restricting the acclimation of beech seedlings to drought. Therefore, the presence of overstory, necessary for a successful implantation, should not be extended for too many years because of the risk of negative effects on growth and survival, particularly after frequent dry summers.  相似文献   

7.
《Acta Oecologica》2002,23(6):405-411
This study analyzes the factors affecting the current variability in density and age and size structure of mixed pine–oak forests of Pinus nigra and Quercus faginea in Central Catalonia (NE Spain), 37 years after a wildfire. The objective is to determine whether different post-disturbance responses may be obtained from the same pre-fire community and which factors can determine these different potential responses. The two factors analyzed were the distance to the unburned forest and site conditions (represented in this case by different aspects). The response of pines and oaks was different to the pattern expected for the Mediterranean Basin. Oaks resprouted immediately from stools already present before the fire and dominated during the first years, independent of both disturbance and site conditions. Pines established later, and their response depended on both factors: pine density decreased sharply from the forest edge to the burned area, and the number of pines was also higher in the more mesic than in the more xeric conditions. The age structure analysis for pines and oaks in the different aspects also revealed site-dependent rates of succession manifested by initial differences in post-fire establishment. In mesic plots, the establishment of pines occurred quite early, while in xeric plots, pine recruitment was delayed several years. These different patterns of post-fire recovery have led to pine dominance in more mesic sites and codominance of pines and oaks in more xeric ones, suggesting that different mid-term post-fire patterns can be identified for the same pre-fire forest type, depending on variations in environmental conditions.  相似文献   

8.
The proportion of planted forests in the Mediterranean Basin is one of the largest in the world. These plantations are dominated by pine species and present a series of characteristics such as low elevation, high competition or small tree size that make them more vulnerable to droughts. However, quantitative assessments of their post-drought growth resilience in accordance with species, site factors and tree characteristics are lacking. In this study we sampled 164 trees at four forest sites located in the drought-prone Sierra Nevada, southeastern Spain. We compared growth responsiveness to drought in rear-edge planted vs. relic natural Scots pine (Pinus sylvestris) and coexisting Pyrenean oak (Quercus pyrenaica) stands. Our objective was to characterize and compare the different growth responses to drought between species and sites and the effect of the main physiographic factors (altitude, aspect, and slope) on these responses since the influence of these factors on post-drought resistance and resilience has received little attention to date. Our results reveal that the planted pine sites with the lowest mean growth rates displayed greater resistance during drought, and that higher altitude was associated with improved resistance and/or resilience for all species and sites. Natural pine and Pyrenean oak stands were better adapted to the dry climatic conditions of the Mediterranean region where the study was undertaken, displaying greater resistance and/or resilience and lower influence of drought on growth in comparison to stands of planted pines. These results suggest that promoting the conservation of high-elevation pine plantations and enhancing the regeneration of natural pine and oak may improve the resistance and resilience of these drought-prone forest ecosystems.  相似文献   

9.
Stand density reductions have been proposed as a method by which old‐growth ponderosa pine (Pinus ponderosa) forests of North America can be converted back to pre‐1900 conditions, thereby reducing the danger of catastrophic forest fires and insect attacks while increasing the productivity of the remaining old‐growth individuals. However, the duration of productivity response of individual trees and the physiological mechanisms underlying such a response remain speculative issues, particularly in old trees. Tree‐ring measurements of carbon isotope ratios (δ13C) and basal area increment (BAI) were used to assess the response of intrinsic water‐use efficiency (the ratio of photosynthesis, A to stomatal conductance, g) and growth of individual> 250‐year‐old‐ponderosa pine trees to stand density reductions. It was hypothesized that reductions in stand density would increase soil moisture availability, thus decreasing canopy A/g and increasing carbon isotope discrimination (Δ). Cellulose‐δ13C of annual tree rings, soil water availability (estimated from pre‐dawn leaf water potential), photosynthetic capacity, stem basal growth and xylem anatomy were measured in individual trees within three pairs of thinned and un‐thinned stands. The thinned stands were treated 7 to 15 years prior to measurement. The values of δ13C and BAI were assessed for 20 consecutive years overlapping the date of thinning in a single intensively studied stand, and was measured for 3 years on either side of the date of thinning for the two other stands to assess the generality of the response. After thinning, Δ increased by 0.89‰ (± 0.15‰). The trees in the un‐thinned stands showed no change in Δ (0.00‰ ± 0.04‰). In the intensively studied trees, significant differences were expressed in the first growing season after the thinning took place but it took 6 years before the full 0.89‰ difference was observed. BAI doubled or tripled after disturbance, depending on the stand, and the increased BAI lasted up to 15 years after thinning. In the intensively studied trees, the BAI response did not begin until 3 years after the Δ response, peaked 1 year after the Δ peak, and then BAI and Δ oscillated in unison. The lag between BAI and Δ was not due to slow changes in anatomical properties of the sapwood, because tracheid dimensions and sapwood‐specific conductivity remained unchanged after disturbance. The Δ response of thinned trees indicated that A/g decreased after thinning. Photosynthetic capacity, as indexed by foliar nitrogen ([N]) and by the relationship between photosynthesis and internal CO2 (ACi curves), was unchanged by thinning, confirming our suspicion that the decline in A/g was due to a relatively greater increase in g in comparison with A. Model estimates agreed with this conclusion, predicting that g increased by nearly 25% after thinning relative to a 15% increase in A. Pre‐dawn leaf water potential averaged 0.11 MPa (± 0.03 MPa) less negative for the thinned compared with the un‐thinned trees in all stands, and was strongly correlated with Δ post‐thinning (R2 = 0.91). There was a strong relationship between BAI and modelled A, suggesting that changes in water availability and g have a significant effect on carbon assimilation and growth of these old trees. These results confirm that stand density reductions result in increased growth of individual trees via increased stomatal conductance. Furthermore, they show that a physiological response to stand density reductions can last for up to 15 years in old ponderosa pines if stand leaf area is not fully re‐established.  相似文献   

10.
Drought-related tree mortality has become a widespread phenomenon. Scots pine (Pinus sylvestris L.) is a boreal species with high ecological amplitude that reaches its southwestern limit in the Iberian Peninsula. Thus, Iberian Scots pine populations are particularly good models to study the effects of the increase in aridity predicted by climate change models. A total of 78 living and 39 dead Scots pines trees were sampled at two sites located in the NE of the Iberian Peninsula, where recent mortality events have been recorded. Annual tree rings were used to (1) date dead trees; (2) investigate if there was an association between the occurrence of tree death and severe drought periods characterized by exceptionally low ratios of summer precipitation to potential evapotranspiration (P/PET); and (3) to compare the growth patterns of trees that died with those of surviving ones. Mixed models were used to describe the relationships between tree growth (in terms of basal area increment, BAI, and the percentage of latewood, LW%) and climate variables. Our results showed a direct association between Scots pine mortality and severe drought periods characterized by low summer water availability. At the two sites, the growth patterns of dead trees were clearly distinguishable from those of the trees that survived. In particular, the BAI of dead trees was more sensitive to climate dryness (low P/PETsummer, high temperatures) and started to decline below the values of surviving neighbors 15–40 years before the time of death, implying a slow process of growth decline preceding mortality.  相似文献   

11.
Climate change will increase the frequency and the intensity of droughts in the Mediterranean region, likely reducing growth and increasing mortality of holm oaks (Quercus ilex), one of the most abundant species of Mediterranean forests. In water-limited systems such as those of the Mediterranean, carbon allocation patterns strongly favour belowground accumulation, especially in large subterranean structures called lignotubers. The resilience of these forests depends largely on the replenishment rate of these carbon reserves after disturbances. An experimental thinning, with two intensities (removal of 40% and 80% of basal area), was performed in 1992 in a holm oak forest at the Prades Experimental Complex of Catchments (NE Spain). In 2002, a second thinning was carried out in subplots within the former experimental 0.5 ha plots. Samples from the lignotubers of holm oak trees were analyzed for starch, and both mobile and immobile chemical components, in order to assess the resilience of holm oaks to repeated disturbances. Our results show that after 10 years, starch stocks in the lignotubers have only recovered to half their former values. Removing 40% of the basal area instead of 80% is suggested to be the better managing option for this kind of forests.  相似文献   

12.
Stem dissection and dendroecological methods were used to examine the effects of thinning and defoliation by gypsy moth (Lymantria dispar L.) on wood volume increment in oaks (Quercus rubra L., Q. alba L., Q. prinus L.). A model was developed to evaluate radial volume increment growth at three time periods: before defoliation, during defoliation and after defoliation, as a function of species, defoliation intensity and crown position. Volume increment during these same time periods was also compared at different stem locations. Trees were defoliated for two consecutive years and results indicated that volume loss was greater during the second year of defoliation with complete recovery taking 2–3 years after defoliation. Oaks in thinned stands had similar reductions in annual volume increment during defoliation as those in the unthinned stand. Annual volume increment demonstrated a decreasing trend from stump to base of the live crown and volume increment of the lowest log (from stump height to 1.37 m), was always higher than upper log sections, even during defoliation. Both earlywood and latewood increments were reduced during defoliation; however, latewood reductions were distributed along entire stems while earlywood reductions were greater on upper stem sections within the crown.  相似文献   

13.
Reducing forest stand density through silvicultural thinning has demonstrated potential to mitigate drought impacts on growth; however, less has been studied on how changes in stand structure created by different thinning methods influence forest growth responses to drought. This research examined the growth responses to drought of natural-origin red pine in a long-term study contrasting thinning methods. Dendrochronological methods were used to examine growth responses during several drought events among stands where different thinning methods have been applied since 1950. Growth responses to drought were expressed as resistance (maintaining growth during drought), and resilience (regaining pre-drought growth). Results indicate that periodic thinning from above, which resulted in smaller diameters, has the potential to moderate drought-induced growth reductions. Larger tree diameters negatively influenced tree-level resistance and resilience across all treatments; however, the proportion of dominant trees in a stand had contrasting effects on stand-level drought responses. Stands thinned from above exhibited more complex vertical structure and increased stand-level resistance and resilience to drought-induced growth declines because competition is more stratified among smaller diameter trees. Opposite trends were observed in stands thinned from below, where the larger diameters and monolayered structure create greater competition among trees of similar size and crown position. The results of this study highlight the utility in managing for greater structural diversity to mitigate the negative effects of drought in red pine forest ecosystems.  相似文献   

14.
Dynamics in microclimate and physiological plant traits were studied for Pubescent oak and Scots pine in a dry inner-alpine valley in Switzerland, at a 10 min resolution for three consecutive years (2001-2003). As expected, stomata tended to close with increasing drought in air and soil. However, stomatal aperture in oak was smaller than in pine under relatively wet conditions, but larger under dry conditions. To explore underlying mechanisms, a model was applied that (i) quantifies water relations within trees from physical principles (mechanistic part) and (ii) assumes that signals from light, stomatal aperture, crown water potential, and tree water deficit in storage pools control stomata (systemic part). The stomata of pine showed a more sensitive response to increasing drought because both factors, the slowly changing tree water deficit and the rapidly changing crown water potential, closed the stomata. By contrast, the stomata of oak became less drought-sensitive as the closing signal of crown water potential was opposed by the opening signal of tree water deficit. Moreover, parameter optimization suggests that oak withdrew more water from the storage pools and reduced leaf water potentials to lower levels, without risking serious damage by cavitation. The new model thus suggests how the hydraulic water flow and storage system determines the responses in stomatal aperture and transpiration to drought at time scales ranging from hours to multiple years, and why pine and oak might differ in such responses. These differences explain why oaks are more efficient competitors during drought periods, although this was not the case in the extremely dry year 2003, which provoked massive leaf loss and, from July onwards, physiological activity almost ceased.  相似文献   

15.
An increasing number of studies have reported on forest declines and vegetation shifts triggered by drought. In the Swiss Rhone valley (Valais), one of the driest inner‐Alpine regions, the species composition in low elevation forests is changing: The sub‐boreal Scots pine (Pinus sylvestris L.) dominating the dry forests is showing high mortality rates. Concurrently the sub‐Mediterranean pubescent oak (Quercus pubescens Willd.) has locally increased in abundance. However, it remains unclear whether this local change in species composition is part of a larger‐scale vegetation shift. To study variability in mortality and regeneration in these dry forests we analysed data from the Swiss national forest inventory (NFI) on a regular grid between 1983 and 2003, and combined it with annual mortality data from a monitoring site. Pine mortality was found to be highest at low elevation (below 1000 m a.s.l.). Annual variation in pine mortality was correlated with a drought index computed for the summer months prior to observed tree death. A generalized linear mixed‐effects model indicated for the NFI data increased pine mortality on dryer sites with high stand competition, particularly for small‐diameter trees. Pine regeneration was low in comparison to its occurrence in the overstorey, whereas oak regeneration was comparably abundant. Although both species regenerated well at dry sites, pine regeneration was favoured at cooler sites at higher altitude and oak regeneration was more frequent at warmer sites, indicating a higher adaptation potential of oaks under future warming. Our results thus suggest that an extended shift in species composition is actually occurring in the pine forests in the Valais. The main driving factors are found to be climatic variability, particularly drought, and variability in stand structure and topography. Thus, pine forests at low elevations are developing into oak forests with unknown consequences for these ecosystems and their goods and services.  相似文献   

16.
The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0–3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide.  相似文献   

17.
Unlike the well-understood cold limit of trees, the causes of the dry trailing edge of trees await explanation. Here we aimed at explaining the drought limit of an evergreen oak species (Quercus pannosa s.l.) in a typical dry valley of the upper Yangtze region, SE Himalaya, where rains (ca. 250 mm/a) are largely confined to the typical monsoon season (July–August) with drought during the remaining 9–10 months. We capitalized on an unintentional year-round irrigation treatment with trees growing along the overflow of a water reservoir serving as moist controls. We measured shoot water potential (Ψ), leaf conductance (g), flushing phenology, leaf mass per area (LMA), foliar and stem δ13C, leaf nutrients, and non-structural carbohydrates across the transition from non-monsoon to monsoon season, from April to August 2018. At the dry site, Ψ and g were high during the monsoon but declined to <−3 MPa as drought proceeded in the non-monsoon season. Irrigated oaks retained high values year-round. Oaks experiencing the natural drought flushed at the full strength onset of the monsoon only, that is, 80 days later than irrigated oaks. The annual shoot increment in oaks under natural drought was ca. 10% of that in irrigated oaks. However, mature foliage showed no difference in LMA and δ13C between dry and moist sites. We conclude that these oaks drastically reduce their activity in response to drought, with growth strictly confined to the monsoon season, the minimum duration of which, presumably is setting the range limit.  相似文献   

18.
In forests, the increase in atmospheric CO2 concentrations (Ca) has been related to enhanced tree growth and intrinsic water‐use efficiency (iWUE). However, in drought‐prone areas such as the Mediterranean Basin, it is not yet clear to what extent this “fertilizing” effect may compensate for drought‐induced growth reduction. We investigated tree growth and physiological responses at five Scots pine (Pinus sylvestris L.) and five sessile oak (Quercus petraea (Matt.) Liebl.) sites located at their southernmost distribution limits in Europe for the period 1960–2012 using annually resolved tree‐ring width and δ13C data to track ecophysiological processes. Results indicated that all 10 natural stands significantly increased their leaf intercellular CO2 concentration (Ci), and consequently iWUE. Different trends in the theoretical gas‐exchange scenarios as a response to increasing Ca were found: generally, Ci tended to increase proportionally to Ca, except for trees at the driest sites in which Ci remained constant. Ci from the oak sites displaying higher water availability tended to increase at a comparable rate to Ca. Multiple linear models fitted at site level to predict basal area increment (BAI) using iWUE and climatic variables better explained tree growth in pines (31.9%–71.4%) than in oak stands (15.8%–46.8%). iWUE was negatively linked to pine growth, whereas its effect on growth of oak differed across sites. Tree growth in the western and central oak stands was negatively related to iWUE, whereas BAI from the easternmost stand was positively associated with iWUE. Thus, some Q. petraea stands might have partially benefited from the “fertilizing” effect of rising Ca, whereas P. sylvestris stands due to their strict closure of stomata did not profit from increased iWUE and consequently showed in general growth reductions across sites. Additionally, the inter‐annual variability of BAI and iWUE displayed a geographical polarity in the Mediterranean.  相似文献   

19.
Longleaf pine savannas are highly threatened, fire‐maintained ecosystems unique to the southeastern United States. Fire suppression and conversion to agriculture have strongly affected this ecosystem, altering overstory canopies, understory plant communities, and animal populations. Tree thinning to reinstate open canopies can benefit understory plant diversity, but effects on animal communities are less well understood. Moreover, agricultural land‐use legacies can have long‐lasting impacts on plant communities, but their effects on animal communities either alone or through interactions with restoration are unclear. Resolving these impacts is important due to the conservation potential of fire‐suppressed and post‐agricultural longleaf savannas. We evaluated how historical agricultural land use and canopy thinning affect the diversity and abundance of wild bees in longleaf pine savannas. We employed a replicated, large‐scale factorial block experiment in South Carolina, where canopy thinning was applied to longleaf pine savannas that were either post‐agricultural or remnant (no agricultural history). Bees were sampled using elevated bee bowls. In the second growing season after restoration, thinned plots supported a greater bee abundance and bee community richness. Additionally, restored plots had altered wild bee community composition when compared to unthinned plots, indicating that reduction of canopy cover by the thinning treatment best predicted wild bee diversity and composition. Conversely, we found little evidence for differences between sites with or without historical agricultural land use. Some abundant Lasioglossum species were the most sensitive to habitat changes. Our results highlight how restoration practices that reduce canopy cover in fire‐suppressed savannas can have rapid benefits for wild bee communities.  相似文献   

20.
The macrofungal communities of Irish native tree species (ash and oak) and exotic tree species (Scots pine and Sitka spruce) forests were examined through the collection of sporocarps over 3 yr. Sampling of 27 plots revealed 186 species of macrofungi, including 10 species new to Ireland. The species richness of non-native Sitka spruce and Scots pine forests was similar to that of native oak forests. However, specific communities of macrofungi existed in each of the forest types as confirmed by non-metric multidimensional scaling and multi-response permutation procedure. Indicator species analysis was used to identify macrofungi which are indicative of the four forest types. The oak community lacked certain species/genera known to be distinctive of oak woods in Britain, possibly due to low inoculum availability as a result of historic removal of Ireland’s oak forests. Our results indicate that, while being similar to native forests in species richness, non-native forests of Sitka spruce and Scots pine in Ireland harbour many fungal species which are not typical of native forests, particularly members of the genus Cortinarius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号