首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 755 毫秒
1.
A recombinant plasmid containing the entire tomato spotted with virus (TSWV) nucleocapsid gene, with the exception of nucleotide encoding three N-terminal amino acids, was isolated by screening a complementary DNA library, prepared against random primed viral RNA, using a specific monoclonal antibody. The insert contained in plasmid pTSW1 was repaired and amplified by polymerase chain reaction, and the complete nucleocapsid protein gene was introduced into Nicotiana tabacum 'Samsun' by leaf disk transformation using Agrobacterium tumefaciens. Transgenic plants expressing the viral nucleocapsid protein were resistant to subsequent infection following mechanical inoculation with TSWV as indicated by a lack of systemic symptoms and little or no systemic accumulation of virus as determined by double antibody sandwich enzyme-liked immunosorbent assay. These results further extend the applicability of coat protein-mediated resistance, as previously demonstrated for a number of simple plant viruses composed of a positive-sense RNA genome encapsidated with a single species of coat protein, to a membrane-encapsidated, multi-component, negative-sense RNA virus.  相似文献   

2.
With tomato spotted wilt virus in petunia leaf strips, N-6 benzyladenine (BA) was as effective as kinetin in decreasing numbers of local lesions, a result which could not be attributed to an effect on the virus per se. Benzimidazole, adenine and ammonium nitrate were without effect. Benzyladenine was more effective than kinetin when supplied through the petioles of excised whole leaves. Local lesions and infectivity of TSWV in detached leaves of Nicotiana rustica were decreased by supplying BA before and after inoculation. Lesions and infectivity were also decreased in attached leaves when BA was applied 9 days before inoculation. BA supplied to attached leaves after inoculation increased infectivity. Supplying BA to the lower leaves of tomato plants before inoculating with TSWV decreased infectivity of unsprayed, systemically infected tip leaves taken as inoculum; BA supplied after inoculation increased infectivity. Local lesions caused by lucerne mosaic virus in excised leaves of Phaseolus vulgaris were decreased in number by supplying BA. The effects of pre- and post-inoculation sprays of BA are considered in relation to cell metabolism. Since pretreating leaves with kinins did not prevent infection, it is suggested that those which move freely through plants without adverse effects on normal growth may prove of value in increasing the tolerance of plants to virus infection.  相似文献   

3.
Tomato spotted wilt virus (TSWV) is an economically important viral pathogen of flue‐cured tobacco, Nicotiana tabacum. Disease development and in planta distribution of TSWV were studied following mechanical inoculation of cv. K326 at various stages of growth. The effect of plant age on the disease development, distribution of symptoms and TSWV were studied by inoculating plants in five age groups, 40, 60, 75, 95 and 100 days after sowing (DAS). The plant age at the time of infection had no significant influence on the incidence of localised infection; however, it had a significant effect on the development of systemic symptoms and distribution of TSWV in the plant. In a higher proportion of plants (89.2%), no systemic symptoms developed when plants were inoculated at 60–100 DAS. However, 90% of plants became systemically infected when plants were inoculated at 40 DAS. The systemic symptom expression was severe and distributed in all the leaves in 40‐DAS plants, whereas in 60‐ to 100‐DAS plants, it was erratic and restricted only to a few upper leaves. Results show that plant age is an important factor for TSWV infection of tobacco and mature tobacco plants significantly reduced the systemic development of the disease.  相似文献   

4.
The susceptibility of tomato plants to systemic infection by tomato spotted wilt virus was increased by increasing nitrogen supply to levels above that optimal for growth. The virus content, estimated by local-lesions counts, was also raised by increasing nitrogen. The period between inoculation and the appearance of systemic symptoms was decreased by increasing nitrogen to a point slightly greater than the optimal level for growth, but increased by additional applications.
Infected plants receiving more nitrate or ammonium compounds than were needed for optimal growth showed abnormal leaf symptoms and no bronzing. N, P and Mg analyses showed that these symptoms were related primarily to nitrogen content. Such leaves contained more virus than bronzed leaves.  相似文献   

5.
We found that the Sw-5 gene confers resistance to one of the Polish isolates of tomato spotted wilt virus (TSWV). A series of tomato breeding accessions was analysed along with standards of resistance and susceptibility to TSWV. The presence of the Sw-5 gene was determined using the available PCR marker. Subsequently plants from these accessions were grown in the presence of the TSWV isolate from Poland. Some of them developed severe symptoms of the TSWV disease. Expression of the virus proteins was also assayed in tissues of the investigated plants. We found general agreement between either lack or presence of the disease symptoms, virus proteins and resistance gene. Some observed discrepancies of these data are also discussed. Our results indicate that marker-assisted selection can be used for breeding of the TSWV-resistant tomato in Poland.  相似文献   

6.
Summary Bromus inermis Leyss. was grown in a 2×2×2 factorial design using different levels of mycorrhizal inoculation (inoculated and noninoculated), soil water stress (Ψ1 or −0.8 MPa) and potassium (K) fertilization (0 or 150 ppm) as factors. Soil water stress and mycorrhizal inoculation significantly reduced plant top dry weight during the 18 week study. Chlamydospore production by the mycorrhizal symbiontGlomus fasciculatum (Thaxter sensu. Gerd.) Gerd. and Trappe was significantly reduced by soil water stress of −0.8 MPa. Potassium (K) fertilization did not significantly influence plant top growth or mycorrhizal colonization. However, foliar Ca and Mg were significantly lower in plants fertilized with K. Foliar Ca and Mg concentrations of P, K, N, Mn, Zn and Cu were significantly greater in drought stressed plants whereas Ca and Mg concentrations were significantly greater in well-watered plants.  相似文献   

7.
In glasshouse tests, sap from plants infected with 15 different isolates of tomato spotted wilt tospovirus (TSWV) from three Australian states was inoculated to nine genotypes of tomato carrying TSWV resistance gene Sw-5 or one of its alleles. A further two resistant tomato genotypes were inoculated with four isolates each. The normal response in resistant genotypes was development of necrotic local lesions in inoculated leaves without systemic invasion, but 22/752 plants also developed systemic reactions in addition to local hypersensitive ones. Using cultures from two of these systemically infected plants and following four cycles of subculture in TSWV resistant tomato plants, two isolates were obtained that gave susceptible type systemic reactions but no necrotic spots in inoculated leaves of resistant tomatoes. When these two isolates, DaWA-1d and ToTAS-1d, were maintained by repeated subculture for 10 successive cycles in Nicotiana glutinosa or a susceptible tomato genotype, they still induced susceptible type systemic reactions when inoculated to resistant tomato plants. They were therefore stable resistance breaking isolates as regards overcoming gene Sw-5. When resistance-breaking isolate DaWA-1ld multiplied together with original isolate DaWA-l in susceptible tomato, it was fully competitive with the original isolate. However, when DaWA-ld and ToTAS-ld were inoculated to TSWV resistant Lycopersicon peruvianum lines PI 128660R and PI 128660S and to TSWV resistant Capsicum chinense lines PI 152225, PI 159236 and AVRDC CO0943, they failed to overcome the resistance, producing only necrotic local lesions without systemic infection. Thus, although the ease of selection, stability and competitive ability of resistance breaking isolates of TSWV is cause for concern, L. peruvianum and C. chinense lines are available which are effective against them. The effectiveness of the resistance to TSWV in nine tomato genotypes was examined in a field experiment. Spread was substantial in the susceptible control genotype infecting 42% of plants. Resistance was ineffective in cv. Bronze Rebel, 26% of plants developing infection. In contrast, it held up well in the other eight resistant genotypes with only 1–3 or no plants of each becoming infected. Accumulated numbers of Thrips tabaci, Frankliniella occidentalis and F. schultzei were closely correlated with TSWV spread.  相似文献   

8.
In glasshouse tests, infective sap from plants infected with 17 different isolates of Tomato spotted wilt virus (TSWV) from four Australian states was inoculated to three Capsicum chinense accessions (PI 152225, PI 159236 and C00943) carrying single genes that confer hypersensitive resistance to TSWV. The normal response to inoculation was development of necrotic (hypersensitive) local lesions in inoculated leaves without systemic invasion, but 3/1386 infected plants also developed systemic susceptible reactions in addition to hypersensitive ones. Similarly when two isolates were inoculated to C. chinense backcross progeny plants, 1/72 developed systemic susceptible reactions in addition to localised hypersensitive ones. Using cultures from the four plants with susceptible reactions and following three to five further cycles of serial subculture in TSWV‐resistant C. chinense plants, four isolates were obtained that gave systemic susceptible type reactions in the three TSWV‐resistant accessions, and in TSWV‐resistant cultivated pepper (C. annuum). When three of these isolates were inoculated to tomato (Lycopersicon esculentum) breeding lines with single gene resistance to TSWV, resistance was not overcome. Similarly, none of the four isolates overcame partial resistance to TSWV in Lactuca virosa. When TSWV isolates were inoculated to tomato breeding lines carrying partial resistance from L. chilense, systemic infection developed which was sometimes followed by ‘recovery’. After four successive cycles of serial passage in susceptible cultivated pepper of a mixed culture of a resistance‐breaking isolate with the non resistance‐breaking isolate from which it came, the resistance‐breaking isolate remained competitive as both were still found. However, when the same resistance‐ breaking isolate was cultured alone, evidence of partial reversion to wild‐type behaviour was eventually obtained after five but not four cycles of long term serial subculture in susceptible pepper, as by then the culture had become a mixture of both types of strain. This work suggests that resistance‐breaking strains of TSWV that overcome single gene hypersensitive resistance in pepper are relatively stable. The findings have important implications for situations where resistant pepper cultivars are deployed widely in the field without taking other control measures as part of an integrated TSWV management strategy.  相似文献   

9.
This study investigated several aspects related to drought tolerance in arbuscular mycorrhizal (AM) soybean plants. The investigation included both shoot and root tissues in order to reveal the preferred target tissue for AM effects against drought stress. Non-AM and AM soybean plants were grown under well-watered or drought-stressed conditions, and leaf water status, solute accumulation, oxidative damage to lipids, and other parameters were determined. Results showed that AM plants were protected against drought, as shown by their significantly higher shoot-biomass production. The leaf water potential was also higher in stressed AM plants (-1.9 MPa) than in non-AM plants (-2.5 MPa). The AM roots had accumulated more proline than non-AM roots, while the opposite was observed in shoots. Lipid peroxides were 55% lower in shoots of droughted AM plants than in droughted non-AM plants. Since there was no correlation between the lower oxidative damage to lipids in AM plants and the activity of antioxidant enzymes, it seems that first the AM symbiosis enhanced osmotic adjustment in roots, which could contribute to maintaining a water potential gradient favourable to the water entrance from soil into the roots. This enabled higher leaf water potential in AM plants during drought and kept the plants protected against oxidative stress, and these cumulative effects increased the plant tolerance to drought.  相似文献   

10.
Sw-5b is an effective resistance gene used widely in tomato to control tomato spotted wilt virus (TSWV), which causes severe losses in crops worldwide. Sw-5b confers resistance by recognizing a 21-amino-acid peptide region of the viral movement protein NSm (NSm21, amino acids 115–135). However, C118Y or T120N mutation within this peptide region of NSm has given rise to field resistance-breaking (RB) TSWV isolates. To investigate the potential ability of TSWV to break Sw-5b-mediated resistance, we mutagenized each amino acid on NSm21 and determined which amino acid mutations would evade Sw-5b recognition. Among all alanine-scan mutants, NSmP119A, NSmW121A, NSmD122A, NSmR124A, and NSmQ126A failed to induce a hypersensitive response (HR) when coexpressed with Sw-5b in Nicotiana benthamiana leaves. TSWV with the NSmP119A, NSmW121A, or NSmQ126A mutation was defective in viral cell-to-cell movement and systemic infection, while TSWV carrying the NSmD122A or NSmR124A mutation was not only able to infect wild-type N. benthamiana plants systemically but also able to break Sw-5b-mediated resistance and establish systemic infection on Sw-5b-transgenic N. benthamiana plants. Two improved mutants, Sw-5bL33P/K319E/R927A and Sw-5bL33P/K319E/R927Q, which we recently engineered and which provide effective resistance against field RB isolates carrying NSmC118Y or NSmT120N mutations, recognized all NSm21 alanine-substitution mutants and conferred effective resistance against new experimental RB TSWV with the NSmD122A or NSmR124A mutation. Collectively, we determined the key residues of NSm for Sw-5b recognition, investigated their potential RB ability, and demonstrated that the improved Sw-5b mutants could provide effective resistance to both field and potential RB TSWV isolates.  相似文献   

11.
Strains of Pseudomonas fluorescens were investigated for biocontrol efficacy against tomato spotted wilt virus (TSWV) in tomato both alone and in mixtures. P. fluorescens strains applied to seed, soil and foliage or as a seedling dip significantly reduced TSWV, with a concomitant increase in growth promotion in both the glasshouse and field. Two native strains (CoP-1 and CoT-1) and one foreign strain (CHAO) reduced TSWV. In P. fluorescens-treated tomato plants, increased activity of polyphenol oxidase, β-1,3-glucanase and chitinase was observed, and induction of chitinase was confirmed by western blot analysis. Induction of new protein (18 kDa) detected by SDS-PAGE in P. fluorescens-treated tomato plants was not found in healthy and P. fluorescens-untreated virus inoculated control plants. Indirect ELISA clearly showed a reduction in viral antigen concentration in P. fluorescens-treated tomato plants corresponding to reduced disease ratings. All the P. fluorescens-treated tomato plants also showed enhanced growth and yield compared to control plants. Hence, plant growth promoting rhizobacteria (PGPR) could play a major role in reducing TSWV and increasing yield in tomato plants.  相似文献   

12.
The non-structural protein encoded by the M RNA segment (NSm) of tomato spotted wilt virus (TSWV) has been implicated in cell-to-cell movement of nucleocapsids through modified plasmodesmata. Recently, DnaJ-like proteins from Nicotiana tabacum (tobacco) and Arabidopsis thaliana have been identified as NSm interacting host proteins, implying an involvement of molecular chaperones during systemic spread of the virus or other, presently unknown NSm-mediated virus functions. Examination of additional TSWV host plants and improvement of yeast two-hybrid interaction trap experiments led to the isolation of a DnaJ-like protein from Lycopersicon esculentum (tomato) and the identification of a protein from A. thaliana sharing some homologies with myosin and kinesin-like polypeptides. Sequence alignments of the tomato DnaJ-like protein unveiled the corresponding gene as an orthologue to the tobacco and A. thaliana DnaJ genes, substantiating that NSm interacting DnaJ-like polypeptides, identified from three different TSWV host species, apparently form a subgroup distinct from archetypical DnaJ chaperones. Increased levels of DnaJ-like proteins could be detected in TSWV systemically infected leaves and in plants exposed to heat shock, showing that the NSm interacting DnaJ-like chaperones are inducible upon biotic and abiotic stress. All together, the identification of DnaJ-like proteins and a protein resembling myosin and kinesin as NSm interacting plant proteins is in accordance with results accomplished for movement proteins from other plant attacking viruses showing an involvement of molecular chaperones and the cytoskeleton in at least intracellular trafficking.  相似文献   

13.
The water content-water potential relation in stressed and unstressed cassava ( Man-ihot species) was examined to ascertain (i) the magnitude of osmotic adjustment in response to water stress and (ii) the mechanisms of such adjustments.
Water stress resulted in a displacement of the water content-potential relation such that at any leaf water potential the water content was higher in the stressed plants. The osmotic potentials of turgid leaves (100% relative water content) were -0.97 and -1.00 MPa in the unstressed cultivars CMC 9 and MCOL 113 respectively. In the stressed plants, the values were-1.13 MPa (CMC 9) and-1.14 MPa (MCOL 113). The 0.14 to 0.16 MPa osmotic potential difference between the stressed and unstressed plants suggests that a stress-induced osmotic adjustment occurred in both cultivars. The biiSk volumetric elastic moduli at turgor pressures above 0.10 MPa were 9.84 MPa (CMC 9) and 13.58 MPa (MCOL 113) in the unstressed plants. Tbe higher values found in the stressed plants, 14.56 MPa in CMC 9 and 16.91 MPa in MCOL 113, suggest a stress-induced decrease in cell wall elasticity. Hence, the observed shift in the wafer content-potential relations in the cassava involved both an osmotic adjustment and a decrease in cell wall elasticity. Increasing the number of stress cycles per plant did not cause a further displacement of the water content-potential curves.  相似文献   

14.
Transgenic tobacco plants expressing the coat protein (CP) gene of tobacco mosaic virus were tested for resistance against infection by five other tobamoviruses sharing 45-82% homology in CP amino acid sequence with the CP of tobacco mosaic virus. The transgenic plants (CP+) showed significant delays in systemic disease development after inoculation with tomato mosaic virus or tobacco mild green mosaic virus compared to the control (CP-) plants, but showed no resistance against infection by ribgrass mosaic virus. On a transgenic local lesion host, the CP+ plants showed greatly reduced numbers of necrotic lesions compared to the CP- plants after inoculation with tomato mosaic virus, pepper mild mottle virus, tobacco mild green mosaic virus, and Odontoglossum ringspot virus but not ribgrass mosaic virus. The implications of these results are discussed in relation to the possible mechanism(s) of CP-mediated protection.  相似文献   

15.
A survey of tospoviruses present in Bulgaria was conducted during three vegetation periods. A total of 258 different virus isolates were obtained from tobacco, tomato, weeds and ornamentals in the open fields and from glasshouses. Virus isolates were identified by inoculation to test plants and serology as Tomato spotted wilt virus (TSWV). No indications were obtained that other Tospovirus species were present in Bulgaria. In addition the transmission ability and efficiency of several Bulgarian populations of Thrips tabaci (Lind.) and Frankliniella occidentalis (Perg.) was determined. The experimental results indicated that Bulgarian TSWV isolates are transmitted with high efficiency by F. occidentalis and that only arrhenotokous and not thelytokouse populations of T. tabaci could transmit TSWV.  相似文献   

16.
The combined effects of ultraviolet-B (UV-B, 280–320 nm) radiation and water stress were investigated on the water relations of greenhouse grown soybean [ Glycine max (L.) Merr. cv. Essex]. On a weighted (Caldwell 1971), total daily dose basis, plants received either 0 or 3 000 effective J m2 UV-BBE supplied by filtered FS-40 sunlamps. The latter dose simulated the solar UV-B radiation anticipated at College Park, Maryland, U.S.A. (39°N latitude) in the event that the global stratospheric ozone column is reduced by 25%. Plants were either well-watered or preconditioned by drought stress cycles. Diurnal measurements of water potential and stomatal conductance were made on the youngest fully expanded leaf. Various internal water relations parameters were determined for detached leaves. Plants were monitored before, during and after water stress. There were no significant differences in leaf water potential or stomatal conductance between treatments before plants were preconditioned to water stress. However, drought stress resulted in significantly lower midday and afternoon leaf water potentials and lower leaf conductances as compared to well-watered plants. UV-B radiation had no additional effect on leaf water potential; however, UV did result in lower leaf conductances in plants preconditioned to water stress. Turgid weight:dry weight ratio, elastic modulus, bound water and relative water content were unaffected by UV-B radiation. Osmotic potentials at full and zero turgor were significantly lower in the drought stressed treatments as compared to well-watered plants.  相似文献   

17.
In 1973 tobacco mosaic virus (TMV) strain M II-16 was successfully used by growers in the United Kingdom to protect commercial tomato crops against the severe effects of naturally occurring strains of TMV. However, plants in many crops had mosaic leaf symptoms which were occasionally severe, so possible reasons for symptom appearance were examined. The concentration of the mutant strain in commercially produced inocula (assessed by infectivity and spectrophotometry) ranged from 28 to 1220 μg virus/ml; nevertheless all samples contained sufficient virus to infect a high percentage of inoculated tomato seedlings. Increasing the distance between the plants and the spray gun used for inoculation from 5 to 15 cm resulted in a significant decrease in the number of tomato seedlings infected. When M II-16 infected tomato plants were subsequently inoculated with each of fifty-three different isolates of TMV, none showed severe symptoms of the challenging isolates within 4 wk, although some isolates of strain o induced atypically mild leaf symptoms. In a further experiment, M II-16 infected plants showed conspicuous leaf symptoms only 7 wk after inoculation with a virulent TMV isolate. M II-16 multiplied more slowly in tomato plants and had a lower specific infectivity than a naturally occurring strain of TMV. More than 50% of plants in crops inoculated with strain M II-16 which subsequently showed conspicuous leaf mosaic contained TMV strain 1 or a form intermediate between strains o and 1. It is suggested that the production of TMV symptoms in commercial crops previously inoculated with strain M II-16 may result from an initially low level of infection, due to inefficient inoculation, which allows subsequent infection of unprotected plants by virulent strains. Incomplete protection by strain M II-16 against all naturally occurring strains may also be an important factor.  相似文献   

18.
Within the Bunyaviridae virus family, members of the genus Tospovirus are unique in their ability to infect plants. A characteristic genetic difference between tospoviruses and the animal-infecting members of this virus family is the occurrence of an additional gene, denoted NSM, located on the genomic M RNA segment. This gene has previously been implicated in the cell-to-cell movement of this virus during systemic infection. Transgenic tobacco plants have been obtained expressing the NSM protein of tomato spotted wilt virus (TSWV), the type member of the tospoviruses, from a constitutive promoter. Detectable amounts of the NSM protein could be observed in plants from nine different lines. The protein was only detectable in fractions enriched for cell wall material. More detailed immunogold labelling studies revealed specific association of NSM protein with plasmodesmata. Plants accumulating the NSM protein to detectable levels developed aberrations in growth, resulting in a significant reduction of size and accelerated senescence. In addition, these plants are restricted in their capacity to produce flowers. The results presented provide additional evidence that the NSM protein, by modifying plasmodesmata, represents the cell-to-cell movement function of tospoviruses. Furthermore, the phenotype of the NSM transgenic plants suggests involvement of the NSM gene product in TSWV symptom expression  相似文献   

19.
The Tsw gene conferring dominant resistance to the Tospovirus Tomato spotted wilt virus (TSWV) in Capsicum spp. has been tagged with a random amplified polymorphic DNA marker and mapped to the distal portion of chromosome 10. No mapped homologues of Sw-5, a phenotypically similar dominant TSWV resistance gene in tomato, map to this region in C. annuum, although a number of Sw-5 homologues are found at corresponding positions in pepper and tomato. The relationship between Tsw and Sw-5 was also examined through genetic studies of TSWV. The capacity of TSWV-A to overcome the Tsw gene in pepper and the Sw-5 gene in tomato maps to different TSWV genome segments. Therefore, despite phenotypic and genetic similarities of resistance in tomato and pepper, we infer that distinct viral gene products control the outcome of infection in plants carrying Sw-5 and Tsw, and that these loci do not appear to share a recent common evolutionary ancestor.  相似文献   

20.
We examined the resistance phenotype of a large number of transgenic tobacco plants originating from 12 commercial (Nicotiana tabacum) cultivars expressing the sense form of the nucleoprotein (N) gene of L3, a Bulgarian isolate of tomato spotted wilt virus (TSWV). The analysis revealed that transgenic plants are completely protected against the homologous L3 isolate of TSWV irrespective of whether or not they contain detectable levels of translational product. The effectiveness of protection against the virus was investigated upon mechanical inoculation under greenhouse conditions and in field trials. Non-segregating resistant lines were selected and the inheritance of the resistance to TSWV was analysed in successive generations (R3–R6). Extensive tests under controlled conditions and two-year field trials proved that the resistance to TSWV is stable in different environments and is a stably inherited trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号