首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of a chimeric gene encoding the coat protein (CP) of tobacco mosaic virus (TMV) in transgenic tobacco plants confers resistance to infection by TMV. We investigated the spread of TMV within the inoculated leaf and throughout the plant following inoculation. Plants that expressed the CP gene [CP(+)] and those that did not [CP(-)] accumulated equivalent amounts of virus in the inoculated leaves after inoculation with TMV-RNA, but the CP(+) plants showed a delay in the development of systemic symptoms and reduced virus accumulation in the upper leaves. Tissue printing experiments demonstrated that if TMV infection became systemic, spread of virus occurred in the CP(+) plants essentially as it occurred in the CP(-) plants although at a reduced rate. Through a series of grafting experiments, we showed that stem tissue with a leaf attached taken from CP(+) plants prevented the systemic spread of virus. Stem tissue without a leaf had no effect on TMV spread. All of these findings indicate that protection against systemic spread in CP(+) plants is caused by one or more mechanisms that, in correlation with the protection against initial infection upon inoculation, result in a phenotype of resistance to TMV.  相似文献   

2.
Transgenic tobacco (Nicotiana tabacum cv. Xanthi-nc) plants were regenerated after cocultivation of leaf explants withAgrobacterium tumefaciens strain LBA4404 harboring a plasmid that contained the coat protein (CP) gene of cucumber mosaic virus (CMV-As). PCR and Southern blot analyses revealed that the CMV CP gene was successfully introduced into the genomic DNA of the transgenic tobacco plants. Transgenic plants (CP+) expressing CP were obtained and used for screening the virus resistance. They could be categorized into three types after inoculation with the virus: virus-resistant, delay of symptom development, and susceptible type. Most of the CP+ transgenic tobacco plants failed to develop symptoms or showed systemic symptom development delayed for 5 to 42 days as compared to those of nontransgenic control plants after challenged with the same virus. However, some CP+ transgenic plants were highly susceptible after inoculation with the virus. Our results suggest that the CP-mediated viral resistance is readily applicable to CMV disease in other crops.  相似文献   

3.
Ribozymes of the hammerhead class can be designed to cleave a target RNA in a sequence-specific manner and can potentially be used to specifically modulate gene activity. We have targeted the tobacco mosaic virus (TMV) genome with a ribozyme containing three catalytic hammerhead domains embedded within a 1 kb antisense RNA. The ribozyme was able to cleave TMV RNA at all three target sites in vitro at 25°C. Transgenic tobacco plants were generated which expressed the ribozyme or the corresponding antisense constructs directed at the TMV genome. Six of 38 independent transgenic plant lines expressing the ribozyme and 6 of 39 plant lines expressing the antisense gene showed some level of protection against TMV infection. Homozygous progeny of some lines were highly resistant to TMV; at least 50% of the plants remained asymptomatic even when challenged with high levels of TMV. These plants also displayed resistance to infection with TMV RNA or the related tomato mosaic virus (ToMV). In contrast, hemizygous plants of the same lines displayed only very weak resistance when inoculated with low amounts of TMV and no resistance against high inoculation levels. Resistance in homozygous plants was not overcome by a TMV strain which was altered at the three target sites to abolish ribozyme-mediated cleavage, suggesting that the ribozyme conferred resistance primarily by an antisense mechanism.  相似文献   

4.
Summary Cross protection of plant viruses is a phenomenon in which plants infected with one strain of a virus are protected from the effects of superinfection by other related strains. Recently, we have succeeded in the introduction and expression of a cDNA copy of the tobacco mosaic virus (TMV) genomic RNA in transgenic tobacco plants. Using this system, we introduced a cDNA copy of a mild strain of TMV into tobacco plants. The transgenic plants did not develop any severe symptoms upon inoculation with a virulent TMV strain, indicating that these transgenic plants were cross protected against TMV infection. The system described here can be a useful model system to study the mechanism(s) of cross protection.  相似文献   

5.
Transgenic pepper plants coexpressing coat proteins (CPs) of cucumber mosaic virus (CMV-Kor) and tomato mosaic virus (ToMV) were produced by Agrobacterium-mediated transformation. To facilitate selection for positive transformants in transgenic peppers carrying an L gene, we developed a simple and effective screening procedure using hypersensitive response upon ToMV challenge inoculation. In this procedure, positive transformants could be clearly differentiated from the nontransformed plants. Transgenic pepper plants expressing the CP genes of both viruses were tested for resistance against CMV-Kor and pepper mild mottle virus (PMMV). In most transgenic plants, viral propagation was substantially retarded when compared to the nontransgenic plants. These experiments demonstrate that our transgenic pepper plants might be a useful marker system for the transgene screening and useful for classical breeding programs of developing virus resistant hot pepper plants.  相似文献   

6.
A procedure for the fast production of homozygotic transgenic plants was developed. Leaf discs of haploid tobacco plants from anther cultures were transformed with a chimaeric vector containing coat protein (CP) and satellite RNA (Sat-RNA) genes from cucumber mosaic virus (CMV). One-hundred-and-twelve Kanamycin-resistant transformed haploid plants were subjected to selection based on the expression of both CP and Sat-RNA. Eighty-nine transgenic plants expressing both genes were selected and tested for their resistance to CMV by inoculation with high concentration of CMV (200 g ml–1). Only five plants showed no symptoms of viral infection 30 days after inoculation. These plants were then diploidized by colchicine treatment. Three homozygous diploid lines with high levels of resistance to CMV were obtained after only one generation. The three transgenic lines were further tested under field conditions. The results showed that the progenies of these transgenic lines were homozygous and were highly resistant to CMV under natural field infection and manual inoculation conditions.  相似文献   

7.
Coat protein-mediated resistance (CP-MR) has been widely used to protect transgenic plants against virus diseases. To characterize the mechanisms of CP-MR to tobacco mosaic tobamovirus (TMV) we developed mutants of the coat protein that affected subunit-subunit interactions. Mutant CPs were expressed during TMV replication as well as in transgenic Nicotiana tabacum plants. The mutation T42-->W increased protein aggregation and T28-->W abolished aggregation and assembly, while the mutations T28-->W plus T42-->W and T89-->W altered normal CP subunit-subunit interactions. The mutant T28W was unable to assemble virus-like particles (VLPs) during infection and in transgenic plants failed to aggregate; this protein conferred no protection against challenge of transgenic plants by TMV. The mutant T42W had strong CP subunit-subunit interactions and formed VLPs but not infectious virions. Transgenic lines with this protein exhibited stronger protection against TMV infection than transgenic plants that contained the wild-type (wt) CP. It is proposed that increased resistance conferred by the T42W mutant results from strong interaction between transgenic CP subunits and challenge virus CP subunits. CP carrying the mutation T89-->W formed flexuous and unstable VLPs whereas the double mutant T28W:T42W formed open helical structures that accumulated as paracrystalline arrays. In transgenic plants, T89W and the double mutant CPs showed reduced ability to aggregate and provided lower protection against TMV infection than wt CP. A strong correlation between normal CP subunit-subunit interactions and CP-MR is observed, and a model for CP-MR involving interactions between the transgenic CP and the CP of the challenge virus as well as interference with virus movement is discussed.  相似文献   

8.
In 1973 tobacco mosaic virus (TMV) strain M II-16 was successfully used by growers in the United Kingdom to protect commercial tomato crops against the severe effects of naturally occurring strains of TMV. However, plants in many crops had mosaic leaf symptoms which were occasionally severe, so possible reasons for symptom appearance were examined. The concentration of the mutant strain in commercially produced inocula (assessed by infectivity and spectrophotometry) ranged from 28 to 1220 μg virus/ml; nevertheless all samples contained sufficient virus to infect a high percentage of inoculated tomato seedlings. Increasing the distance between the plants and the spray gun used for inoculation from 5 to 15 cm resulted in a significant decrease in the number of tomato seedlings infected. When M II-16 infected tomato plants were subsequently inoculated with each of fifty-three different isolates of TMV, none showed severe symptoms of the challenging isolates within 4 wk, although some isolates of strain o induced atypically mild leaf symptoms. In a further experiment, M II-16 infected plants showed conspicuous leaf symptoms only 7 wk after inoculation with a virulent TMV isolate. M II-16 multiplied more slowly in tomato plants and had a lower specific infectivity than a naturally occurring strain of TMV. More than 50% of plants in crops inoculated with strain M II-16 which subsequently showed conspicuous leaf mosaic contained TMV strain 1 or a form intermediate between strains o and 1. It is suggested that the production of TMV symptoms in commercial crops previously inoculated with strain M II-16 may result from an initially low level of infection, due to inefficient inoculation, which allows subsequent infection of unprotected plants by virulent strains. Incomplete protection by strain M II-16 against all naturally occurring strains may also be an important factor.  相似文献   

9.
Murphy AM  Carr JP 《Plant physiology》2002,128(2):552-563
Tobacco mosaic virus (TMV) and Cucumber mosaic virus expressing green fluorescent protein (GFP) were used to probe the effects of salicylic acid (SA) on the cell biology of viral infection. Treatment of tobacco with SA restricted TMV.GFP to single-epidermal cell infection sites for at least 6 d post inoculation but did not affect infection sites of Cucumber mosaic virus expressing GFP. Microinjection experiments, using size-specific dextrans, showed that SA cannot inhibit TMV movement by decreasing the plasmodesmatal size exclusion limit. In SA-treated transgenic plants expressing TMV movement protein, TMV.GFP infection sites were larger, but they still consisted overwhelmingly of epidermal cells. TMV replication was strongly inhibited in mesophyll protoplasts isolated from SA-treated nontransgenic tobacco plants. Therefore, it appears that SA has distinct cell type-specific effects on virus replication and movement in the mesophyll and epidermal cell layers, respectively. Thus, SA can have fundamentally different effects on the same pathogen in different cell types.  相似文献   

10.
In 1986 we reported that transgenic plants which accumulate the coat protein of tobacco mosaic virus (TMV) are protected from infection by TMV, and by closely related tobamoviruses. The phenomenon is referred to as coat-protein-mediated resistance (CP-MR), and bears certain similarities to cross protection, a phenomenon described by plant pathologists early in this century. Our studies of CP-MR against TMV have demonstrated that transgenically expressed CP interferes with disassembly of TMV particles in the inoculated transgenic cell. However, there is little resistance to local, cell-to-cell spread of infection. CP-MR involves interaction between the transgenic CP and the CP of the challenge virus, and resistance to TMV is greater than to tobamo viruses that have CP genes more distantly related to the transgene. Using the known coordinates of the three-dimensional structure of TMV we developed mutant forms of CP that have stronger inter-subunit interactions, and confer increased levels of CP-MR compared with wild-type CP. Similarly, it is predicted that understanding the cellular and structural basis of CP-MR will lead to the development of variant CP transgenes that each can confer high levels of resistance against a range of tobamoviruses.  相似文献   

11.
A chimeric vector was constructed to express cucumber mosaic virus (CMV) satellite (Sat) RNA and coat protein (CP). Transgenic lines of tobacco cultivar G-140 expressing CP and Sat-RNA were obtained; these lines had high resistance to CMV. Fifty to 70% of the transgenic plants were symptomless 90 days after inoculation with 25-50 micrograms/ml of CMV. Resistance was about twice that conferred by the Sat-RNA or the CP gene alone in transformed plants.  相似文献   

12.
13.
以前曾报道用RNA介导的抗病毒策略,获得了高度抗病的表达马铃薯Y病毒坏死株系外壳蛋白基因(PVY^N CP)的转基因烟草,并对T1、T2代转基因植株进行了遗传和抗病性分析。此次以T,代转基因植株为试验材料,在筛选高度抗病植株并证明其抗病性是基于转基因沉默的基础上,采用Northern杂交的方法,证明CMV侵染抑制了转基因植株中PVY^N CP基因的沉默,而且CMV对PVY^N CP基因沉默的抑制部位是发生在接种后的新生叶上,接种叶及其下部叶片中PVY^N CP基因沉默则未受到影响。采用ELISA方法对CMV PVY^N复合接种的转基因植株进行PVY^N检测,结果表明,接种叶及下部叶没有检测到PVY^N,植株叶片对PVY^N表现为抗病。而在CMV接种后植株新生叶中则检测出了高滴度的PVY^N,植株叶片对PVY^N表现为感病。该文报道了在表达PVY^N CP基因的RNA介导抗性转基因植株中,异源病毒侵染抑制了转基因的沉默,并导致转基因植株的抗病性丧失。  相似文献   

14.
The affinities of Ullucus mild mottle virus (UMMV). purified by a modified procedure. were examined by immunoblotting and probing with antisera to five distinct tobamoviruses. RNA. isolated from purified virus, was used for in vitro protein translation in a wheat germ system and the products examined by denaturing polyacrylamide gel electrophoresis. The results of these investigations, together with a study of the double-stranded RNAs associated with infection. confirm that UMMV is a distinct, tobamovirus which has close affinities with tobacco mosaic, tomato mosaic and cucumber green mottle tobamoviruses and more distant relationships with ribgrass mosaic and odontoglossum ringspot tobamoviruses.  相似文献   

15.
A chimeric gene encoding the alfalfa mosaic virus (AlMV) coat protein was constructed and introduced into tobacco and tomato plants using Ti plasmid-derived plant transformation vectors. The progeny of the self-fertilized transgenic plants were significantly delayed in symptom development and in some cases completely escaped infection after inoculated with AlMV. The inoculated leaves of the transgenic plants had significantly reduced numbers of lesions and accumulated substantially lower amounts of coat protein due to virus replication than the control plants. These results show that high level expression of the chimeric viral coat protein gene confers protection against AlMV, which differs from other plant viruses in morphology, genome structure, gene expression strategy and early steps in viral replication. Based on our results with AlMV and those reported earlier for tobacco mosaic virus, it appears that genetically engineered cross-protection may be a general method for preventing viral disease in plants.  相似文献   

16.
The expression of viral coat protein (CP) in transgenic plants has been shown to be very effective in virus plant protection. However, the introduction of CP genes into plants presents the potential risk of the encapsidation of a superinfecting viral genome in the transgenic protein, an event which could change the epidemiology of the disease. To detect the potential heterologous encapsidation of the cucumber mosaic virus (CMV) genome by alfalfa mosaic virus (AIMV) CP expressed in transgenic tobacco plants, a system of immunocapture (IC) and amplification by polymerase chain reaction (PCR) was optimized. This provided high sensitivity and reliable selection of the heterologously encapsidated CMV genome in the presence of natural CMV particles. As little as 2 pg of virus could be detected by immunocapture/polymerase chain reaction (IC/PCR) technique. Evidence for heterologous encapsidation of the CMV genome was found in 11 of the 33 transgenic plants tested two weeks after CMV inoculation. This demonstrates a significant rate of heterologous encapsidation events between two unrelated viruses in transgenic plants. Since CP is involved in the interactions of the virus particle with its vector, the release in the field of such transgenic plants could alter the transmission properties of some important viruses.  相似文献   

17.
A rice diacylglycerol kinase (DGK) gene, OsBIDK1, which encodes a 499-amino acid protein, was cloned and characterized. OsBIDK1 contains a conserved DGK domain, consisting of a diacylglycerol kinase catalytic subdomain and a diacylglycerol kinase accessory subdomain. Expression of OsBIDK1 in rice seedlings was induced by treatment with benzothiadiazole (BTH), a chemical activator of the plant defense response, and by infection with Magnaporthe grisea, causal agent of blast disease. In BTH-treated rice seedlings, expression of OsBIDK1 was induced earlier and at a higher level than in water-treated control seedlings after inoculation with M. grisea. Transgenic tobacco plants that constitutively express the OsBIDK1 gene were generated and disease resistance assays showed that overexpression of OsBIDK1 in transgenic tobacco plants resulted in enhanced resistance against infection by tobacco mosaic virus and Phytophthora parasitica var. nicotianae. These results suggest that OsBIDK1 may play a role in disease resistance responses.  相似文献   

18.
The coat protein (CP) of Tomato yellow leaf curl virus (TYLCV), encoded by the v1 gene, is the only known component of the viral capsid. In addition, the CP plays a role in the virus transport into the host cell nucleus where viral genes are replicated and transcribed. In this study, we analyzed the effect of small interfering double-stranded RNAs (siRNAs), derived from an intron-hairpin RNA (ihpRNA) construct and targeting the v1 gene product, on CP accumulation. Transient assays involving agroinfiltration of the CP-silencing construct followed by infiltration of a fused GFP-CP (green fluorescent protein-coat protein) gene showed down-regulation of GFP expression in Nicotiana benthamiana. Some of the transgenic tomato plants (cv. Micro-Tom), expressing the siRNA targeted against the TYLCV CP gene, did not show disease symptoms 7 weeks post-inoculation with the virus, while non-transgenic control plants were infected within 2 weeks post inoculation. The present study demonstrates, for the first time, that siRNA targeted against the CP of TYLCV can confer resistance to the virus in transgenic tomato plants, thereby enabling flowering and fruit production.  相似文献   

19.
Fifty transgenic lines expressing the tobacco vein mottling virus (TVMV) coat protein (CP) gene in five genetic backgrounds were evaluated under field conditions for response to mechanic inoculation with TVMV, tobacco etch virus (TEV) and potato virus Y (PVY). TVMV CP transgenic lines conferred resistance to TVMV, TEV and PVY under field conditions. Combining two strategies, coat protein-mediated resistance (CPMR) coupled with an endogenous resistance gene (Virgin A Mutant, VAM) significantly extended the range and magnitude of virus resistance and provided a potential valuable new source of protection against potyviruses. CP transgenic lines lacking the VAM gene had high resistance to TEV, medium resistance to PVY, and a recovery phenotype to TVMV. A series of hybrids involving transgenic lines were generated and tested under field conditions for response to virus inoculation. One copy of TVMV-CP gene presented in lines homozygous for the VAM gene provided effective resistance to all three potyviruses. These studies also suggested that selection of a suitable recipient genotype was critical and that field evaluation was necessary in order to select elite resistant transgenic lines. Engineering viral CP genes into genotypes possessing some level of virus resistance could be critical to achieve an effective level of resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号