首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Following mechanical inoculation of the moss Physcomitrella patens (Hedw.) B.S.G. with Tomato spotted wilt virus (TSWV), the virus encoded N nucleocapsid protein was detected in gametophores harvested 11 and 29 dpi and the non-structural NSm movement protein was observed 29 dpi. The detection of both viral proteins presumes that P. patens could serve as a new lab–host for TSWV, allowing reverse genetics by gene targeting to elucidate the role of specified molecular virus–host interactions.  相似文献   

2.
The nonstructural protein NSm of tomato spotted wilt virus (TSWV) has been identified as the avirulence determinant of the tomato single dominant Sw-5 resistance gene. Although Sw-5 effectiveness has been shown for most TSWV isolates, the emergence of resistance-breaking (RB) isolates has been observed. It is strongly associated with two point mutations (C118Y or T120N) in the NSm viral protein. TSWV-like symptoms were observed in tomato crop cultivars (+Sw-5) in the Baja California peninsula, Mexico, and molecular methods confirmed the presence of TSWV. Sequence analysis of the NSm 118–120 motif and three-dimensional protein modelling exhibited a noncanonical C118F substitution in seven isolates, suggesting that this substitution could emulate the C118Y-related RB phenotype. Furthermore, phylogenetic and molecular analysis of the full-length genome (TSWV-MX) revealed its reassortment-related evolution and confirmed that putative RB-related features are restricted to the NSm protein. Biological and mutational NSm 118 residue assays in tomato (+Sw-5) confirmed the RB nature of TSWV-MX isolate, and the F118 residue plays a critical role in the RB phenotype. The discovery of a novel TSWV-RB Mexican isolate with the presence of C118F substitution highlights a not previously described viral adaptation in the genus Orthotospovirus, and hence, the necessity of further crop monitoring to alert the establishment of novel RB isolates in cultivated tomatoes.  相似文献   

3.
Thrips were surveyed in tomato spotted wilt-susceptible crops in five areas across North Carolina. Tomato, pepper, and tobacco plants in commercial fields were sampled and 30 species of thrips were collected over a 3-year period. The most common species overall was Frankliniella tritici (Fitch). The most common thrips species that are known to vector Tomato Spotted Wilt Virus (TSWV) were F. fusca (Hinds), and F. occidentalis (Pergande). Relatively low numbers of Thrips tabaci Lindeman, another reported vector, were collected. The spatial and temporal occurrence of vectors varied with sampling method, crop species, region of North Carolina, and localized areas within each region. In a laboratory experiment, no difference was detected between the ability of F. fusca and F. occidentalis to acquire and transmit a local isolate of TSWV. Based on vector efficiency and occurrence, F. fusca is considered the most important vector of TSWV in tobacco, whereas both F. fusca and F. occidentalis are important vectors of TSWV in tomato and pepper.  相似文献   

4.
Sw-5b is an effective resistance gene used widely in tomato to control tomato spotted wilt virus (TSWV), which causes severe losses in crops worldwide. Sw-5b confers resistance by recognizing a 21-amino-acid peptide region of the viral movement protein NSm (NSm21, amino acids 115–135). However, C118Y or T120N mutation within this peptide region of NSm has given rise to field resistance-breaking (RB) TSWV isolates. To investigate the potential ability of TSWV to break Sw-5b-mediated resistance, we mutagenized each amino acid on NSm21 and determined which amino acid mutations would evade Sw-5b recognition. Among all alanine-scan mutants, NSmP119A, NSmW121A, NSmD122A, NSmR124A, and NSmQ126A failed to induce a hypersensitive response (HR) when coexpressed with Sw-5b in Nicotiana benthamiana leaves. TSWV with the NSmP119A, NSmW121A, or NSmQ126A mutation was defective in viral cell-to-cell movement and systemic infection, while TSWV carrying the NSmD122A or NSmR124A mutation was not only able to infect wild-type N. benthamiana plants systemically but also able to break Sw-5b-mediated resistance and establish systemic infection on Sw-5b-transgenic N. benthamiana plants. Two improved mutants, Sw-5bL33P/K319E/R927A and Sw-5bL33P/K319E/R927Q, which we recently engineered and which provide effective resistance against field RB isolates carrying NSmC118Y or NSmT120N mutations, recognized all NSm21 alanine-substitution mutants and conferred effective resistance against new experimental RB TSWV with the NSmD122A or NSmR124A mutation. Collectively, we determined the key residues of NSm for Sw-5b recognition, investigated their potential RB ability, and demonstrated that the improved Sw-5b mutants could provide effective resistance to both field and potential RB TSWV isolates.  相似文献   

5.
Clostridium botulinum type A cells, when challenged to elevated temperature (45°C), increased the expression of at least nine heat shock proteins (HSPs). Simultaneously with the induction of HSPs, changes in the synthesis rates of other cellular proteins were observed. A 40-kDa stress protein was induced and its synthesis rate was enhanced when the cells were shifted to 45°C. Using heterologous antibodies raised against E. coli DnaJ heat shock proteins, the 40-kDa stress protein of C. botulinum type A has been identified as a DnaJ-like chaperone. The DnaJ chaperone might be involved in translocation of the neurotoxin and other cellular proteins across the cell membrane, repair of damaged proteins, and organism survival inside the host. This is the first report of the existence of a DnaJ-like chaperone in this organism.  相似文献   

6.
The recombinant expression of eukaryotic proteins in Escherichia coli often results in protein aggregation. Several articles report on improved solubility and increased purification yields of individual proteins upon over-expression of E. coli chaperones but this effect might potentially be protein-specific. To find out whether chaperone over-expression is a generally applicable strategy for the production of human protein kinases in E. coli, we analyzed 10 kinases, mainly as catalytic domain constructs. The kinases studied, namely c-Src, c-Abl, Hck, Lck, Igf1R, InsR, KDR, c-Met, b-Raf and Irak4, belong to the tyrosine and tyrosine kinase-like groups of kinases. Upon over-expression of the E. coli chaperones DnaK/DnaJ/GrpE and GroEL/GroES, the yields of 7 from 10 polyhistidine-tagged kinases were increased up to 5-fold after nickel-affinity purification (IMAC). Additive over-expression of the chaperones ClpB and/or trigger factor showed no further improvement. Co-purification of DnaJ and GroEL indicated incomplete kinase folding, therefore, the oligomerization state of the kinases was determined by size-exclusion chromatography. In our study, kinases behave in three different ways. Kinases where yields are not affected by E. coli chaperone over-expression e.g. c-Src elute in the monomeric fraction (category I). Although IMAC yields increase upon chaperone over-expression, InsR and b-Raf kinase are present as soluble aggregates (category II). Igf1R and c-Met kinase catalytic domains are partially complexed with E. coli chaperones upon over-expression; however, they show 2-fold increased yields of monomer (category III). Together, our results suggest that the benefits of chaperone over-expression on the production of protein kinases in E. coli are indeed case-specific.  相似文献   

7.
In the moss Physcomitrella patens integrative transformants from homologous recombination are obtained at an efficiency comparable to that found for yeast. This property, unique in the plant kingdom, allows the knockout of specific genes. It also makes the moss a convenient model to study the regulation of homologous recombination in plants. We used degenerate oligonucleotides designed from AtMSH2 from Arabidopsis thaliana and other known MutS homologues to isolate the P. patens MSH2 (PpMSH2) cDNA. The deduced sequence of the PpMSH2 protein is respectively 60.8% and 59.6% identical to the maize and A. thaliana MSH2. Phylogenic studies show that PpMSH2 is closely related to the group of plant MSH2 proteins. Southern analysis reveals that the gene exists as a single copy in the P. patens genome.  相似文献   

8.
Tomato spotted wilt virus (TSWV) is one of the most devastating plant viruses and often causes severe crop losses worldwide. Generally, mature plants become more resistant to pathogens, known as adult plant resistance. In this study, we demonstrated a new phenomenon involving developmentally regulated susceptibility of Arabidopsis thaliana to TSWV. We found that Arabidopsis plants become more susceptible to TSWV as plants mature. Most young 3-week-old Arabidopsis were not infected by TSWV. Infection of TSWV in 4-, 5-, and 6-week-old Arabidopsis increased from 9%, 21%, and 25%, respectively, to 100% in 7- to 8-week-old Arabidopsis plants. Different isolates of TSWV and different tospoviruses show a low rate of infection in young Arabidopsis but a high rate in mature plants. When Arabidopsis dcl2/3/4 or rdr1/2/6 mutant plants were inoculated with TSWV, similar results as observed for the wild-type Arabidopsis plants were obtained. A cell-to-cell movement assay showed that the intercellular movement efficiency of TSWV NSm:GFP fusion was significantly higher in 8-week-old Arabidopsis leaves compared with 4-week-old Arabidopsis leaves. Moreover, the expression levels of pectin methylesterase and β-1,3-glucanase, which play critical roles in macromolecule cell-to-cell trafficking, were significantly up-regulated in 8-week-old Arabidopsis leaves compared with 4-week-old Arabidopsis leaves during TSWV infection. To date, this mature plant susceptibility to pathogen infections has rarely been investigated. Thus, the findings presented here should advance our knowledge on the developmentally regulated mature host susceptibility to plant virus infection.  相似文献   

9.
Summary We have found that Arahidopsis thaliana is susceptible to infection with a crucifer strain of tobacco mosaic virus (TMV-Cg); the coat protein of TMV-Cg accumulated to a high level in uninoculated rosette leaves several days after inoculation. As a first step in the search for host-coded factors that are involved in virus multiplication, we isolated mutants of A. thaliana in which the accumulation of TMV-Cg coat protein was reduced to low levels. Of 6000 M2 plants descended from ethyl methanesulfonate-treated seeds, two such lines (PD 114 and PD378) were isolated. Genetic analyses suggested that the PD 114 phenotype was caused by a single nuclear recessive mutation, and that PD114 and PD378 belonged to the same complementation group. The coat protein accumulation of a tomato strain of TMV (TMVL) was also reduced in PD 114 plants compared to that in the wild-type plants. In contrast, PD114 plants infected with turnip crinkle or turnip yellow mosaic viruses, which belong to taxonomic groups other than Tobamovirus, expressed similar levels of these coat proteins as did infected wild-type plants.In this paper, we use the term multiplication (of a virus in a plant) to mean a substantial increase in virus concentration in the uninoculated leaves of the infected plant. Therefore, the efficiency of each process of invasion of the plant by the virus, uncoating, replication and degradation of the virus genome, formation and degradation of the virus particles, and spreading of the virus in the plant will affect the degree of multiplication  相似文献   

10.
To identify host factors for tomato spotted wilt orthotospovirus (TSWV), a virus-induced gene silencing (VIGS) screen using tobacco rattle virus (TRV) was performed on Nicotiana benthamiana for TSWV susceptibility. To rule out any negative effect on the plants’ performance due to a double viral infection, the method was optimized to allow screening of hundreds of clones in a standardized fashion. To normalize the results obtained in and between experiments, a set of controls was developed to evaluate in a consist manner both VIGS efficacy and the level of TSWV resistance. Using this method, 4532 random clones of an N. benthamiana cDNA library were tested, resulting in five TRV clones that provided nearly complete resistance against TSWV. Here we report on one of these clones, of which the insert targets a small gene family coding for the ribosomal protein S6 (RPS6) that is part of the 40S ribosomal subunit. This RPS6 family is represented by three gene clades in the genome of Solanaceae family members, which were jointly important for TSWV susceptibility. Interestingly, RPS6 is a known host factor implicated in the replication of different plant RNA viruses, including the negative-stranded TSWV and the positive-stranded potato virus X.  相似文献   

11.
Plant viruses move through plasmodesmata to infect new cells. The plant endoplasmic reticulum (ER) is interconnected among cells via the ER desmotubule in the plasmodesma across the cell wall, forming a continuous ER network throughout the entire plant. This ER continuity is unique to plants and has been postulated to serve as a platform for the intercellular trafficking of macromolecules. In the present study, the contribution of the plant ER membrane transport system to the intercellular trafficking of the NSm movement protein and Tomato spotted wilt tospovirus (TSWV) is investigated. We showed that TSWV NSm is physically associated with the ER membrane in Nicotiana benthamiana plants. An NSm-GFP fusion protein transiently expressed in single leaf cells was trafficked into neighboring cells. Mutations in NSm that impaired its association with the ER or caused its mis-localization to other subcellular sites inhibited cell-to-cell trafficking. Pharmacological disruption of the ER network severely inhibited NSm-GFP trafficking but not GFP diffusion. In the Arabidopsis thaliana mutant rhd3 with an impaired ER network, NSm-GFP trafficking was significantly reduced, whereas GFP diffusion was not affected. We also showed that the ER-to-Golgi secretion pathway and the cytoskeleton transport systems were not involved in the intercellular trafficking of TSWV NSm. Importantly, TSWV cell-to-cell spread was delayed in the ER-defective rhd3 mutant, and this reduced viral infection was not due to reduced replication. On the basis of robust biochemical, cellular and genetic analysis, we established that the ER membrane transport system serves as an important direct route for intercellular trafficking of NSm and TSWV.  相似文献   

12.
The avirulence determinant triggering the resistance conferred by the tomato gene Sw‐5 against Tomato spotted wilt virus (TSWV) is still unresolved. Sequence comparison showed two substitutions (C118Y and T120N) in the movement protein NSm present only in TSWV resistance‐breaking (RB) isolates. In this work, transient expression of NSm of three TSWV isolates [RB1 (T120N), RB2 (C118Y) and non‐resistance‐breaking (NRB)] in Nicotiana benthamiana expressing Sw‐5 showed a hypersensitive response (HR) only with NRB. Exchange of the movement protein of Alfalfa mosaic virus (AMV) with NSm supported cell‐to‐cell and systemic transport of the chimeric AMV RNAs into N. tabacum with or without Sw‐5, except for the constructs with NBR when Sw‐5 was expressed, although RB2 showed reduced cell‐to‐cell transport. Mutational analysis revealed that N120 was sufficient to avoid the HR, but the substitution V130I was required for systemic transport. Finally, co‐inoculation of RB and NRB AMV chimeric constructs showed different prevalence of RB or NBR depending on the presence or absence of Sw‐5. These results indicate that NSm is the avirulence determinant for Sw‐5 resistance, and mutations C118Y and T120N are responsible for resistance breakdown and have a fitness penalty in the context of the heterologous AMV system.  相似文献   

13.
外泌体是一种在细胞间信息传递和物质运输中起重要作用的细胞外囊泡,它携带来源于宿主细胞的蛋白质、脂质和RNA等物质,并对受体细胞的生理状态产生重要影响.黄病毒科病毒如丙型肝炎病毒和冠状病毒科病毒如新型冠状病毒导致的疾病严重威胁人类健康,深入了解黄病毒科和冠状病毒科病毒与宿主的相互作用,对于筛选治疗的细胞靶点以及外泌体疫苗...  相似文献   

14.
The Sw-5 locus confers dominant resistance to tomato spotted wilt virus (TSWV). To map the location and facilitate the identification of markers linked to Sw-5 we developed a pair of near-isogenic lines (NILs) and an F2 Lycopersicon esculentum x L. pennellii population segregating for resistance to TSWV. DNA from the NILs was analyzed using 748 random 10-mer oligonucleotides to discern linked molecular markers using a random amplified polymorphic DNA (RAPD) approach. One random primer (GAGCACGGGA) was found to produce a RAPD band of about 2200 bp that demonstrates linkage to Sw-5. Data from co-segregation of resistance and restriction fragment length polymorphisms (RFLPs) in a F2 interspecific population position Sw-5 between the markers CT71 and CT220 near the telomere of the long arm of chromosome 9.  相似文献   

15.
The complete nucleotide sequence of Chinese rape mosaic virus has been determined. The virus is a member of the tobamovirus genus of plant virus and is able to infect Arabidopsis thaliana (L.) Heynh systemically. The analysis of the sequence shows a gene array that seems to be characteristic of crucifer tobamoviruses and which is slightly different from the one most frequently found in tobamoviruses. Based on gene organization and on comparisons of sequence homologies between members of the tobamoviruses, a clustering of crucifer tobamoviruses is proposed that groups the presently known crucifer tobamovirus into two viruses with two strains each. A name change of Chinese rape mosaic virus to oilseed rape mosaic virus is proposed.Abbreviations 2-ME 2-mercaptoethanol - EDTA ethylenediaminetetraacetic acid - SDS sodium dodecyl sulfate - UTR untranslated region - MP movement protein - CP capsid protein - CRMV Chinese rape mosaic virus - TVCV turnip vein clearing virus - PaMMV paprika mild mottle virus - PMMV-I pepper mild mottle virus (Italian isolate) - PMMV-S pepper mild mottle virus (Spanish isolate) - ToMV tomato mosaic virus - TMV tobacco mosaic virus - TMGMV tobacco mild green mosaic virus - ORSV odontoglossum ringspot virus - SHMV sunn hemp mosaic virus - CGMMV cucumber green mottle mosaic virus - ORMV oilseed rape mosaic virus  相似文献   

16.
Wounding of plants by insects is often mimicked in the laboratory by mechanical means such as cutting or crushing, and has not been compared directly with other forms of biotic stress such as virus infection. To compare the response of plants to these types of biotic and abiotic stress, trypsin inhibitor (TI) activity induced locally and systemically in mature tobacco (Nicotiana tabacum L.) and tomato (Lycopersicon esculentum L.) plants was followed for 12 days. In tobacco, cutting, crushing and insect feeding all induced comparable levels of TI activity of approx. 5 nmol·(mg leaf protein)?1 in wounded leaves, while tobacco mosaic virus (TMV) infection of tobacco induced 10-fold lower amounts in the infected leaves. In tomato, feeding by insects also led to the induction of a level of TI activity of 5 nmol·(mg leaf protein)?1. In contrast, both cutting and crushing of tomato leaves induced 10-fold higher amounts. These data show that biotic stress, in the form of insect feeding and TMV infection, and abiotic stress, in the form of wounding, have different effects on local levels of induced TI activity in mature tobacco and tomato plants. Irrespective of the type of wounding, in neither tobacco nor tomato could systemic induction of TI activity be observed in nearby unwounded leaves, which suggests that systemic induction of TI activity in mature tobacco and tomato plants is different from systemic TI induction in seedlings. Wounding of tobacco leaves, however, did increase the responsiveness to wounding elsewhere in the plant, as measured by an increased induction of TI activity.  相似文献   

17.
Bellaoui M  Gruissem W 《Planta》2004,219(5):819-826
The DCL (defective chloroplasts and leaves) gene of tomato (Lycopersicon esculentum Mill.) is required for chloroplast development, palisade cell morphogenesis, and embryogenesis. Previous work suggested that DCL protein is involved in 4.5S rRNA processing. The Arabidopsis thaliana (L.) Heynh. genome contains five sequences encoding for DCL-related proteins. In this paper, we investigate the function of AtDCL protein, which shows the highest amino acid sequence similarity with tomato DCL. AtDCL mRNA was expressed in all tissues examined and a fusion between AtDCL and green fluorescent protein (GFP) was sufficient to target GFP to plastids in vivo, consistent with the localization of AtDCL to chloroplasts. In an effort to clarify the function of AtDCL, transgenic plants with altered expression of this gene were constructed. Deregulation of AtDCL gene expression caused multiple phenotypes such as chlorosis, sterile flowers and abnormal cotyledon development, suggesting that this gene is required in different organs. The processing of the 4.5S rRNA was significantly altered in these transgenic plants, indicating that AtDCL is involved in plastid rRNA maturation. These results suggest that AtDCL is the Arabidopsis ortholog of tomato DCL, and indicate that plastid function is required for normal plant development.Abbreviations DCL Defective chloroplasts and leaves - GFP Green fluorescent protein  相似文献   

18.
The Brassica napus cDNA clone A9 and the corresponding Arabidopsis thaliana gene have been sequenced. The B. napus cDNA and the A. thaliana gene encode proteins that are 73% identical and are predicted to be 10.3 kDa and 11.6 kDa in size respectively. Fusions of an RNase gene and the reporter gene -glucuronidase to the A. thaliana A9 promoter demonstrated that in tobacco the A9 promoter is active solely in tapetal cells. Promoter activity is first detectable in anthers prior to sporogenous cell meiosis and ceases during microspore premitotic interphase.The deduced A9 protein sequence has a pattern of cysteine residues that is present in a superfamily of seed plant proteins which contains seed storage proteins and several protease and -amylase inhibitors.  相似文献   

19.
Significant yield losses in commercial tomato production caused by tomato spotted wilt virus (TSWV) are the reason why we have undertaken studies on resistance to this pathogen. One of the possible sources of resistance can be the incorporation of the nucleoprotein N viral gene by Agrobacterium transformation. The N gene was introduced into three Lycopersicon esculentum forms. Out of the total of 3044 cotyledon explants 14.7% regenerated shoots, but only a few were rooted on medium containing kanamycin. The preliminary analysis indicated that 18 plants are putative transformants.  相似文献   

20.
Summary Plasmodesmata mediate intercellular transport of proteins, nucleic acids, and small molecules in plants. We show that transiently produced green-fluorescent protein (GFP) trafficked intercellularly in the epidermis of sink leaves, but not of source leaves, in tobacco and cucumber. In contrast, the protein did not traffic in either sink or source leaves of tomato. On the other hand, the protein spread extensively from cell to cell in the epidermis of all leaves and stems ofArabidopsis thaliana as well as in young hypocotyls and cotyledons of tomato and cucumber. GFP could traffic from epidermis to ground tissues in hypocotyls but not in cotyledons of cucumber. GFP fused to a number of mutant forms of the cucumber mosaic virus 3a movement protein (CMV 3a MP) failed to traffic from cell to cell, suggesting that GFP does not have a specific motif for plasmodesmal trafficking. Our data, together with previous findings, indicate that plasmodesmata can mediate both specific and nonspecific intercellular trafficking of proteins. Furthermore, our data suggest that nonspecific protein trafficking is controlled by species-, development-, organ-, and tissue-specific factors. Since GFP can readily traffic from cell to cell, it raises the questions of how metabolites are compartmentalized intercellularly in a plant and of whether some endogenous plant proteins traffic nonspecifically from cell to cell to perform physiological functions yet to be elucidated.Abbreviations CMV cucumber mosaic virus - GFP green-fluorescent protein - MP movement protein - SEL size exclusion limit  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号