首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 225 毫秒
1.
2.
Picornaviral RNA replication utilizes a small virus-encoded protein, termed 3B or VPg, as a primer to initiate RNA synthesis. This priming step requires uridylylation of the VPg peptide by the viral polymerase protein 3D(pol), in conjunction with other viral or host cofactors. In this study, we compared the viral specificity in 3D(pol)-catalyzed uridylylation reactions between poliovirus (PV) and human rhinovirus 16 (HRV16). It was found that HRV16 3D(pol) was able to uridylylate PV VPg as efficiently as its own VPg, but PV 3D(pol) could not uridylylate HRV16 VPg. Two chimeric viruses, PV containing HRV16 VPg (PV/R16-VPg) and HRV16 containing PV VPg (R16/PV-VPg), were constructed and tested for replication capability in H1-HeLa cells. Interestingly, only PV/R16-VPg chimeric RNA produced infectious virus particles upon transfection. No viral RNA replication or cytopathic effect was observed in cells transfected with R16/PV-VPg chimeric RNA, despite the ability of HRV16 3D(pol) to uridylylate PV VPg in vitro. Sequencing analysis of virion RNA isolated from the virus particles generated by PV/R16-VPg chimeric RNA identified a single residue mutation in the VPg peptide (Glu(6) to Val). Reverse genetics confirmed that this mutation was highly compensatory in enhancing replication of the chimeric viral RNA. PV/R16-VPg RNA carrying this mutation replicated with similar kinetics and magnitude to wild-type PV RNA. This cell culture-induced mutation in HRV16 VPg moderately increased its uridylylation by PV 3D(pol) in vitro, suggesting that it might be involved in other function(s) in addition to the direct uridylylation reaction. This study demonstrated the use of chimeric viruses to characterize viral specificity and compatibility in vivo between PV and HRV16 and to identify critical amino acid residue(s) for viral RNA replication.  相似文献   

3.
4.
5.
6.
The first step in poliovirus (PV) RNA synthesis is the covalent linkage of UMP to the terminal protein VPg. This reaction can be studied in vitro with two different assays. The simpler assay is based on a poly(A) template and requires synthetic VPg, purified RNA polymerase 3D(pol), UTP, and a divalent cation. The other assay uses specific viral sequences [cre(2C)] as a template for VPg uridylylation and requires the addition of proteinase 3CD(pro). Using one or both of these assays, we analyzed the VPg specificities and metal requirements of the uridylylation reactions. We determined the effects of single and double amino acid substitutions in VPg on the abilities of the peptides to serve as substrates for 3D(pol). Mutations in VPg, which interfered with uridylylation in vitro, were found to abolish viral growth. A chimeric PV containing the VPg of human rhinovirus 14 (HRV14) was viable, but substitutions of HRV2 and HRV89 VPgs for PV VPg were lethal. Of the three rhinoviral VPgs tested, only the HRV14 peptide was found to function as a substrate for PV1(M) 3D(pol) in vitro. We also examined the metal specificity of the VPg uridylylation reaction on a poly(A) template. Our results show a strong preference of the RNA polymerase for Mn(2+) as a cofactor compared to Mg(2+) or other divalent cations.  相似文献   

7.
Packaging in a yeast double-stranded RNA virus.   总被引:2,自引:1,他引:1       下载免费PDF全文
W Yao  K Muqtadir    J A Bruenn 《Journal of virology》1995,69(3):1917-1919
The yeast virus ScV-L1 has only two genes, cap and pol, which encode the capsid polypeptide and the viral polymerase, respectively. The second gene is translated only as a cap-pol fusion protein. This fusion protein is responsible for recognition of a specific small stem and loop region of the viral plus strands, of 19 to 31 bases in length, ensuring packaging specificity. We have used a related virus, ScV-La, which has about 29% codon identity with ScV-L1 in the most conserved region of the pol gene, to map the region in pol that is responsible for packaging L1. Characterization of a number of chimeric viral proteins that recognize L1 but have the La capsid region delimits the region necessary for recognition of L1 to a 76- to 82-codon portion of pol. In addition, we show that overproduction of the La capsid polypeptide results in curing of the ScV-La virus, analogous to the production of plants resistant to RNA viruses by virtue of systemic production of viral coat protein.  相似文献   

8.
H.-H. Lu and E. Wimmer (Proc. Natl. Acad. Sci. USA 93:1412–1417, 1996) have demonstrated that the internal ribosomal entry site (IRES) of poliovirus (PV) can be functionally replaced by the related genetic element from hepatitis C virus (HCV). One important finding of this study was that open reading frame sequences 3′ of the initiating AUG, corresponding to the open reading frame of the HCV core polypeptide, are required to create a viable chimeric virus. This made necessary the inclusion of a PV 3C protease (3Cpro) cleavage site for proper polyprotein processing to create the authentic N terminus of the PV capsid precursor. Chimeric PV/HCV (P/H) viruses, however, grew poorly relative to PV. The goal of this study was to determine the molecular basis of impaired replication and enhance the growth properties of this chimeric virus. Genetic modifications leading to a different proteinase (PV 2Apro) cleavage site between the HCV core sequence and the PV polyprotein (P/H701-2A) proved far superior with respect to viral protein expression, core-PV fusion polyprotein processing, plaque phenotype, and viral titer than the original prototype PV/HCV chimera containing the PV 3Cpro-specific cleavage site (P/H701). We have used this new virus model to answer two questions concerning the role of the HCV core protein in P/H chimeric viral proliferation. First, a derivative of P/H701-2A with frameshifts in the core-encoding sequence was used to demonstrate that production of the core protein was not necessary for the translation and replication of the P/H chimera. Second, a viral construct with a C-terminal truncation of 23 amino acids of the core gene was used to show that a signal sequence for signal peptidase processing, when present in the viral construct, is detrimental to P/H virus growth. The novel P/H chimera described here are suitable models for analyzing the function(s) of the HCV elements by genetic analyses in vivo and for antiviral drug discovery.  相似文献   

9.
The initiation of enteroviral positive-strand RNA synthesis requires the presence of a functional ribonucleoprotein complex containing a cloverleaf-like RNA secondary structure at the 5' end of the viral genome. Other components of the ribonucleoprotein complex are the viral 3CD proteinase (the precursor protein of the 3C proteinase and the 3D polymerase), the viral 3AB protein and the cellular poly(rC)-binding protein 2. For a molecular characterization of the RNA-binding properties of the enteroviral proteinase, the 3C proteinase of coxsackievirus B3 (CVB3) was bacterially expressed and purified. The recombinant protein is proteolytically active and forms a stable complex with in vitro-transcribed cloverleaf RNA of CVB3. The formation of stable complexes is also demonstrated with cloverleaf RNA of poliovirus (PV) 1, the first cloverleaf of bovine enterovirus (BEV) 1, and human rhinovirus (HRV) 2 but not with cloverleaf RNA of HRV14 and the second cloverleaf of BEV1. The apparent dissociation constants of the protein:RNA complexes range from approx. 1.7 to 4.6 microM. An electrophoretic mobility shift assay with subdomain D of the CVB3 cloverleaf demonstrates that this RNA is sufficient to bind the CVB3 3C proteinase. Binding assays using mutated versions of CVB3 and HRV14 cloverleaf RNAs suggest that the presence of structural features rather than a defined sequence motif of loop D are important for 3C proteinase-RNA interaction.  相似文献   

10.
Poliovirus genomes which contain small regions of the human immunodeficiency virus type 1 (HIV-1) gag, pol, and env genes substituted in frame for the P1 capsid region replicate and express HIV-1 proteins as fusion proteins with the P1 capsid precursor protein upon transfection into cells (W. S. Choi, R. Pal-Ghosh, and C. D. Morrow, J. Virol. 65:2875-2883, 1991). Since these genomes, referred to as replicons, do not express capsid proteins, a complementation system was developed to encapsidate the genomes by providing P1 capsid proteins in trans from a recombinant vaccinia virus, VV-P1. Virus stocks of encapsidated replicons were generated after serial passage of the replicon genomes into cells previously infected with VV-P1 (D. C. Porter, D. C. Ansardi, W. S. Choi, and C. D. Morrow, J. Virol. 67:3712-3719, 1993). Using this system, we have further defined the role of the P1 region in viral protein expression and RNA encapsidation. In the present study, we constructed poliovirus replicons which contain the complete 1,492-bp gag gene of HIV-1 substituted for the entire P1 region of poliovirus. To investigate whether the VP4 coding region was required for the replication and encapsidation of poliovirus RNA, a second replicon in which the complete gag gene was substituted for the VP2, VP3, and VP1 capsid sequences was constructed. Transfection of replicon RNA with and without the VP4 coding region into cells resulted in similar levels of expression of the HIV-1 Gag protein and poliovirus 3CD protein, as indicated by immunoprecipitation using specific antibodies. Northern (RNA) blot analysis of RNA from transfected cells demonstrated comparable levels of RNA replication for each replicon. Transfection of the replicon genomes into cells infected with VV-P1 resulted in the encapsidation of the genomes; serial passage in the presence of VV-P1 resulted in the generation of virus stocks of encapsidated replicons. Analysis of the levels of protein expression and encapsidated replicon RNA from virus stocks after 21 serial passages of the replicon genomes with VV-P1 indicated that the replicon which contained the VP4 coding region was present at a higher level than the replicon which contained a complete substitution of the P1 capsid sequences. These differences in encapsidation, though, were not detected after only two serial passages of the replicons with VV-P1 or upon coinfection and serial passage with type 1 Sabin poliovirus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
HeLa cells were transfected with several plasmids that encoded all poliovirus (PV) nonstructural proteins. Viral RNAs were transcribed by T7 RNA polymerase expressed from recombinant vaccinia virus. All plasmids produced similar amounts of viral proteins that were processed identically; however, RNAs were designed either to serve as templates for replication or to contain mutations predicted to prevent RNA replication. The mutations included substitution of the entire PV 5' noncoding region (NCR) with the encephalomyocarditis virus (EMCV) internal ribosomal entry site, thereby deleting the 5'-terminal cloverleaf-like structure, or insertion of three nucleotides in the 3Dpol coding sequence. Production of viral proteins was sufficient to induce the characteristic reorganization of intracellular membranes into heterogeneous-sized vesicles, independent of RNA replication. The vesicles were stably associated with viral RNA only when RNA replication could occur. Nonreplicating RNAs localized to distinct, nonoverlapping regions in the cell, excluded from the viral protein-membrane complexes. The absence of accumulation of positive-strand RNA from both mutated RNAs in transfected cells was documented. In addition, no minus-strand RNA was produced from the EMCV chimeric template RNA in vitro. These data show that the 5'-terminal sequences of PV RNA are essential for initiation of minus-strand RNA synthesis at its 3' end.  相似文献   

12.
We generated a cardiotropic replication-competent chimeric coxsackievirus B3 (CVB3) to express alcohol dehydrogenase (ADH). Although exogenously expressed ADH was found by Western blot analysis, its enzyme function was repressed. To define the factor that inhibits the enzymatic function of ADH, we introduced a site-directed mutation at the second amino acid (MGAQEF···) of the CVB3 VP0 capsid protein, effectively changing glycine to alanine. This glycine is known to be a myristoylation site during viral capsid protein maturation in infected cells. In contrast to the unmodified virus, ADH expression and enzymatic function were readily detectable in the mutated rCVB3-ADH (G2A) virus. While expression of ADH required mutation of the CVB3 VP0 myristoylation site for proper function, another chimeric virus that expresses green fluorescent protein (rCVB3-GFP (G or A)) worked independently of the myristoylation site. Indeed, infected HeLa cells displayed GFP under a fluorescent microscope. These results indicate that the myristoylation site in the VP0 capsid protein inhibited the expression of enzymatically active ADH but not GFP. VP0 myristoylation is dispensable for chimeric CVB3 virus replication.  相似文献   

13.
Amiloride and its derivative 5-(N-ethyl-N-isopropyl)amiloride (EIPA) were previously shown to inhibit coxsackievirus B3 (CVB3) RNA replication in cell culture, with two amino acid substitutions in the viral RNA-dependent RNA polymerase 3D(pol) conferring partial resistance of CVB3 to these compounds (D. N. Harrison, E. V. Gazina, D. F. Purcell, D. A. Anderson, and S. Petrou, J. Virol. 82:1465-1473, 2008). Here we demonstrate that amiloride and EIPA inhibit the enzymatic activity of CVB3 3D(pol) in vitro, affecting both VPg uridylylation and RNA elongation. Examination of the mechanism of inhibition of 3D(pol) by amiloride showed that the compound acts as a competitive inhibitor, competing with incoming nucleoside triphosphates (NTPs) and Mg(2+). Docking analysis suggested a binding site for amiloride and EIPA in 3D(pol), located in close proximity to one of the Mg(2+) ions and overlapping the nucleotide binding site, thus explaining the observed competition. This is the first report of a molecular mechanism of action of nonnucleoside inhibitors against a picornaviral RNA-dependent RNA polymerase.  相似文献   

14.
The role of the 5' nontranslated region in the replication of hepatitis A virus (HAV) was studied by analyzing the translation and replication of chimeric RNAs containing the encephalomyocarditis virus (EMCV) internal ribosome entry segment (IRES) and various lengths (237, 151, or 98 nucleotides [nt]) of the 5'-terminal HAV sequence. Translation of all chimeric RNAs, truncated to encode only capsid protein sequences, occurred with equal efficiency in rabbit reticulocyte lysates and was much enhanced over that exhibited by the HAV IRES. Transfection of FRhK-4 cells with the parental HAV RNA and with chimeric RNA generated a viable virus which was stable over continuous passage; however, more than 151 nt from the 5' terminus of HAV were required to support virus replication. Single-step growth curves of the recovered viruses from the parental RNA transfection and from transfection of RNA containing the EMCV IRES downstream of the first 237 nt of HAV demonstrated replication with similar kinetics and similar yields. When FRhK-4 cells infected with recombinant vaccinia virus producing SP6 RNA polymerase to amplify HAV RNA were transfected with plasmids coding for these viral RNAs or with subclones containing only HAV capsid coding sequences downstream of the parental or chimeric 5' nontranslated region, viral capsid antigens were synthesized from the HAV IRES with an efficiency equal to or greater than that achieved with the EMCV IRES. These data suggest that the inherent translation efficiency of the HAV IRES may not be the major limiting determinant of the slow-growth phenotype of HAV.  相似文献   

15.
Liu Y  Franco D  Paul AV  Wimmer E 《Journal of virology》2007,81(11):5669-5684
Poliovirus (PV) VPg is a genome-linked protein that is essential for the initiation of viral RNA replication. It has been well established that RNA replication is initiated when a molecule of UMP is covalently linked to the hydroxyl group of a tyrosine (Y3) in VPg by the viral RNA polymerase 3D(pol), but it is not yet known whether the substrate for uridylylation in vivo is the free peptide itself or one of its precursors. The aim of this study was to use complementation analyses to obtain information about the true in vivo substrate for uridylylation by 3D(pol). Previously, it was shown that a VPg mutant, in which tyrosine 3 and threonine 4 were replaced by phenylalanine and alanine (3F4A), respectively, was nonviable. We have now tested whether wild-type forms of proteins 3B, 3BC, 3BCD, 3AB, 3ABC, and P3 provided either in trans or in cis could rescue the replication defect of the VPg(3F4A) mutations in the PV polyprotein. Our results showed that proteins 3B, 3BC, 3BCD, and P3 were unable to complement the RNA replication defect in dicistronic PV or dicistronic luciferase replicons in vivo. However, cotranslation of the P3 precursor protein allowed rescue of RNA replication of the VPg(3F4A) mutant in an in vitro cell-free translation-RNA replication system, but only poor complementation was observed when 3BC, 3AB, 3BCD, or 3ABC proteins were cotranslated in the same assay. Interestingly, only protein 3AB but not 3B and 3BC, when provided in cis by insertion of a wild-type 3AB coding sequence between the P2 and P3 domains of the polyprotein, supported the replication of the mutated genome in vivo. Elimination of cleavage between 3A and 3B in the complementing 3AB protein, however, led to a complete lack of RNA replication. Our results suggest that (i) VPg has to be delivered to the replication complex in the form of a large protein precursor (P3) to be fully functional in replication; (ii) the replication complex formed during PV replication in vivo is essentially inaccessible to proteins provided in trans, even if the complementing protein is translated from a different cistron of the same RNA genome; (iii) 3AB is the most likely precursor of VPg; and (iv) Y3 of VPg has an essential function in RNA replication in the context of both VPg and 3AB.  相似文献   

16.
Flock house virus (FHV) is a bipartite, positive-strand RNA insect virus that encapsidates its two genomic RNAs in a single virion. It provides a convenient model system for studying the principles underlying the copackaging of multipartite viral RNA genomes. In this study, we used a baculovirus expression system to determine if the uncoupling of viral protein synthesis from RNA replication affected the packaging of FHV RNAs. We found that neither RNA1 (which encodes the viral replicase) nor RNA2 (which encodes the capsid protein) were packaged efficiently when capsid protein was supplied in trans from nonreplicating RNA. However, capsid protein synthesized in cis from replicating RNA2 packaged RNA2 efficiently in the presence and absence of RNA1. These results demonstrated that capsid protein translation from replicating RNA2 is required for specific packaging of the FHV genome. This type of coupling between genome replication and translation and RNA packaging has not been observed previously. We hypothesize that RNA2 replication and translation must be spatially coordinated in FHV-infected cells to facilitate retrieval of the viral RNAs for encapsidation by newly synthesized capsid protein. Spatial coordination of RNA and capsid protein synthesis may be key to specific genome packaging and assembly in other RNA viruses.  相似文献   

17.
Translation of poliovirion RNA in HeLa S10 extracts resulted in the formation of RNA replication complexes which catalyzed the asymmetric replication of poliovirus RNA. Synthesis of poliovirus RNA was detected in unfractionated HeLa S10 translation reactions and in RNA replication complexes isolated from HeLa S10 translation reactions by pulse-labeling with [32P]CTP. The RNA replication complexes formed in vitro contained replicative-intermediate RNA and were enriched in viral protein 3CD and the membrane-associated viral proteins 2C, 2BC, and 3AB. Genome-length poliovirus RNA covalently linked to VPg was synthesized in large amounts by the replication complexes. RNA replication was highly asymmetric, with predominantly positive-polarity RNA products. Both anti-VPg antibody and guanidine HCl inhibited RNA replication and virus formation in the HeLa S10 translation reactions without affecting viral protein synthesis. The inhibition of RNA synthesis by guanidine was reversible. The reversible nature of guanidine inhibition was used to demonstrate the formation of preinitiation RNA replication complexes in reaction mixes containing 2 mM guanidine HCl. Preinitiation complexes sedimented upon centrifugation at 15,000 x g and initiated RNA replication upon their resuspension in reaction mixes lacking guanidine. Initiation of RNA synthesis by preinitiation complexes did not require active protein synthesis or the addition of soluble viral proteins. Initiation of RNA synthesis by preinitiation complexes, however, was absolutely dependent on soluble HeLa cytoplasmic factors. Preinitiation complexes also catalyzed the formation of infectious virus in reaction mixes containing exogenously added capsid proteins. The titer of infectious virus produced in such trans-encapsidation reactions reached 4 x 10(7) PFU/ml. The HeLa S10 translation-RNA replication reactions represent an efficient in vitro system for authentic poliovirus replication, including protein synthesis, polyprotein processing, RNA replication, and virus assembly.  相似文献   

18.
Recent studies have demonstrated that genomes of poliovirus with deletions in the P1 (capsid) region contain the necessary viral information for RNA replication. To test the effects of the substitution of foreign genes on RNA replication and protein expression, chimeric human immunodeficiency virus type 1 (HIV-1)-poliovirus genomes were constructed in which regions of the gag, pol, or env gene of HIV-1 were substituted for regions of the P1 gene in the infectious cDNA clone of type 1 Mahoney poliovirus. The HIV-1 genes were inserted between nucleotides 1174 and 2956 of the poliovirus cDNA so that the translational reading frame was maintained between the HIV-1 genes and the remaining poliovirus genes. The chimeric genomes were positioned downstream from a T7 RNA polymerase promoter and transcribed in vitro by using T7 RNA polymerase, and the RNA was transfected into HeLa cells. A Northern (RNA blot) analysis of the RNA from transfected cells demonstrated the appropriate-size RNA, corresponding to the full-length chimeric genomes, which increased over time. Immunoprecipitation with antibodies specific for poliovirus RNA polymerase or sera from AIDS patients demonstrated the expression of the poliovirus RNA polymerase and HIV-1 proteins as fusions with the poliovirus P1 protein. The expression of the HIV-1-poliovirus P1 fusion protein was dependent upon an intact RNA polymerase gene, indicating that RNA replication was required for efficient expression. A pulse-chase analysis of the protein expression from the chimeric genomes demonstrated the initial rapid proteolytic processing of the polyprotein from the chimeric genomes to give HIV-1-poliovirus P1 fusion protein in transfected cells; the HIV-1 gag-P1 and HIV-1 pol-P1 fusion proteins exhibited a greater intracellular stability than the HIV-1 env-P1 fusion protein. Finally, superinfection with wild-type poliovirus of HeLa cells which had been transfected with the chimeric genomes did not significantly affect the expression of chimeric fusion protein. The results are discussed in the context of poliovirus RNA replication and demonstrate the feasibility of using poliovirus genomes (minireplicons) as novel vectors for expression of foreign proteins.  相似文献   

19.
20.
Our previous study of coxsackievirus B3 (CVB3)‐induced unfolded protein responses (UPR) found that overexpression of ATF6a enhances CVB3 VP1 capsid protein production and increases viral particle formation. These findings implicate that ATF6a signalling benefits CVB3 replication. However, the mechanism by which ATF6a signalling is transduced to promote virus replication is unclear. In this study, using a Tet‐On inducible ATF6a HeLa cell line, we found that ATF6a signalling downregulated the protein expression of the endoplasmic reticulum (ER) degradation‐enhancing α‐mannosidase‐like protein 1 (EDEM1), resulting in accumulation of CVB3 VP1 protein; in contrast, expression of a dominant negative ATF6a had the opposite effect. Furthermore, we found that EDEM1 was cleaved by both CVB3 protease 3C and virus‐activated caspase and subsequently degraded via the ubiquitin‐proteasome pathway. However, overexpression of EDEM1 caused VP1 degradation, likely via a glycosylation‐independent and ubiquitin‐lysosome pathway. Finally, we demonstrated that CRISPR/Cas9‐mediated knockout of EDEM1 increased VP1 accumulation and thus CVB3 replication. This is the first study to report the ER protein quality control of non‐enveloped RNA virus and reveals a novel mechanism by which CVB3 evades host ER quality control pathways through cleavage and degradation of the UPR target gene EDEM1, to ultimately benefit its own replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号