首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The human poly(rC)-binding protein (PCBP) 2 is known to interact with enteroviral RNA. Here, the interaction of PCBP2 with RNA target sequences at the 5′ end of the coxsackievirus B3 genome was investigated. Using the electrophoretic mobility shift assay and the yeast three-hybrid system, a short oligo(rC) tract connecting cloverleaf and IRES is demonstrated to contribute to PCBP2 binding. This oligo(rC) tract is conserved among entero- and rhinoviruses. In absence of the viral 3C proteinase, an extended cloverleaf RNA (nt 1-105) containing the oligo(rC) tract interacts with PCBP2 whereas the cloverleaf (nt 1-87) lacking the oligo(rC) tract does not. In the presence of 3C proteinase, cloverleaf RNA (1-87) interacts with PCBP2.  相似文献   

2.
Stemloop D (SLD) of the 5' cloverleaf RNA is the cognate ligand of the coxsackievirus B3 (CVB3) 3C proteinase (3Cpro). Both are indispensable components of the viral replication initiation complex. SLD is a structurally autonomous subunit of the 5' cloverleaf. The SLD structure was solved by NMR spectroscopy to an rms deviation of 0.66 A (all heavy atoms). SLD contains a novel triple pyrimidine mismatch motif with a central Watson-Crick type C:U pair. SLD is capped by an apical uCACGg tetraloop adopting a structure highly similar to stable cUNCGg tetraloops. Binding of CVB3 3Cpro induces changes in NMR spectra for nucleotides adjacent to the triple pyrimidine mismatch and of the tetraloop implying them as sites of specific SLD:3Cpro interaction. The binding of 3Cpro to SLD requires the integrity of those structural elements, strongly suggesting that 3Cpro recognizes a structural motif instead of a specific sequence.  相似文献   

3.
Adult human enteroviral heart disease is often associated with the detection of enteroviral RNA in cardiac muscle tissue in the absence of infectious virus. Passage of coxsackievirus B3 (CVB3) in adult murine cardiomyocytes produced CVB3 that was noncytolytic in HeLa cells. Detectable but noncytopathic CVB3 was also isolated from hearts of mice inoculated with CVB3. Sequence analysis revealed five classes of CVB3 genomes with 5' termini containing 7, 12, 17, 30, and 49 nucleotide deletions. Structural changes (assayed by chemical modification) in cloned, terminally deleted 5'-nontranslated regions were confined to the cloverleaf domain and localized within the region of the deletion, leaving key functional elements of the RNA intact. Transfection of CVB3 cDNA clones with the 5'-terminal deletions into HeLa cells generated noncytolytic virus (CVB3/TD) which was neutralized by anti-CVB3 serum. Encapsidated negative-strand viral RNA was detected using CsCl-purified CVB3/TD virions, although no negative-strand virion RNA was detected in similarly treated parental CVB3 virions. The viral protein VPg was detected on CVB3/TD virion RNA molecules which terminate in 5' CG or 5' AG. Detection of viral RNA in mouse hearts from 1 week to over 5 months postinoculation with CVB3/TD demonstrated that CVB3/TD virus strains replicate and persist in vivo. These studies describe a naturally occurring genomic alteration to an enteroviral genome associated with long-term viral persistence.  相似文献   

4.
A chimeric poliovirus type 1 (PV1) genome was constructed in which the 3D RNA polymerase (3D(pol)) coding sequences were replaced with those from coxsackievirus B3 (CVB3). No infectious virus was produced from HeLa cells transfected with the chimeric RNA. Processing of the PV1 capsid protein precursor was incomplete, presumably due to inefficient recognition of the P1 protein substrate by the chimeric 3CD proteinase containing CVB3 3D sequences. The ability of the chimeric RNA to replicate in the absence of capsid formation was measured after replacement of the P1 region with a luciferase reporter gene. No RNA synthesis was detected, despite efficient production of enzymatically active 3D(pol) from the 3D portion of the chimeric 3CD. The chimeric 3CD protein was unable to efficiently bind to the cloverleaf-like structure (CL) at the 5' end of PV1 RNA, which has been demonstrated previously to be required for viral RNA synthesis. The CVB3 3CD protein bound the PV1 CL as well as PV1 3CD. An additional chimeric PV1 RNA that contained CVB3 3CD sequences also failed to produce virus after transfection. Since processing of PV1 capsid protein precursors by the CVB3 3CD was again incomplete, a luciferase-containing replicon was also analyzed for RNA replication. The 3CD chimera replicated at 33 degrees C, but not at 37 degrees C. Replacement of the PV1 5'-terminal CL with that of CVB3 did not rescue the temperature-sensitive phenotype. Thus, there is an essential interaction(s) between 3CD and other viral P2 or P3 protein products required for efficient RNA replication which is not fully achieved between proteins from the two different members of the same virus genus.  相似文献   

5.
A cloverleaf structure at the 5' terminus of poliovirus RNA binds viral and cellular proteins. To examine the role of the cloverleaf in poliovirus replication, we determined how cloverleaf mutations affected the stability, translation and replication of poliovirus RNA in HeLa S10 translation-replication reactions. Mutations within the cloverleaf destabilized viral RNA in these reactions. Adding a 5' 7-methyl guanosine cap fully restored the stability of the mutant RNAs and had no effect on their translation. These results indicate that the 5' cloverleaf normally protects uncapped poliovirus RNA from rapid degradation by cellular nucleases. Preinitiation RNA replication complexes formed with the capped mutant RNAs were used to measure negative-strand synthesis. Although the mutant RNAs were stable and functional mRNAs, they were not active templates for negative-strand RNA synthesis. Therefore, the 5' cloverleaf is a multifunctional cis-acting replication element required for the initiation of negative-strand RNA synthesis. We propose a replication model in which the 5' and 3' ends of viral RNA interact to form a circular ribonucleoprotein complex that regulates the stability, translation and replication of poliovirus RNA.  相似文献   

6.
Poly(rC) binding proteins mediate poliovirus mRNA stability   总被引:2,自引:2,他引:0       下载免费PDF全文
The 5'-terminal 88 nt of poliovirus RNA fold into a cloverleaf RNA structure and form ribonucleoprotein complexes with poly(rC) binding proteins (PCBPs; AV Gamarnik, R Andino, RNA, 1997, 3:882-892; TB Parsley, JS Towner, LB Blyn, E Ehrenfeld, BL Semler, RNA, 1997, 3:1124-1134). To determine the functional role of these ribonucleoprotein complexes in poliovirus replication, HeLa S10 translation-replication reactions were used to quantitatively assay poliovirus mRNA stability, poliovirus mRNA translation, and poliovirus negative-strand RNA synthesis. Ribohomopoly(C) RNA competitor rendered wild-type poliovirus mRNA unstable in these reactions. A 5'-terminal 7-methylguanosine cap prevented the degradation of wild-type poliovirus mRNA in the presence of ribohomopoly(C) competitor. Ribohomopoly(A), -(G), and -(U) did not adversely affect poliovirus mRNA stability. Ribohomopoly(C) competitor RNA inhibited the translation of poliovirus mRNA but did not inhibit poliovirus negative-strand RNA synthesis when poliovirus replication proteins were provided in trans using a chimeric helper mRNA possessing the hepatitis C virus IRES. A C24A mutation prevented UV crosslinking of PCBPs to 5' cloverleaf RNA and rendered poliovirus mRNA unstable. A 5'-terminal 7-methylguanosine cap blocked the degradation of C24A mutant poliovirus mRNA. The C24A mutation did not inhibit the translation of poliovirus mRNA nor diminish viral negative-strand RNA synthesis relative to wild-type RNA. These data support the conclusion that poly(rC) binding protein(s) mediate the stability of poliovirus mRNA by binding to the 5'-terminal cloverleaf structure of poliovirus mRNA. Because of the general conservation of 5' cloverleaf RNA sequences among picornaviruses, including C24 in loop b of the cloverleaf, we suggest that viral mRNA stability of polioviruses, coxsackieviruses, echoviruses, and rhinoviruses is mediated by interactions between PCBPs and 5' cloverleaf RNA.  相似文献   

7.
Poliovirus interactions with host cells were investigated by studying the formation of ribonucleoprotein complexes at the 3' end of poliovirus negative-strand RNA which are presumed to be involved in viral RNA synthesis. It was previously shown that two host cell proteins with molecular masses of 36 and 38 kDa bind to the 3' end of viral negative-strand RNA at approximately 3 to 4 h after infection. We tested the hypothesis that preexisting cellular proteins are modified during the course of infection and are subsequently recruited to play a role in viral replication. It was demonstrated that the 38-kDa protein, either directly or indirectly, is the product of processing by poliovirus 3CD/3C proteinase. Only the modified 38-kDa protein, not its precursor protein, has a high affinity for binding to the 3' end of viral negative-strand RNA. This modification depends on proteolytically active proteinase, and a direct correlation between the levels of 3CD proteinase and the 38-kDa protein was demonstrated in infected tissue culture cells. The nucleotide (nt) 5-10 region (positive-strand numbers) of poliovirus negative-strand RNA is important for binding of the 38-kDa protein. Deletion of the nt 5-10 region in full-length, positive-strand RNA renders the RNA noninfectious in transfection experiments. These results suggest that poliovirus 3CD/3C proteinase processes a cellular protein which then plays an essential role during the viral life cycle.  相似文献   

8.
Genome replication of poliovirus, as yet unsolved, involves numerous viral polypeptides that arise from proteolysis of the viral polyprotein. One of these proteins is 3AB, an RNA-binding protein with multiple functions, that serves also as the precursor for the genome-linked protein VPg (= 3B). Eight clustered charged amino acid-to-alanine mutants in the 3AB coding region of poliovirus were constructed and analyzed, together with three additional single-amino acid exchange mutants in VPg, for viral phenotypes. All mutants expressed severe inhibition in RNA synthesis, but none were temperature sensitive (ts). The 3AB polypeptides of mutants with a lethal phenotype were overexpressed in Escherichia coli, purified to near homogeneity, and studied with respect to four functions: (1) ribonucleoprotein complex formation with 3CDpro and the 5'-terminal cloverleaf of the poliovirus genome; (2) binding to the genomic and negative-sense RNA; (3) stimulation of 3CDpro cleavage; and (4) stimulation of RNA polymerase activity of 3Dpol. The results have allowed mapping of domains important for RNA binding and the formation of certain protein-protein complexes, and correlation of these processes with essential steps in viral genome replication.  相似文献   

9.
R Andino  G E Rieckhof  D Baltimore 《Cell》1990,63(2):369-380
The existence of a computer-predicted cloverleaf structure for the first 100 nucleotides at the 5' end of poliovirus RNA was verified by site-directed mutagenesis and by chemical and RNAase probing. Mutations that modified the cloverleaf in the positive strand but not the negative strand were lethal to the virus. This RNA cloverleaf structure binds a cellular protein and the viral proteins 3Cpro and 3Dpol. Mutations in specific regions of the RNA cloverleaf prevented this binding. Mutations in either 3Cpro or the RNA that disrupted ribonucleoprotein complex formation inhibited virus growth and selectively affected positive strand RNA accumulation. Phenotypic reversion of these mutations restored the ability to form the complex. Thus, a cloverleaf structure in poliovirus RNA plays a central role in organizing viral and cellular proteins involved in positive strand production.  相似文献   

10.
The 5′-terminal cloverleaf (CL)-like RNA structures are essential for the initiation of positive- and negative-strand RNA synthesis of entero- and rhinoviruses. SLD is the cognate RNA ligand of the viral proteinase 3C (3Cpro), which is an indispensable component of the viral replication initiation complex. The structure of an 18mer RNA representing the apical stem and the cGUUAg D-loop of SLD from the first 5′-CL of BEV1 was determined in solution to a root-mean-square deviation (r.m.s.d.) (all heavy atoms) of 0.59 Å (PDB 1Z30). The first (antiG) and last (synA) nucleotide of the D-loop forms a novel ‘pseudo base pair’ without direct hydrogen bonds. The backbone conformation and the base-stacking pattern of the cGUUAg-loop, however, are highly similar to that of the coxsackieviral uCACGg D-loop (PDB 1RFR) and of the stable cUUCGg tetraloop (PDB 1F7Y) but surprisingly dissimilar to the structure of a cGUAAg stable tetraloop (PDB 1MSY), even though the cGUUAg BEV D-loop and the cGUAAg tetraloop differ by 1 nt only. Together with the presented binding data, these findings provide independent experimental evidence for our model [O. Ohlenschläger, J. Wöhnert, E. Bucci, S. Seitz, S. Häfner, R. Ramachandran, R. Zell and M. Görlach (2004) Structure, 12, 237–248] that the proteinase 3Cpro recognizes structure rather than sequence.  相似文献   

11.
The poly(rC) binding protein (PCBP) is a cellular protein required for poliovirus replication. PCBP specifically interacts with two domains of the poliovirus 5' untranslated region (5'UTR), the 5' cloverleaf structure, and the stem-loop IV of the internal ribosome entry site (IRES). Using footprinting analysis and site-directed mutagenesis, we have mapped the RNA binding site for this cellular protein within the stem-loop IV domain. A C-rich sequence in a loop at the top of this large domain is required for PCBP binding and is crucial for viral translation. PCBP binds to stem-loop IV RNA with six-times-higher affinity than to the 5' cloverleaf structure. However, the binding of the viral protein 3CD (precursor of the viral protease 3C and the viral polymerase 3D) to the cloverleaf RNA dramatically increases the affinity of PCBP for this RNA element. The viral protein 3CD binds to the cloverleaf RNA but does not interact directly with stem-loop IV nor with other RNA elements of the viral IRES. Our results indicate that the interactions of PCBP with the poliovirus 5'UTR are modulated by the viral protein 3CD.  相似文献   

12.
Chimeric poliovirus RNAs, possessing the 5' nontranslated region (NTR) of hepatitis C virus in place of the 5' NTR of poliovirus, were used to examine the role of the poliovirus 5' NTR in viral replication. The chimeric viral RNAs were incubated in cell-free reaction mixtures capable of supporting the sequential translation and replication of poliovirus RNA. Using preinitiation RNA replication complexes formed in these reactions, we demonstrated that the 3' NTR of poliovirus RNA was insufficient, by itself, to recruit the viral replication proteins required for negative-strand RNA synthesis. The 5'-terminal cloverleaf of poliovirus RNA was required in cis to form functional preinitiation RNA replication complexes capable of uridylylating VPg and initiating the synthesis of negative-strand RNA. These results are consistent with a model in which the 5'-terminal cloverleaf and 3' NTRs of poliovirus RNA interact via temporally dynamic ribonucleoprotein complexes to coordinately mediate and regulate the sequential translation and replication of poliovirus RNA.  相似文献   

13.
The poly(rC)-binding proteins (PCBP1 and PCBP2) are RNA-binding proteins whose RNA recognition motifs are composed of three K homology (KH) domains. These proteins are involved in both the stabilization and translational regulation of several cellular and viral RNAs. PCBP1 and PCBP2 specifically interact with both the 5'-element known as the cloverleaf structure and the large stem-loop IV RNA of the poliovirus 5'-untranslated region. We have found that the first KH domain of PCBP2 (KH1) specifically interacts with the viral RNAs, and together with viral protein 3CD, KH1 forms a high affinity ternary ribonucleoprotein complex with the cloverleaf RNA, resembling the full-length PCBP protein. Furthermore, KH1 acts as a dominant-negative mutant to inhibit translation from a poliovirus reporter gene in both Xenopus laevis oocytes and HeLa cell in vitro translation extracts.  相似文献   

14.
Kempf BJ  Barton DJ 《Journal of virology》2008,82(12):5835-5846
Poliovirus (PV) mRNA is unusual because it possesses a 5'-terminal monophosphate rather than a 5'-terminal cap. Uncapped mRNAs are typically degraded by the 5' exonuclease XRN1. A 5'-terminal cloverleaf RNA structure interacts with poly(rC) binding proteins (PCBPs) to protect uncapped PV mRNA from 5' exonuclease (K. E. Murray, A. W. Roberts, and D. J. Barton, RNA 7:1126-1141, 2001). In this study, we examined de novo polysome formation using HeLa cell-free translation-replication reactions. PV mRNA formed polysomes coordinate with the time needed for ribosomes to traverse the viral open reading frame (ORF). Nascent PV polypeptides cofractionated with viral polysomes, while mature PV proteins were released from the polysomes. Alterations in the size of the PV ORF correlated with alterations in the size of polysomes with ribosomes present every 250 to 500 nucleotides of the ORF. Eukaryotic initiation factor 4GI (eIF4GI) was cleaved rapidly as viral polysomes assembled and the COOH-terminal portion of eIF4GI cofractionated with viral polysomes. Poly(A) binding protein, along with PCBP 1 and 2, also cofractionated with viral polysomes. A C24A mutation that inhibits PCBP-5'-terminal cloverleaf RNA interactions inhibited the formation and stability of nascent PV polysomes. Kinetic analyses indicated that the PCBP-5' cloverleaf RNA interaction was necessary to protect PV mRNA from 5' exonuclease immediately as ribosomes initially traversed the viral ORF, before viral proteins could alter translation factors within nascent polysomes or contribute to ribonucleoprotein complexes at the termini of the viral mRNA.  相似文献   

15.
Messenger RNA is recruited to the eukaryotic ribosome by a complex including the eukaryotic initiation factor (eIF) 4E (the cap‐binding protein), the scaffold protein eIF4G and the RNA helicase eIF4A. To shut‐off host–cell protein synthesis, eIF4G is cleaved during picornaviral infection by a virally encoded proteinase; the structural basis of this reaction and its stimulation by eIF4E is unclear. We have structurally and biochemically investigated the interaction of purified foot‐and‐mouth disease virus (FMDV) leader proteinase (Lbpro), human rhinovirus 2 (HRV2) 2A proteinase (2Apro) and coxsackievirus B4 (CVB4) 2Apro with purified eIF4GII, eIF4E and the eIF4GII/eIF4E complex. Using nuclear magnetic resonance (NMR), we completed 13C/15N sequential backbone assignment of human eIF4GII residues 551–745 and examined their binding to murine eIF4E. eIF4GII551–745 is intrinsically unstructured and remains so when bound to eIF4E. NMR and biophysical techniques for determining stoichiometry and binding constants revealed that the papain‐like Lbpro only forms a stable complex with eIF4GII551–745 in the presence of eIF4E, with KD values in the low nanomolar range; Lbpro contacts both eIF4GII and eIF4E. Furthermore, the unrelated chymotrypsin‐like 2Apro from HRV2 and CVB4 also build a stable complex with eIF4GII/eIF4E, but with KD values in the low micromolar range. The HRV2 enzyme also forms a stable complex with eIF4E; however, none of the proteinases tested complex stably with eIF4GII alone. Thus, these three picornaviral proteinases have independently evolved to establish distinct triangular heterotrimeric protein complexes that may actively target ribosomes involved in mRNA recruitment to ensure efficient host cell shut‐off.  相似文献   

16.
J Herold  R Andino 《Molecular cell》2001,7(3):581-591
The mechanisms and factors involved in the replication of positive stranded RNA viruses are still unclear. Using poliovirus as a model, we show that a long-range interaction between ribonucleoprotein (RNP) complexes formed at the ends of the viral genome is necessary for RNA replication. Initiation of negative strand RNA synthesis requires a 3' poly(A) tail. Strikingly, it also requires a cloverleaf-like RNA structure located at the other end of the genome. An RNP complex formed around the 5' cloverleaf RNA structure interacts with the poly(A) binding protein bound to the 3' poly(A) tail, thus linking the ends of the viral RNA and effectively circularizing it. Formation of this circular RNP complex is required for initiation of negative strand RNA synthesis. RNA circularization may be a general replication mechanism for positive stranded RNA viruses.  相似文献   

17.
To study the role of the RNA polymerase domain (3D) in the proteinase substrate recognition and RNA binding properties of poliovirus polypeptide 3CD, we generated recombinant 3C and 3CD polypeptides and purified them to near homogeneity. By using these purified proteins in in vitro cleavage assays with structural and non-structural viral polyprotein substrates, we found that 3CD processes the poliovirus structural polyprotein precursor (P1) 100 to 1000 times more efficiently than 3C processes P1. We also found that trans-cleavage of other 3CD molecules and sites within the non-structural P3 precursor is more efficiently mediated by 3CD than 3C. However, 3C and 3CD appear to be equally efficient in the processing of a non-structural polyprotein precursor, 2C3AB. Four mutated 3CD polyproteins with site-directed lesions in the 3D domain of the proteinase were analyzed for their ability to process viral polyprotein precursors and to form a ternary complex with RNA sequences encoded in the 5' terminus of the viral genome. Analysis of mutated 3CD polypeptides revealed that specific mutations within the 3D amino acid sequences of 3CD confer differential effects on 3CD activity. All four mutated 3CD proteins tested were able to process the P1 structural precursor with wild type or near wild type efficiency. However, three of the mutated enzymes demonstrated an impaired ability to process some sites within the P3 non-structural precursor, relative to wild type 3CD. One of the mutant 3CD polypeptides, 3CD-3DK127A, also displayed a defect in its ability to form a ternary ribonucleoprotein complex with poliovirus 5' RNA sequences.  相似文献   

18.
The first step in poliovirus (PV) RNA synthesis is the covalent linkage of UMP to the terminal protein VPg. This reaction can be studied in vitro with two different assays. The simpler assay is based on a poly(A) template and requires synthetic VPg, purified RNA polymerase 3D(pol), UTP, and a divalent cation. The other assay uses specific viral sequences [cre(2C)] as a template for VPg uridylylation and requires the addition of proteinase 3CD(pro). Using one or both of these assays, we analyzed the VPg specificities and metal requirements of the uridylylation reactions. We determined the effects of single and double amino acid substitutions in VPg on the abilities of the peptides to serve as substrates for 3D(pol). Mutations in VPg, which interfered with uridylylation in vitro, were found to abolish viral growth. A chimeric PV containing the VPg of human rhinovirus 14 (HRV14) was viable, but substitutions of HRV2 and HRV89 VPgs for PV VPg were lethal. Of the three rhinoviral VPgs tested, only the HRV14 peptide was found to function as a substrate for PV1(M) 3D(pol) in vitro. We also examined the metal specificity of the VPg uridylylation reaction on a poly(A) template. Our results show a strong preference of the RNA polymerase for Mn(2+) as a cofactor compared to Mg(2+) or other divalent cations.  相似文献   

19.
The 5'-cloverleaf of the picornavirus RNA genome is essential for the assembly of a ribonucleoprotein replication complex. Stem-loop D (SLD) of the cloverleaf is the recognition site for the multifunctional viral protein 3Cpro. This protein is the principal viral protease, and its interaction with SLD also helps to position the viral RNA-dependent RNA polymerase (3Dpol) for replication. Human rhinovirus-14 (HRV-14) is distinct from the majority of picornaviruses in that its SLD forms a cUAUg triloop instead of the more common uYACGg tetraloop. This difference appears to be functionally significant, as 3Cpro from tetraloop-containing viruses cannot bind the HRV-14 SLD. We have determined the solution structure of the HRV-14 SLD using NMR spectroscopy. The structure is predominantly an A-form helix, but with a central pyrimidine-pyrimidine base-paired region and a significantly widened major groove. The stabilizing hydrogen bonding present in the uYACGg tetraloop was not found in the cUAUg triloop. However, the triloop uses different structural elements to present a largely similar surface: sequence and underlying architecture are not conserved, but key aspects of the surface structure are. Important structural differences do exist, though, and may account for the observed cross-isotype binding specificities between 3Cpro and SLD.  相似文献   

20.
We had previously demonstrated that a cellular protein specifically interacts with the 3' end of poliovirus negative-strand RNA. We now report the identity of this protein as heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Formation of an RNP complex with poliovirus RNA was severely impaired by substitution of a lysine, highly conserved among vertebrates, with glutamine in the RNA recognition motif (RRM) of recombinant hnRNP C1, suggesting that the binding is mediated by the RRM in the protein. We have also shown that in a glutathione S-transferase (GST) pull-down assay, GST/hnRNP C1 binds to poliovirus polypeptide 3CD, a precursor to the viral RNA-dependent RNA polymerase, 3D(pol), as well as to P2 and P3, precursors to the nonstructural proteins. Truncation of the auxiliary domain in hnRNP C1 (C1DeltaC) diminished these protein-protein interactions. When GST/hnRNP C1DeltaC was added to in vitro replication reactions, a significant reduction in RNA synthesis was observed in contrast to reactions supplemented with wild-type fusion protein. Indirect functional depletion of hnRNP C from in vitro replication reactions, using poliovirus negative-strand cloverleaf RNA, led to a decrease in RNA synthesis. The addition of GST/hnRNP C1 to the reactions rescued RNA synthesis to near mock-depleted levels. Furthermore, we demonstrated that poliovirus positive-strand and negative-strand RNA present in cytoplasmic extracts prepared from infected HeLa cells coimmunoprecipitated with hnRNP C1/C2. Our findings suggest that hnRNP C1 has a role in positive-strand RNA synthesis in poliovirus-infected cells, possibly at the level of initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号