首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Summary Attempts were made to produce intergeneric hybrids between Enarthrocarpus lyratus, a wild species, and several species of crop brassicas: B. campestris, B. nigra, B. oleracea, B. juncea, B. napus and B. Carinata. Hybrids using E. lyratus as female parent were realized by means of embryo rescue in four combinations — E. lyratus x B. campestris, E. lyratus x B. oleracea, E. lyratus x B. napus and E. lyratus x B. carinata. Reciprocal crosses showed strong pre-fertilization barriers and yielded no hybrids except in one combination — B. Juncea x E. Lyratus — in which a single hybrid could be realized. All of the hybrids were multiplied in vitro through the multiplication of axillary shoots. Morphological and cytological studies confirmed hybridity. All hybrids were completely pollen sterile except for E. lyratus x B. carinata, which showed 2% pollen fertility. Attempts to double the chromosome number through the in vitro application of colchicine to axillary meristems of F1 hybrids were successful in only one hybrid, E. lyratus x B. oleracea. Cytological studies of the hybrids indicated the presence of a partial homology between the genomes of E. lyratus and crop brassicas. Backcross progenies were raised from all of the five F1 hybrids to develop malesterile alloplasmic lines.  相似文献   

2.
Intergeneric hybrids were produced between D. erucoides (), a wild species, and four cultivated species of Brassica, B. campestris, B. juncea, B. napus and B. oleracea, through embryo rescue. The hybrid nature of these plants was confirmed through morphological and cytological studies. Backcross pollinations with the pollen of the respective cultivars yielded BC progenies in the hybrids D. erucoides x B. juncea and D. erucoides x B. napus but not in D. erucoides x B. campestris and D. erucoides x B. oleracea. The hybrid D. erucoides x B. campestris was also used as a bridge species and crossed with B. juncea to raise the hybrid and backcross progenies. F2 progenies were more amenable than f1 hybrids for raising backcross progenies. Although D. erucoides is considered to be a close relative of B. campestris and B. oleracea, incompatibility barriers of this species with different cultivars do not reflect this relationship.  相似文献   

3.
Summary Attempts were made to obtain intergeneric hybrids between Diplotaxis siifolia, a wild species, and cultivars of Brassica (B. campestris, B. juncea, and B. napus). The crosses showed unilateral incompatibility. When the wild species was used as female parent, pollen germination and pollen tube growth were normal, but hybrid seeds aborted due to post-fertilization barriers. Reciprocal crosses (cultivars as female parent) showed strong pre-fertilization barriers; although pollen grains showed germination, pollen tubes failed to enter the stigma. Hybrids were realized in two of the crosses, D. siifolia x B. juncea and D. siifolia x B. napus, through ovary culture. The hybrids were multiplied in vitro by multiplication of axillary shoots, or somatic embryogenesis. Detailed studies were carried out on the hybrid D. siifolia x B. juncea. F1 hybrids had shrivelled anthers and were pollen sterile. Amphiploids of this hybrid showed 60% pollen fertility and produced seeds upon self-pollination as well as backcross pollination with the pollen of B. juncea.  相似文献   

4.
Summary Intergeneric hybrids were produced between Diplotaxis siettiana and Brassica campestris through embryo rescue. The hybrids were completely pollen sterile and backcrosses with pollen of B. campestris did not yield any seeds. Induction of colchiploidy restored pollen fertility and backcross pollinations yielded viable seeds. Cytological details of the hybrid, amphidiploid and backcross progenies were studied. Both pollen-sterile and pollen-fertile plants have been obtained in backcross 2 progeny. This hybrid (D. siettiana x B. campestris) was used as a bridge cross to transfer the cytoplasm of D. Siettiana to two other incompatible cultivars of BrassicaB. juncea and B. napus. Pollinations of the amphidiploid (D. siettiana x B. campestris, 2n = 36) with pollen of B. juncea/B. napus readily produced seeds without embryo rescue. These hybrids were grown to flowering and their cytological details were studied. Seeds have been produced from backcross pollinations of both these hybrids with the pollen of the respective cultivars. The results clearly show the feasibility of producing alloplasmic lines in all the three oilseed brassicas.  相似文献   

5.
The persistence and stability of a transgene encoding a Bacillus thuringiensis (Bt) Cry1Ac insecticidal protein was investigated in hybrids between crop Brassica napus and a recurrent wild Brassica juncea population. Interspecific hybrids (F1) and backcross progenies (BC1, BC2) containing green fluorescent protein (GFP) and Bt genes were successfully produced in the greenhouse. Stable Bt toxin levels were found in hybrid and advanced backcross progenies formed in wild B. juncea. Bt Cry1Ac concentration was significantly lower in BC2 plants than in transgenic B. napus, F1, BC1, while no significant differences were detected among the latter three plant genotypes. A GFP marker gene was used as a scorable marker and indicator of Bt transgene expression. GFP fluorescence intensity was significantly correlated with Bt Cry1Ac concentration at the flowering stage and the pod formation stage in both transgenic oilseed rape hybrids and backcrossed progenies (BC1, BC2). It was demonstrated that GFP was a suitable marker for Bt protein in the backcross of B. juncea, which could facilitate the detection of gene flow and is useful in biosafety management.  相似文献   

6.
Four successive reciprocal backcrosses between F1 (obtained from wild Brassica juncea as maternal plants and transgenic glyphosate- or glufosinate-tolerant oilseed rape, B. napus, as paternal plants) or subsequent herbicide-tolerant backcross progenies and wild B. juncea were achieved by hand pollination to assess potential transgene flow. The third and forth reciprocal backcrosses produced a number of seeds per silique similar to that of self-pollinated wild B. juncea, except in plants with glufosinate-tolerant backcross progeny used as maternal plants and wild B. juncea as paternal plants, which produced fewer seeds per silique than did self-pollinated wild B. juncea. Germination percentages of reciprocal backcross progenies were high and equivalent to those of wild B. juncea. The herbicide-tolerant first reciprocal backcross progenies produced fewer siliques per plant than did wild B. juncea, but the herbicide-tolerant second or third reciprocal backcross progenies did not differ from the wild B. juncea in siliques per plant. The herbicide-tolerant second and third reciprocal backcross progenies produced an amount of seeds per silique similar to that of wild B. juncea except for with the glufosinate-tolerant first and second backcross progeny used as maternal plants and wild B. juncea as paternal plants. In the presence of herbicide selection pressure, inheritance of the glyphosate-tolerant transgene was stable across the second and third backcross generation, whereas the glufosinate-tolerant transgene was maintained, despite a lack of stabilized introgression. The occurrence of fertile, transgenic weed-like plants after only three crosses (F1, first backcross, second backcross) suggests a potential rapid spread of transgenes from oilseed rape into its wild relative wild B. juncea. Transgene flow from glyphosate-tolerant oilseed rape might be easier than that from glufosinate-tolerant oilseed rape to wild B. juncea. The original insertion site of the transgene could affect introgression.  相似文献   

7.
We have examined the inheritance of 20 rapeseed (Brassica napus)-specific RAPD (randomly amplified polymorphic DNA) markers from transgenic, herbicide-tolerant rapeseed in 54 plants of the BC1 generation from the cross B. junceax(B. junceaxB. napus). Hybridization between B. juncea and B. napus, with B. juncea as the female parent, was successful both in controlled crosses and spontaneously in the field. The controlled backcrossing of selected hybrids to B. juncea, again with B. juncea as the female parent, also resulted in many seeds. The BC1 plants contained from 0 to 20 of the rapeseed RAPD markers, and the frequency of inheritance of individual RAPD markers ranged from 19% to 93%. The transgene was found in 52% of the plants analyzed. Five synteny groups of RAPD markers were identified. In the hybrids pollen fertility was 0–28%. The hybrids with the highest pollen fertility were selected as male parents for backcrossing, and pollen fertility in the BC1 plants was improved (24–90%) compared to that of the hybrids.  相似文献   

8.
For the transfer of genes from B. tournefortii (TT) to the allotetraploid oilseed brassicas, B. juncea AABB, B. carinata BBCC and B. napus AACC, B. tournefortii was first crossed with the three basic diploid species, B. campestris (AA), B. nigra (BE) and B. oleracea (CC), to produce the allodiploids TA, TB and TC. These were tetraploidized by colchicine treatment to produce the allotetraploids TTAA, TTBB and TTCC, which were further crossed with B. juncea and B. napus to produce three-genome hybrids with substitution-type genomic configurations: TACC, TBAA and TCAA. These hybrids along with another hybrid TCBB produced earlier, the three allodiploids, their allotetraploids and the four diploid parent species were studied for their male meiotic behaviour. The diploid parent and the allotetraploids (TTAA, TTBB and TTCC) showed regular meiosis although the pollen viability was generally low in the allotetraploids. In the allodiploids (TA, TB and TC) only some end-to-end associations were observed without any clearly discernible chiasmata or exchange points. Chromosomes involved in end-to-end associations were randomly distributed at the metaphase/anaphase-I stages. In contrast, the three-genome hybrids (TACC, TBAA, TCAA and TCBB) showed normal bivalents whose number exceeded the expected bivalent values. Bivalents arising out of homoeologous pairing were indistinguishable from normal pairs by their disjunction pattern but could be distinguished on the basis of the heteromorphy of the homoeologous chromosomes. The three-genome hybrids could be backcrossed to allotetraploid oilseed brassicas as they had some fertility. In contrast, the allodiploids could neither be selfed nor back-crossed. On the basis of their meiotic stability, in terms of more pronounced homoeologous pairing and fertility for backcrossing, the three-genome configurations provide the best possible situation for the introgression of alien genes from the secondary gene pool to the allotetraploid oilseed crops B. juncea, B. napus and B. carinata.  相似文献   

9.
An attempt to transfer genes from droughttolerant Diplotaxis harra, a wild relative of Brassica species, to an elite oil-yielding cultivar, B-85, of mustard (Brassica juncea) was made through protoplast fusion, as the two plant systems are sexually incompatible. By following the standard protocol for PEG-mediated protoplast fusion followed by high pH, high Ca++, DMSO treatment and appropriate cell-culture technique, 16 presumptive somatic hybrid plants could be regenerated. Chromosomal analysis of four such somatic hybrids revealed that three of them were asymmetric. Analysis of morphological characters, meiotic chromosomes, and esterase isoenzyme pattern revealed that all the somatic hybrids were different from each other. Furthermore four chromosomes of each genome could undergo homoeologous pairing at meiosis indicating the possibilities for genetic recombination and chromosomal rearrangements. Irregular distribution of chromosomes at anaphase-II at meiosis has been a consistent feature of these plants. Eventually, pollen of all the somatic hybrids showed complete infertility preventing the recovery of any selfed seed. Nevertheless, ovule fertility of one somatic hybrid was not totally impaired as it had set some seeds upon backcrossing with the B. juncea parent. The esterase isoenzyme banding pattern of 24 individual progeny plants of this backcross provided evidence for their recombinant nature. It was thus confirmed that a transfer of genetic traits from Diplotaxis harra to B. juncea had indeed taken place. Furthermore, it was conceptualised that a transfer of alien genes through the protoplast-fusion technique is primarily possible in situations where meiotic pairing of the chromosomes of the two participating genomes generates recombinant gametocytes which can pass through subsequent filial generations.  相似文献   

10.
Oilseed crop Brassica carinata BBCC is a natural allotetraploid of diploid species B. nigra BB and B. oleracea CC. To transfer the nuclear and organelle genes in a concerted manner from an alien species, B. tournefortii TT, to B. carinata, we produced somatic hybrids with genomic configuration TCBB using B. nigra and B. oleracea stocks that carried selectable marker genes. B. tournefortii TT was sexually crossed with hygromycin-resistant B. oleracea CC. Protoplasts isolated from shoot cultures of hygromycin-resistant F1 hybrids of B. tournefortiixB. oleracea TC were fused with protoplasts of kanamycin-resistant B. nigra BB. In two different fusion experiments 80 colonies were obtained through selection on media containing both hygromycin and kanamycin. Of these, 39 colonies regenerated into plants. Analysis of 15 regenerants by random amplified polymorphic DNA (RAPD) markers showed the presence of all three genomes, thereby confirming these to be true hybrids. Restriction fragment length polymorphism (RFLP) analysis of organelle genomes with heterologous chloroplast (cp)and mitochondrial (mt) DNA probes showed that the chloroplast genome was inherited from either of the two parents while mitochondrial genomes predominantly showed novel configurations due to either rearrangements or intergenomic recombinations. We anticipate that the TCBB genomic configuration will provide a more conducive situation for recombination between the T and C genomes during meiosis than the TTCCBB or TCCBB type configurations that are usually produced for alien gene transfer. The agronomic aim of producing TCBB hybrids is to transfer mitochondrial genes conferring cytoplasmic male sterility and nuclear genes for fertility restoration from B. tournefortii to B. carinata.  相似文献   

11.
Segments of young inflorescences of Triticum aestivum cv. Chinese Spring (CS), its F1 hybrids with Agropyron trachycaulum and A. scirpeum and backcross derivatives with A. yezoense, A. intermedium and A. junceum, and of a A. yezoense x T. aestivum cv. Wichita hybrid were cultured. Different parts of young spikelets of A. trachycaulum x CS F1 and A. yezoense x Wichita F1 's were also cultured. Percent callus induction was lower in wheat than in the wheat-Agropyron hybrids or backcross derivatives. Percent callus induction from different organs in both hybrids was in the descending order of whole spikelet, spikelet without glumes, rachis, and glumes. No plants could be regenerated from calli of wheat and backcross derivatives except those of CS x A. intermedium combination. Callus induction in hybrids varied from 54 to 84% and plant regeneration from 14 to 31%. The regenerants required no vernalization. Variants including one with top-dense spikes and another with elongated spikelets were recovered. Out of eight A. trachycaulm x CS hybrid regenerants, one had anthers and stigma as opposed to neutral flowers of the original hybrid.  相似文献   

12.
Li ZY  Ge XH 《Plant cell reports》2007,26(6):701-710
Researchers recognized early that chromosome behavior, as other morphological characters, is under genetic control and gave some cytogenetical examples such as the homoeologous chromosome pairing in wheat. In the intergeneric sexual hybrids between cultivated Brassica species and another crucifer Orychophragmus violaceus, the phenomenon of parental genome separation was found under genetic control during mitosis and meiosis. The cytogenetics of these hybrids was species-specific for Brassica parents. The different chromosome behavior of hybrids with three Brassica diploids (B. rapa, B. nigra and B. oleracea) might contribute to the different cytology of hybrids with three tetraploids (B. napus, B. juncea and B. carinata). The finding that genome-specific retention or loss of chromosomes in hybrids of O. violaceus with B. carinata and synthetic Brassica hexaploids (2n=54, AABBCC) is likely related to nucleolar dominance gives new insight into the molecular mechanisms regarding the cytology in these hybrids. It is proposed that the preferential expressions of genes for centromeric proteins from one parent (such as the well presented centromeric histone H3) are related with chromosome stability in wide hybrids and nucleolar dominance is beneficial to the production of centromere-specific proteins of the rRNAs-donor parent and to the stability of its chromosomes.  相似文献   

13.
Summary Among the oleiferous Brassicas, B. napus has the highest seed and oil productivity. As it is a species adapted to the temperate regions, its spring type is either unable to flower or flowers too late in the short — day winter (rabi) season of the subtropics. B. napus (genome AACC) is an amphidiploid between B. campestris (AA) and B. oleracea (CC), and shares one genome with the other allotetraploids B. juncea (AABB) and B. carinata (BBCC). While B. napus lacks ecotypes adapted to the subtropics, the other four species are well represented in this climatic zone. Reciprocal crosses with or without one direct backcross to B. napus have been carried out with the intention of transfering short-day adaptability. The aim was to introgress the A genome of carefully selected early representatives of B. campestris and B. juncea with the corresponding genome in B. napus, and similary the C genome from B. oleracea and B. carinata with the analogous genome in B. napus. B. campestris, B. juncea and the clearly later species, B. oleracea var alboglabra and B. carinata, seem to be almost equally effective in introgressing the appropriate earliness necessary for growth in Bangladesh. One backcross sligthly delayed segregation of early types. Convergent crosses did not result in the transgression of earliness, which was unexpected since the inheritance of flowering and maturity indicated a polygenic regulation. This result is partly explained by assuming dominant oligogenic control of the photoperiodic response. Introgression of earliness with the C genome doesn't seem to be necessarily related with the earliness of the donor species. Intergenomic interactions may be important. Interesting new lines were selected with high yield. Thus there is a good probability that Bangladesh will have a new oil crop. As these lines were observed to be early in Sweden as well, they could potentially push rapseed cultivation further north in temperate regions where the growing period is limited by short summers.This article forms part of the author's Ph.D. thesis  相似文献   

14.
Enzyme electrophoresis was used to compare the isozyme phenotypes of Oryza sativa, IR31917 (AA genome), and two O. minuta accessions (Om 101089 and Om101141; BBCC genome) for ten enzyme systems. Between the two species, two systems were monomorphic (isocitrate dehydrogenase and alcohol dehydrogenase) and eight were polymorphic (shikimate dehydrogenase, phosphogluconate dehydrogenase, phosphoglucose isomerase, malate dehydrogenase, glutamate oxaloacetate transaminase, esterase, aminopeptidase, and endopeptidase). Polymorphism between O. minuta accessions was detected for shikimate dehydrogenase and glutamate oxaloacetate. As expected, the quaternary structure of the O. minuta isozymes was comparable to that of O. sativa. Possible allelic relationships with known O. sativa alleles and their genomic designation are discussed. Combined with chromosome data, the interspecific variation was exploited to monitor the relative genetic contribution of the two parents in the IR31917/Om101141 F1 hybrids and recurrent (IR31917) backcross progenies. The isozyme content of F1 hybrid reflected its triploid nature (ABC genome composition), while that of the backcross progenies paralleled the duplication of the A genome and the gradual loss of O. minuta chromosomes during the backcrossing process. Evidence is provided for a degree of homoeology between the A, B, and C genomes, and for introgression from O. minuta into O. sativa.  相似文献   

15.
The two eggplant relatives Solanum aethiopicum gr. Gilo and Solanum aethiopicum gr. Aculeatum (=Solanum integrifolium) carry resistance to the fungal wilt disease caused by Fusarium oxysporum f. sp. melongenae, a worldwide soil-borne disease of eggplant. To introgress the resistance trait into cultivated eggplant, the tetraploid somatic hybrids S. melongena S. aethiopicum and S. melongena + S. integrifolium were used. An inheritance study of the resistance was performed on advanced anther culture-derived androgenetic backcross progenies from the two somatic hybrids. The segregation fitted a 3 resistant (R): 1 susceptible (S) ratio in the selfed populations and a 1R:1S ratio in the backcross progenies for the trait derived from S. aethiopicum and S. integrifolium. These ratios are consistent with a single gene, which we designated as Rfo-sa1, controlling the resistance to Fusarium oxysporum f. sp. melongenae. The allelic relationship between the resistance genes from S. aethiopicum and S. integrifolium indicate that these two genes are alleles of the same locus. Bulked Segregant Analysis (BSA) was performed with RAPD markers on the BC3/BC5 resistant advanced backcross progenies, and three RAPD markers associated with the resistance trait were identified. Cleaved Amplified Polymorphic Sequences (CAPSs) were subsequently obtained on the basis of the amplicon sequences. The evaluation of the efficiency of these markers in predicting the resistant phenotype in segregating progenies revealed that they represent useful tools for indirect selection of Fusarium resistance in eggplant.  相似文献   

16.
 Intergeneric hybrids between Brassica juncea (2n=36), B. carinata (2n=34) and Orychophragmus violaceus (2n=24) were produced when B. juncea and B. carinata cultivars were used as female parents. The hybrids between B. juncea and O. violaceus had an intermediate morphology except for petal colour and were partially fertile. The hybrids between B. carinata and O. violaceus had a matroclinous morphology and were nearly fertile. Cytological analysis of the hybrids and their progenies gave the following results. (1) In the hybrids between B. juncea and O. violaceus, the somatic tissues of the roots, leaves and styles were mixoploid (2n=12–42), and cells with 24, 30 or 36 chromosomes were the most frequent. Based on the recorded numbers and behaviour of the mitotic and meiotic chromosomes, complete and partial separation of the parental genomes was proposed to have occurred during mitosis. This resulted in the occurrence of cells with possibly complete and incomplete complements of the parental species and cells with parental complements and some additional chromosomes from the other parent. (2)  Pollen mother cells (PMCs) possibly with both parental chromosome complements, only B. juncea chromosomes or a complete B. juncea complement with additional O. violaceus chromosomes were more competitive in entering meiosis. The majority of fertile gametes were deduced to have been produced by PMCs with a B. juncea complement with or without additional O. violaceus chromosomes. (3) The progeny plants from selfed hybrids between B. juncea and O. violaceus were morphologically either of a B. juncea, hybrid or variable type. Cytologically they were grouped into six types according to the frequencies of cells with various chromosome numbers. All of the plants except 2 which constituted two types, were mixoploids, composed of cells with various chromosome numbers, mainly in a certain serial range. (4) The hybrid plants between B. carinata and O. violaceus were mixoploids with chromosome numbers in the range of 12–34, and cells with 2n=34 were the most frequent. The main categories of PMCs with 17 bivalents at metaphase I and 17 : 17 segregations at anaphase I contributed to the high fertility of the hybrids and the fact that their progeny after selfing were mainly plants with 2n=34. Somatic and meiotic separation of the parental genomes was proposed to have occurred in the hybrids between B. carinata and O. violaceus. (5) Mitotic and meiotic elimination of what could be O. violaceus chromosomes might also have contributed to the observed mitotic and meiotic cell types in the two kinds of hybrids studied. Finally, the possible mechanisms behind these cytological observations and their potential in the production of Brassica aneuploids were discussed. Received: 4 February 1997/Accepted: 29 July 1997  相似文献   

17.
Summary The cytoplasmic substitution lines of Brassica juncea (L.) Coss were evaluated for their field resistance to Alternaria blight (Alternaria brassicae). The euplasmic B. juncea cv. RLM 198 had a mesothetic reaction while alloplasmic B. juncea lines with cytoplasms of B. campestris, B. chinensis, and B. japonica were highly susceptible. B. nigra cytoplasm did not have any effect on the disease reaction of the B. juncea genome. However, the alloplasmic lines with the cytoplasm of B. napus and B. carinata revealed a comparatively higher degree of resistance. The study underlined the utility of cytoplasmic manipulations in modifying the phenotypic expression of nuclear genes.  相似文献   

18.
The three B genomes of Brassica contained in B. nigra, B. carinata and B. juncea were dissected by addition in B. napus. Using phenotypic, isozyme and molecular markers we characterized 8 alien B-genome chromosomes from B. nigra and B. carinata and 7 from B. juncea by constructing synteney groups. The alien chromosomes of the three different sources showed extensive intragenomic recombinations that were detected by the presence of the same loci in more than one synteny group but flanked by different markers. In addition, intergenomic recombinations were observed. These were evident in euploid AACC plants of the rapeseed phenotype derived from the addition lines carrying a few markers from the B genome due to translocations and recombinations between non-homoeologous chromosomes. The high plasticity of the Brassica genomes may have been an powerful factor in directing their evolution by hybridization and amphiploidy.  相似文献   

19.
Artificial second generation and backcross hybrids involvingEchinocereus dasyacanthus (Texas rainbow cactus),E. coccineus (a species of claret-cup cactus), andE. ×lloydii (Lloyd's hedgehog cactus) were examined for morphological and reproductive characteristics. The hybrids grew from seed to flower in about four years, and they exhibited high fertility as measured by pollen stainability, crossability, and fruit-set. A rare breeding system inCactaceae, dioecy, was further examined inE. coccineus, using field and controlled pollination tests. Functional dioecy was documented forE. coccineus in Trans-Pecos Texas. All results suggested thatE. ×lloydii in eastern Pecos County, Texas, is a complex and dynamic population probably comprising first and later generation hybrids, including backcross hybrids. The experimental hybridizations also tended to support the occurrence of introgression into both putative parental species.  相似文献   

20.
The cytological possibility of gene transfer from Sinapis pubescens to Brassica napus was investigated. Intergeneric hybrids between Brassica napus (2n = 38) and Sinapis pubescens (2n = 18) were produced through ovary culture. The F1 hybrids were dihaploid and the chromosome configurations were (0–1) III + (2–11) II + (5–24) I . One F2 plant with 38 chromosomes was obtained from open pollination of the F1 hybrid. Thirty-one seeds were obtained from the backcross of the F2 plant with B. napus. Five out of seven plants had 38 chromosomes, and the pollen stainability ranged from 0% to 81.4%. In the B2 plants obtained from the backcross of B1 plants with B. napus, 66.7% of the plants examined had 38 chromosomes. S. pubescens may become a gene source for the improvement of B. napus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号