首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
For the transfer of genes from B. tournefortii (TT) to the allotetraploid oilseed brassicas, B. juncea AABB, B. carinata BBCC and B. napus AACC, B. tournefortii was first crossed with the three basic diploid species, B. campestris (AA), B. nigra (BE) and B. oleracea (CC), to produce the allodiploids TA, TB and TC. These were tetraploidized by colchicine treatment to produce the allotetraploids TTAA, TTBB and TTCC, which were further crossed with B. juncea and B. napus to produce three-genome hybrids with substitution-type genomic configurations: TACC, TBAA and TCAA. These hybrids along with another hybrid TCBB produced earlier, the three allodiploids, their allotetraploids and the four diploid parent species were studied for their male meiotic behaviour. The diploid parent and the allotetraploids (TTAA, TTBB and TTCC) showed regular meiosis although the pollen viability was generally low in the allotetraploids. In the allodiploids (TA, TB and TC) only some end-to-end associations were observed without any clearly discernible chiasmata or exchange points. Chromosomes involved in end-to-end associations were randomly distributed at the metaphase/anaphase-I stages. In contrast, the three-genome hybrids (TACC, TBAA, TCAA and TCBB) showed normal bivalents whose number exceeded the expected bivalent values. Bivalents arising out of homoeologous pairing were indistinguishable from normal pairs by their disjunction pattern but could be distinguished on the basis of the heteromorphy of the homoeologous chromosomes. The three-genome hybrids could be backcrossed to allotetraploid oilseed brassicas as they had some fertility. In contrast, the allodiploids could neither be selfed nor back-crossed. On the basis of their meiotic stability, in terms of more pronounced homoeologous pairing and fertility for backcrossing, the three-genome configurations provide the best possible situation for the introgression of alien genes from the secondary gene pool to the allotetraploid oilseed crops B. juncea, B. napus and B. carinata.  相似文献   

2.
Summary Attempts were made to obtain intergeneric hybrids between Diplotaxis siifolia, a wild species, and cultivars of Brassica (B. campestris, B. juncea, and B. napus). The crosses showed unilateral incompatibility. When the wild species was used as female parent, pollen germination and pollen tube growth were normal, but hybrid seeds aborted due to post-fertilization barriers. Reciprocal crosses (cultivars as female parent) showed strong pre-fertilization barriers; although pollen grains showed germination, pollen tubes failed to enter the stigma. Hybrids were realized in two of the crosses, D. siifolia x B. juncea and D. siifolia x B. napus, through ovary culture. The hybrids were multiplied in vitro by multiplication of axillary shoots, or somatic embryogenesis. Detailed studies were carried out on the hybrid D. siifolia x B. juncea. F1 hybrids had shrivelled anthers and were pollen sterile. Amphiploids of this hybrid showed 60% pollen fertility and produced seeds upon self-pollination as well as backcross pollination with the pollen of B. juncea.  相似文献   

3.
Transgene flow from engineered Brassica napus to wild weed relatives could potentially have an environmental effect. To evaluate the introgression of transgenic B. napus into wild Brassica juncea, the hybrid F1 and backcross progenies derived from B. juncea (genome constitution AABB) and transgenic B. napus (AACC) crosses were investigated. C-genome-specific simple sequence repeat (SSR) markers corresponding to linkage groups N11–N19 in B. napus were screened and used to estimate the marker frequency in hybrid F1 and backcross progenies. C-genome-specific markers could be stably detected in hybrid F1 and backcross BC1 plants, but were only rarely found in the BC2–BC5 generations. For example, a specific SSR marker for linkage group N12 segregated in BC2 generation but were completely lost in BC3–BC5, while a specific SSR marker of linkage group N15 segregated in BC1, BC2 and BC3 generations and was absent in more advanced backcrossed generations (BC4 and BC5). The results indicate that a certain gene regions in Brassica napus plants are transmitted at a relatively lower frequency to wild relatives, and more rapidly disappeared in subsequent backcross generations. We propose that a foreign gene or transgene that is integrated in the C-chromosome of Brassica napus could reduce the risk of introgression in nature.  相似文献   

4.
The persistence and stability of a transgene encoding a Bacillus thuringiensis (Bt) Cry1Ac insecticidal protein was investigated in hybrids between crop Brassica napus and a recurrent wild Brassica juncea population. Interspecific hybrids (F1) and backcross progenies (BC1, BC2) containing green fluorescent protein (GFP) and Bt genes were successfully produced in the greenhouse. Stable Bt toxin levels were found in hybrid and advanced backcross progenies formed in wild B. juncea. Bt Cry1Ac concentration was significantly lower in BC2 plants than in transgenic B. napus, F1, BC1, while no significant differences were detected among the latter three plant genotypes. A GFP marker gene was used as a scorable marker and indicator of Bt transgene expression. GFP fluorescence intensity was significantly correlated with Bt Cry1Ac concentration at the flowering stage and the pod formation stage in both transgenic oilseed rape hybrids and backcrossed progenies (BC1, BC2). It was demonstrated that GFP was a suitable marker for Bt protein in the backcross of B. juncea, which could facilitate the detection of gene flow and is useful in biosafety management.  相似文献   

5.
To establish a cytoplasmic male-sterile/restored fertility (cms-Rf) system for F1 seed production in Brassica napus, we transferred a gene from fertillity restored radish to B. napus by protoplast fusion. X-irradiated protoplasts, isolated from shoots of Raphanus sativus cv Kosena (Rf line), were fused with iodoacetamide-treated protoplasts of a B. napus cms cybrid. Among 300 regenerated plants, six were male-fertile. The fertile plants were characterized for petal color, chromosome number and the percentage of viable pollen grains. Three fertile plants had aneuploid chromosome numbers and white or cream petals, which is a dominant marker in radish. Of these three plants, one which had 2n = 47 chromosomes and white petals was used for further backcrosses. After two backcrosses, chromosome number and petal color became identical to that of B. napus. No female sterility was observed in the BC3 generations.  相似文献   

6.
Summary Sexual and somatic hybrid plants have been produced between Sinapis alba L. (white mustard) and Brassica napus L. (oil-seed rape), with the aim to transfer resistance to the beet cyst nematode Heterodera schachtii Schm. (BCN) from white mustard into the oil-seed rape gene pool. Only crosses between diploid accessions of S. alba (2n = 24, Sa1Sa1) as the pistillate parent and several B. napus accessions (2n = 38, AACC) yielded hybrid plants with 31 chromosomes. Crosses between tetraploid accessions of S. alba (2n = 48, Sa1Sa1Sa1Sa1) and B. napus were unsuccessful. Somatic hybrid plants were also obtained between a diploid accession of S. alba and B. napus. These hybrids were mitotically unstable, the number of chromosomes ranging from 56 to more than 90. Analysis of total DNA using a pea rDNA probe confirmed the hybrid nature of the sexual hybrids, whereas for the somatic hybrids a pattern identical to that of B. napus was obtained. Using chloroplast (cp) and mitochondrial (mt) DNA sequences, we found that all of the sexual F1 hybrids and somatic hybrids contained cpDNA and mtDNA of the S. alba parent. No recombinant mtDNA or cpDNA pattern was observed. Three BC1 plants were obtained when sexual hybrids were back-crossed with B. napus. Backcrossing of somatic hybrids with B. napus was not successful. Three sexual hybrids and one BC1 plant, the latter obtained from a cross between a sexual hybrid and B. napus, were found to show a high level of BCN resistance. The level of BCN resistance of the somatic hybrids was in general high, but varied between cuttings from the same plant. Results from cytological studies of chromosome association at meiotic metaphase I in the sexual hybrids suggest partial homology between chromosomes of the AC and Sa1 genomes and thus their potential for gene exchange.  相似文献   

7.
An attempt to transfer genes from droughttolerant Diplotaxis harra, a wild relative of Brassica species, to an elite oil-yielding cultivar, B-85, of mustard (Brassica juncea) was made through protoplast fusion, as the two plant systems are sexually incompatible. By following the standard protocol for PEG-mediated protoplast fusion followed by high pH, high Ca++, DMSO treatment and appropriate cell-culture technique, 16 presumptive somatic hybrid plants could be regenerated. Chromosomal analysis of four such somatic hybrids revealed that three of them were asymmetric. Analysis of morphological characters, meiotic chromosomes, and esterase isoenzyme pattern revealed that all the somatic hybrids were different from each other. Furthermore four chromosomes of each genome could undergo homoeologous pairing at meiosis indicating the possibilities for genetic recombination and chromosomal rearrangements. Irregular distribution of chromosomes at anaphase-II at meiosis has been a consistent feature of these plants. Eventually, pollen of all the somatic hybrids showed complete infertility preventing the recovery of any selfed seed. Nevertheless, ovule fertility of one somatic hybrid was not totally impaired as it had set some seeds upon backcrossing with the B. juncea parent. The esterase isoenzyme banding pattern of 24 individual progeny plants of this backcross provided evidence for their recombinant nature. It was thus confirmed that a transfer of genetic traits from Diplotaxis harra to B. juncea had indeed taken place. Furthermore, it was conceptualised that a transfer of alien genes through the protoplast-fusion technique is primarily possible in situations where meiotic pairing of the chromosomes of the two participating genomes generates recombinant gametocytes which can pass through subsequent filial generations.  相似文献   

8.
Summary Synthetic alloploid Brassica oxyrrhina (2n = 18, OO) x B. campestris (2n = 20, AA) was repeatedly backcrossed with B. campestris to place B. campestris nucleus in the cytoplasm of B. oxyrrhina. Alloplasmic plants, obtained in BC5 generation, were stably male sterile but mildly chlorotic during initial development. Synthetic alloploid B. oxyrrhina-campestris was also hybridized with B. juncea to transfer B. oxyrrhina cytoplasm. Segregation for green and chlorotic plants was observed in BC1 and BC2 generations. By selection, however, normal green male sterile B. juncea was obtained in BC3. Pollen abortion in both B. campestris and B. juncea is post-meiotic.  相似文献   

9.
Erwinia soft rot is a destructive disease of Brassica rapa vegetables. Reliable sources of resistance and control methods are limited, so development of highly resistant breeding lines is desirable. Protoplasts from B. rapa and B. oleracea genotypes selected for resistance to soft rot were fused in order to combine different sources of resistance. Twelve somatic hybrids (synthetic B. napus) were obtained and confirmed by morphology, nuclear DNA content, and RAPD analysis. They were normal looking plants that easily set seeds following self-pollination and backcrossing to B. rapa. Assays of detached leaves or seedlings inoculated in a mist-chamber showed that most somatic hybrids had lower disease severity ratings than the B. rapa fusion partner and a commercial variety of B. napus. Some progeny from selfing or backcrossing of somatic hybrids to B. rapa showed much more resistance than either fusion partner. The offspring populations of the somatic hybrids (F1–S1 and F1–BC1) clearly moved to the resistant direction compared to the parents; the percentage of resistant plants increased from 21% (average of parents) to 36% (F1–S1) and 48% (F1–BC1). These results suggest that it may be possible to obtain highly resistant B. rapa lines by further backcrossing and selection. Received: June 1999 / Accepted: 29 July 1999  相似文献   

10.
Spontaneous hybridization between a male-sterile oilseed rape and two weeds   总被引:1,自引:0,他引:1  
Spontaneous interspecific hybrids were produced under natural conditions (pollination by wind and bees) between a male-sterile cybrid Brassica napus (AACC, 2n = 38) and two weeds Brassica adpressa (AdAd, 2n = 14) and Raphanus raphanistrum (RrRr, 2n = 18). After characterization by chromosome counts and isozyme analyses, we observed 512 and 3 734 inter-specific seeds per m2 for the B. napus-B. adpressa and B. napus-R. raphanistrum trials respectively. Most of the hybrids studied had the expected triploid structure (ACX). In order to quantify the frequency of allosyndesis between the genomes involved in the hybrids, their meiotic behavior was compared to a haploid of B. napus (AC). For the B. napus-B. adpressa hybrids, we concluded that probably no allosyndesis occurred between the two parental genomes, and that genetic factors regulating homoeologous chromosome pairing were carried by the B. adpressa genome. For the B. napus-R. raphanistrum hybrids, high chromosome pairing and the presence of multivalents (in 9.16% of the pollen mother cells) indicate that recombination is possible between chromosomes of different genomes. Pollen fertility of the hybrids ranged from 0 to 30%. Blackleg inoculation tests were performed on the three parental species and on the interspecific hybrids. BC1 production with the weeds and with rapeseed was attempted. Results are discussed in regard to the risk assessment of transgenic rapeseed cultivation, F1 hybrid rapeseed variety production, and rapeseed improvement.  相似文献   

11.
Before novel transgenic plant genotypes are grown outside containment facilities and evaluated under field conditions, it is necessary to complete a risk assessment to consider the possible consequences of that release. An important aspect of risk assessment is to consider the likelihood and consequences of the transgene being transferred by cross-pollination to related species, including other crops, weeds and ruderal populations. The purpose of this report is to review the literature to assess the ease with whichBrassica napus can hybridize with related species. The evidence for hybridization is considered at three levels: a) by open pollination, b) by hand pollination and c) by the use ofin vitro ovule and embryo rescue techniques; and also examines the fertility and vigour of the F1, F2 and backcross generations. Four species are reported to hybridize withB. napus by open pollination:B. rapa andB. juncea using fully fertile parents; andB. adpressa andR. raphanistrum using a male-sterileB. napus parent. Seventeen species are reported to form hybrids (including the four species above) withB. napus when pollination is carried out manually. At least 12 of these species were unable to form F2 progeny, and eight were unable to produce progeny when the F1 was backcrossed to one of the parental species. Many factors will influence the success of hybridization under field conditions, including: distance between the parents, synchrony of flowering, method of pollen spread, specific parental genotypes used, direction of the cross and the environmental conditions. Even where there is a possibility of hybridization betweenB. napus and a related species growing in the vicinity of a release, poor vigour and high sterility in the hybrids will generally mean that hybrids and their progeny will not survive in either an agricultural or natural habitat.  相似文献   

12.
Summary Crossing experiments were conducted to determine whether parental genotype affected the rate of transmission of paternal mitochondria to progeny in rapeseed (Brassica napus). Progeny were screened either by RFLP analysis of mitochondrial (mt) DNA or by means of a mt marker that causes male sterility. To date we have transferred paternal mitochondria to progeny in only cross, i.e. a specific female line crossed to a specific male line. The male line carries the polima cytoplasm, the mitochondria of which confer a characteristic malesterile flower morphology when in a napus nuclear background. This line is male fertile due to a restorer gene carried on an extra chromosome from a closely related species, Brassica juncea. The female line has a Brassica campestris cytoplasm with a chloroplast mutation conferring resistance to triazine herbicides. Progeny with mixtures of parental mtDNA display a range of plant phenotype from complete male fertility through varying proportions of male-sterile sectors to complete male sterility. The male sterility or fertility of flowers on a sector of a plant reflects the mt population of that sector, and such sectors will give rise to stably fertile or sterile progeny. These experiments suggest that maternal inheritance of mitochondria in higher plants is due to genes active in both the pollen parent and the egg parent.  相似文献   

13.
 Offspring from asymmetric hybrids between Brassica napus and the three B-genome species Brassica nigra, Brassica juncea and Brassica carinata were analysed for the presence of B-genome markers and resistance to the fungus Leptosphaeria maculans, the causal agent of blackleg disease. Twenty five plants from each species combination were analysed in the first backcross (BC1) generation, 30 plants in BC2 and 60 plants in BC3. The plants were analysed by 46 RFLP markers detecting 85 loci dispersed throughout the B. nigra genome. The plants with additional B. carinata DNA had a decrease in the presence of RFLP markers ranging from 59% in BC1 to 36% in BC2 and down to 11% in BC3. Similar results were obtained in the lines with additional DNA from B. juncea where the 60% presence of RFLP markers in BC1 was reduced to 33% in BC2 and to 10% in BC3. However presence of the markers were significantly lower in the B. nigra-derived material where BC1 had 46%, BC2 25% and BC3 8%. Since at least two loci could be detected on each end of the eight linkage groups of the B genome, the degree of symmetry was estimated. After one back-cross between 0.5 and 1.25% intact chromosomes were retained, whereas in BC2 this frequency was 0.21% for all three B-genome donor species. The maintenance of half-chromosomes ranged from 2.63% to 5.38% in BC1 and between 0.73% and 1.15% in BC2. No chromosome arms were found in any of the BC3 plants. In total, four co-segregating markers for cotyledon and adult-leaf resistance to L. maculans were found which detected six loci located on linkage groups 2, 5 and 8. When the results from the three donor species were compared, one triplicate region in the B genome had preserved the resistance loci in all three species. Received: 19 January 1999 / Accepted: 30 January 1999  相似文献   

14.
Summary Brassica napus and Brassica juncea were infected with a number of Agrobacterium tumefaciens strains. Tumourigenesis was very rapid and extremely efficient on B. juncea with all but one of the strains. Tumourigenesis on B. napus varied widely. It was very efficient with the nopaline strains, was reduced with the succinamopine strain A281 and was very weak with the octopine strains. The latter observation was confirmed with six different B. napus rapeseed cultivars. The selectivity was due to differences in the virulence of Ti plasmids with B. napus, rather than the tumourigenicity of the T-DNA or virulence of the chromosomal genes associated with the strains. An exception was strain LBA4404. The virulence of the octopine strains was increased by coinfection with more virulent disarmed strains and by induction with acetosyringone.  相似文献   

15.
This paper reports the observation on the intersubgenomic heterosis for seed yield among hybrids between natural Brassica napus (AnAnCnCn) and a new type of B. napus with introgressions of genomic components of Brassica rapa (ArAr). This B. napus was selected from the progeny of B. napus × B. rapa and (B. napus × B. rapa) × B. rapa based on extensive phenotypic and cytological observation. Among the 129 studied partial intersubgenomic hybrids, which were obtained by randomly crossing 13 lines of the new type of B. napus in F3 or BC1F3 to 27 cultivars of B. napus from different regions as tester lines, about 90% of combinations exceeded the yield of their respective tester lines, whereas about 75% and 25% of combinations surpassed two elite Chinese cultivars, respectively. This strong heterosis was further confirmed by reevaluating 2 out of the 129 combinations in a successive year and by surveying hybrids between 20 lines of the new type of B. napus in BC1F5 and its parental B. napus in two locations. Some DNA segments from B. rapa were identified with significant effects on seed yield and yield components of the new type of B. napus in BC1F5 and intersubgenomic hybrids in positive or negative direction. It seems that the genomic components introgressed from B. rapa contributed to improvement of seed yield of rapeseed.  相似文献   

16.
It is often suggested that weeds from the same family as the crop plant may increase insect pest damages by providing shelter and additional oviposition opportunities. We compared the relative attractiveness of Brassica rapa L., B. juncea L., Sinapis alba L. and B. napus L. (Capparales: Brassicaceae) to the pollen beetle and its hymenopteran parasitoids in field conditions. Our results revealed that none of the investigated plants increased the pest abundance on B. napus plants. On the contrary, B. juncea and S. alba lured beetles away from B. napus during its damage-susceptible stage. The parasitism rate of pollen beetle larvae was the highest on B. juncea plants, indicating that cruciferous weeds could improve the natural control of the pollen beetle by providing additional hosts for parasitoids. Therefore, close relatives of oilseed rape might be used to trap pollen beetle adults, but also to support populations of natural enemies that could decrease the number of beetles.  相似文献   

17.
Intergeneric somatic hybridization between Brassica napus and Raphanus sativus was carried out to enrich gene pool of B. napus. Twelve somatic hybrids were produced via PEG-mediated protoplast fusion between B. napus and R. sativus. The hybridity was confirmed by morphological observation and molecular marker analysis. Hybrid progenies (BC1) were obtained via backcrosses with B. napus. Behaviour of R. sativus chromosomes in a B. napus background in the F1 and BC1 plants was revealed by genomic in situ hybridization (GISH). The potential of somatic hybridization to enrich the suitable gene pool for rapeseed breeding is discussed.  相似文献   

18.
 Chromosome counts and RFLP markers mapped to Arabidopsis thaliana were used to determine the proportion of eliminated chromosomes and retained A. thaliana DNA in the back-crossed (BC) progeny derived from symmetric and asymmetric somatic hybrids between Brassica napus and A. thaliana. All plants were analysed for the presence of two RFLP markers per chromosome, preferably with one located on each chromosome arm. A reduction in both A. thaliana RFLP markers and chromosome numbers was found in the BC1 and BC2 generations of the symmetric hybrids as well as in the BC1 generation of the asymmetric hybrids. In the symmetric hybrids, two back-crosses to B. napus were required to reduce the frequency of retained A. thaliana loci to 42.4% and mean chromosome number to 39.4. In comparison, the BC1 progeny of the asymmetric hybrids had 16% of the analysed A. thaliana loci present and an average of 38.4 chromosomes maintained. When the frequency of A. thaliana chromosomes with both analysed loci maintained was compared with the frequency of chromosomes with one locus lost and one kept, a reduction in the number of complete chromosomes between BC1 and BC2 derived from the symmetric hybrids was observed. Among the BC1 plants in the asymmetric group the situation was different, with higher amounts of incomplete donor chromosomes compared to whole chromosomes. The results indicate that A. thaliana chromosome fragments are more often found in the progeny of irradiated hybrids, while back-crossed symmetric hybrids have more complete chromosomes. Received: 2 April 1998 / Accepted: 14 July 1998  相似文献   

19.
To investigate the cause of variation in the interspecific crossability of Brassica napus, three different genotypes were studied in respect of their reproductive behavior after pollination with B. juncea. There were great differences among maternal genotypes in allowing foreign pollen to germinate on and penetrate into their stigmas, leading to a wide diversity of interspecific fertilization. The division of the hybrid primary endosperm nucleus and zygote appeared normal in all combinations of crosses. While the abundant free nuclei of the endosperm developed properly and never became cellular, the embryos degenerated as early as 10 days after pollination when the cultivar Rucabo, which had the highest fertilization record with species of B. juncea, was involved. When 81007 was used as female parent, the endosperm grew a little but the embryo halted at the heart-torpedo stage. Lack of nourishment might be responsible for the observed embryo abortion. Among the sic hybrid combinations, the cross 84014A x Changyang hunagjie was the only one where endosperm tissue was observable and an abnormal embryo occurred prior to cellular endosperm formation. Apart from the three typical embryological features, significant variation was also demonstrated among each of the cross combinations. Genetic diversity appears to exist not only between varieties, but also within cultivars. In addition, methods for developing interspecific crossable lines are discussed.  相似文献   

20.
The genetic control of adult-plant blackleg (Leptosphaeria maculans) resistance in a Brassica napus line (579NO48-109-DG-1589), designated R13 possessing Brassica juncea-like resistance (JR), was elucidated by the analysis of segregation ratios in F2 and F3 populations from a cross between R13 and the highly blackleg-susceptible B. napus cultivar Tower. The F2 segregration ratios were bimodal, demonstrating that blackleg resistance in R13 was controlled by major genes. Analysis of the segregation ratios for 13 F3 families indicated that blackleg resistance in these families was controlled by three nuclear genes, which exhibited a complex interaction. Randomly sampled plants of F3 progeny all had the normal diploid somatic chromosome number for B. napus. The similarities between the action of the three genes found in this study with those controlling blackleg resistance in B. juncea is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号