首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Yang PY  Rui YC 《Life sciences》2003,74(4):471-480
Macrophage-derived foam cells seem to play an important role during inflammatory response of atherosclerosis, in which the overexpression of intercellular adhesion molecule-1 (ICAM-1) and vascular endothelial growth factor (VEGF) are associated with the early and later pathological changes in foam cell formation. In this study, we investigated the expression kinetics of ICAM-1 and VEGF in macrophage-derived foam cells. The foam cell model was established through incubating the human monocyte line (U937 cells) with oxidized-low density lipoprotein (ox-LDL). Up-regulated expressions of ICAM-1 and VEGF were analyzed in protein and mRNA levels in U937 foam cells by flow cytometry, ELISA, and Northern blot. Kinetic studies showed the deferent kinds of expression curves in dose response and time course. The expression dose-kinetics demonstrated that the ICAM-1 showed the peak expression induced by ox-LDL 50 mg/L, while VEGF levels increased in a dose-dependent manner with the maximum level induced by ox-LDL 200 mg/L. Time-kinetic studies revealed that the ICAM-1 levels showed the peak expression in 12 h while VEGF expression increased in a time-dependent manner with the maximum level in 48 h. These results proved that both ICAM-1 and VEGF expressions were enhanced in the macrophage-derived foam cells, but ICAM-1 expression increased earlier than the up-regulation of VEGF; low dose of ox-LDL mainly up regulated ICAM-1 expression, while high dose mainly increased the VEGF expression.  相似文献   

2.
Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the regulation of foam cell formation.  相似文献   

3.
Macrophage-like synoviocytes and fibroblast-like synoviocytes (FLS) are known as the most active cells of rheumatoid arthritis (RA) and are close to the articular cartilage in a position enabling them to invade the cartilage. Macrophage-like synoviocytes and FLS expression of matrix metalloproteinases (MMPs) and their interaction has aroused great interest. The present article studied the expression of CD147, also called extracellular matrix metalloproteinase inducer, on monocytes/macrophages and FLS from RA patients and its potential role in enhancing MMPs and the invasiveness of synoviocytes. Expression of CD147 on FLS derived from RA patients and from osteoarthritis patients, and expression of CD147 on monocytes/macrophages from rheumatic synovial fluid and healthy peripheral blood were analyzed by flow cytometry. The levels of CD147, MMP-2 and MMP-9 mRNA in FLS were detected by RT-PCR. The role of CD147 in MMP production and the cells' invasiveness in vitro were studied by the co-culture of FLS with the human THP-1 cell line or monocytes/macrophages, by gel zymography and by invasion assay. The results showed that the expression of CD147 was higher on RA FLS than on osteoarthritis FLS and was higher on monocytes/macrophages from rheumatic synovial fluid than on monocytes/macrophages from healthy peripheral blood. RT-PCR showed that the expressions of CD147, MMP-2 and MMP-9 mRNA was higher in RA FLS than in osteoarthritis FLS. A significantly elevated secretion and activation of MMP-2 and MMP-9 were observed in RA FLS co-cultured with differentiated THP-1 cells or RA synovial monocytes/macrophages, compared with those co-cultured with undifferentiated THP-1 cells or healthy control peripheral blood monocytes. Invasion assays showed an increased number of invading cells in the co-cultured RA FLS with differentiated THP-1 cells or RA synovial monocytes/macrophages. CD147 antagonistic peptide inhibited the MMP production and the invasive potential. Our studies demonstrated that the CD147 overexpression on monocytes/macrophages and FLS in RA patients may be responsible for the enhanced MMP secretion and activation and for the invasiveness of synoviocytes. These findings suggest that CD147 may be one of the important factors in progressive joint destruction of RA and that CD147 may be a potential therapeutic target in RA treatment.  相似文献   

4.
Cyclooxygenase (COX) is the rate-limiting enzyme for the biosynthesis of prostaglandins in monocytes/macrophages. The COX-1 is constitutively expressed in most tissues and may be involved in cellular homeostasis, whereas the COX-2 is an inducible enzyme that may play an important role in inflammation and mitogenesis. When U937 monocytic cells were incubated with retinoic acid (RA) for 48 h, cell differentiation took place with concomitant increases in prostaglandin E2 (PGE2) production and COX activity. In this study, the mechanism of RA (all-trans- or 9-cis-RA)-induced enhancement of PGE2 biosynthesis in U937 cells was examined. Treatment of cells with all-trans- or 9-cis-RA up to 48 h caused an increase in PGE2 production in a time- and dose-dependent manner. Both RA isomers caused the enhancement of PGE2 production and the up-regulation of COX-1 expression at the protein and mRNA levels. The increase in COX-1 mRNA was found to precede the increase in COX-1 protein expression. Interestingly, the COX-2 protein and COX-2 mRNA were not detected in U937 cells, and their levels remained undetectable during the entire course of RA treatment. We conclude that treatment of U937 cells by RA for 48 h caused the initiation of cell differentiation, which was found to be concomitant with a significant increase in PGE2 production mediated via the up-regulation of COX-1 mRNA and protein expression.  相似文献   

5.
Surfactant protein D (SP-D) and CD14 are important innate immune defense molecules that mediate clearance of pathogens and apoptotic cells from the lung. To test whether CD14 expression and function were influenced by SP-D, the surface expression of CD14 was assessed on alveolar macrophages from SP-D-/- mice. CD14 was reduced on alveolar macrophages from SP-D-/- mice and was associated with reduced uptake of LPS and decreased production of TNF-alpha after LPS stimulation. CD14 is proteolytically cleaved from the cell surface to form a soluble peptide. Soluble CD14 (sCD14) was increased in the bronchoalveolar lavage fluid from SP-D-/- mice. Because matrix metalloproteinase (MMP)-9 and -12 activities were increased in the lungs of SP-D-/- mice, the role of these metalloproteases in the production of sCD14 was assessed. sCD14 was decreased in both MMP(9-/-)/SP-D-/- and MMP12(-/-)/SP-D-/- mice demonstrating MMP-9 and MMP-12 contribute to proteolytic shedding of CD14. The increased sCD14 seen in SP-D-/- mice was dependent upon the activation of MMP-12 via an MMP-9-dependent mechanism. Supporting this observation, MMP-12 caused the release of sCD14 from RAW 264.7 cells in vitro. In conclusion, SP-D influences innate host defense, in part, by regulating sCD14 in a process mediated by MMP-9 and MMP-12.  相似文献   

6.
The role of antioxidant supplementation with vitamin E in the prevention of atherosclerosis has been a topic of considerable recent interest. The relevance of vitamin E for macrophage-derived foam cell formation, a hallmark of atherosclerosis, however, has not been unequivocally resolved. Here, we investigated the effect of oxidized LDL (ox-LDL) and vitamin E on lipid accumulation and total cholesterol content in U937 macrophages, reactive oxygen species generation and expression of nuclear factor-κB (NF-κB) signaling pathway. The results showed that the mRNA expression and protein levels of P-selectin were evident in U937 macrophages treated with ox-LDL and vitamin E, which indicating that expression of P-selectin is important in macrophage-derived foam cell formation. Moreover, P-selectin changes in ox-LDL-induced foam cell formation can be mediated by vitamin E through activities of nuclear NF-κB activated by serine phosphorylation of NF-κB inhibitor α, suggesting that activation of NF-κB pathway by macrophages may occur. Taken together, these data suggested that vitamin E can prevent ox-LDL-induced foam cell macrophages formation through modulating the activities of oxidative stress-induced NF-κB pathway.  相似文献   

7.
The present study examined the effect of hepatoma-associated antigen HAb18G (homologous to CD147) expression on the NO/cGMP-regulated Ca2+ mobilization to induce matrix metalloproteinases (MMP) production and attenuate adhesion ability of mouse fibroblast NIH/3T3 cells. HAb18G/CD147 cDNA was transfected into fibroblast 3T3 cells to obtain a cell line stably expressing HAb18G/CD147, t3T3, as demonstrated by immunofluorescence staining and flow cytometry assays. 8-Bromo-cGMP inhibited the thapsigargin-induced Ca2+ entry in 3T3 cells, whereas an inhibitor of protein kinase G, KT5823 (1 microM), led to an increase in Ca2+ entry. Expression of HAb18G/CD147 in t3T3 cells decreased the inhibitory response to cGMP. A similar effect on the Ca2+ entry was observed in 3T3 cells in response to an NO donor, (+/-)-S-nitroso-N-acetylpenicillamine (SNAP). The inhibitory effect of SNAP on the thapsigargin-induced Ca2+ entry was also reduced in HAb18G/CD147-expressing t3T3 cells, indicating a role for HAb18G/CD 147 in NO/cGMP-regulated Ca2+ entry. Results of gelatin zymography assays showed that addition of extracellular Ca2+ induced MMP (MMP-2, MMP-9) release and activation in a dose-dependent manner, and expression of HAb18G/CD147 enhanced the secretion of MMP-2 and MMP-9 in 3T3 cells. 8-Bromo-cGMP and SNAP reduced the production of MMP in 3T3 cells but not in t3T3 with HAb18G/CD147 expression. RT-PCR experiments substantiated that the expression of MMP-2 and MMP-9 mRNA in HAb18G/CD 147-expressing t3T3 cell was significantly greater than that in 3T3 cells. Experiments investigating adhesion potentials demonstrated that HAb18G/CD147-expressing t3T3 cells pretreated with Ca2+ attached to Matrigel-coated culture plates significantly less efficiently than 3T3 cells. The proportion of attached cells could be increased by treatment with 8-bromo-cGMP and SNAP in 3T3 cells, but not in t3T3. These results suggest that HAb18G/CD147 attenuates adhesion potentials in fibroblasts by enhancing the secretion of MMP through NO/cGMP-sensitive capacitative Ca2+ entry.  相似文献   

8.
The critical initiating event in atherogenesis involves the invasion of monocytes through the endothelial walls of arteries and the transformation of monocytes from macrophages into foam cells. Human THP-1 monocytic cells can be induced to differentiate into macrophages by phorbol myristate acetate (PMA) and can then be converted into foam cells by exposure to oxidized low-density lipoprotein (oxLDL). Also, during a chronic inflammatory response, monocytes/macrophages produce the 92-kDa matrix metalloproteinase-9 (MMP-9) that may contribute to the extravasation, migration, and tissue remolding capacities of the phagocytic cells. Here, we investigate the effect of ascochlorin (ASC), a prenylphenol antiviral compound from the fungus Ascochyta viciae, on oxLDL-induced MMP-9 expression and activity in human THP-1 macrophages. ASC reduced oxLDL-induced MMP-9 expression and activity in a time-dependent and dose-dependent manner. Also, an analysis of MMP-9 activity using pharmacologic inhibitors showed that ASC inhibits MMP-9 activity via the extracellular signal-regulated kinase 1 and kinase 2 pathways. Our results suggest that ASC may be useful as a potent clinical antiatherogenic agent, a topic of considerable interest in the biological chemistry of chemotherapeutic agents.  相似文献   

9.
Curcumin is a natural polyphenol extracted from the rhizome of Curcuma that has an important antitumour effect, but its effect on adverse psychological stress-induced tumour proliferation and invasion has not been reported to date. Here, we found that curcumin not only inhibited the growth of xenografts in chronically stressed nude mice, but also decreased the expression of matrix metalloproteinase (MMP)-2/9 and CD147 in tumour tissues. Exogenous norepinephrine (NE) was used to stimulate glioma cells to simulate the stress environment in vitro, and it was found that curcumin inhibited the NE-induced proliferation and invasion of glioma cells in a dose-dependent manner. Further research found that the effects of NE on glioma cells could lead to the activation of the mitogen-activated protein kinase (MAPK) signalling pathway through β-adrenergic receptor, while curcumin suppressed the level of extracellular signal–regulated kinase (ERK)1/2 phosphorylation. In addition, blocking ERK1/2 expression with U0126 resulted in the down-regulated expression of CD147, which further led to the decreased expression of MMP-2 and MMP-9. Curcumin could also inhibit the expression of cyclin D1/CDK4/6 and anti-apoptotic protein Bcl-2/Bcl-XL induced by NE, and induced cell cycle changes and increased apoptosis. Therefore, curcumin may be a potential candidate drug for preventing and treating the progression of glioma induced by adverse psychological stress.  相似文献   

10.
It was originally thought that the critical role of the CD40 ligand (CD40L) in normal and inflammatory immune responses was mainly mediated through its interaction with the classic receptor, CD40. However, data from CD40L(-/-) and CD40(-/-) mice suggest that the CD40L-induced inflammatory immune response involves at least one other receptor. This hypothesis is supported by the fact that CD40L stabilizes arterial thrombi through an alphaIIbbeta3-dependent mechanism. Here we provide evidence that soluble CD40L (sCD40L) binds to cells of the undifferentiated human monocytic U937 cell line in a CD40- and alphaIIbbeta3-independent manner. Binding of sCD40L to U937 cells was inhibited by anti-CD40L monoclonal antibody 5C8, anti-alpha5beta1 monoclonal antibody P1D6, and soluble alpha5beta1. The direct binding of sCD40L to purified alpha5beta1 was confirmed in a solid phase binding assay. Binding of sCD40L to alpha5beta1 was modulated by the form of alpha5beta1 expressed on the cell surface as the activation of alpha5beta1 by Mn(2+) or dithiothreitol resulted in the loss of sCD40L binding. Moreover, sCD40L induced the translocation of alpha5beta1 to the Triton X-100-insoluble fraction of U937 cells, the rapid activation of the MAPK pathways ERK1/2, and interleukin-8 gene expression. The binding of sCD40L to CD40 on BJAB cells, an alpha5beta1-negative B cell line, and the resulting activation of ERK1/2 was not inhibited by soluble alpha5beta1, suggesting that sCD40L can bind concomitantly to both receptors. These results document the existence of novel CD40L-dependent pathways of physiological relevance for cells expressing multiple receptors (CD40, alpha5beta1, and alphaIIbbeta3) for CD40L.  相似文献   

11.
目的:探讨氧化低密度脂蛋白(oxidized low density lipoprotein,ox-LDL)对巨噬细胞源性泡沫细胞吞噬功能和炎症相关因子分泌功能的影响。方法:利用佛波酯(phorbol ester,PMA)诱导THP-1细胞分化形成巨噬细胞,之后采用ox-LDL处理48小时后,诱导其形成泡沫细胞。利用中性红吞噬实验,分析泡沫细胞形成前后吞噬功能的变化;通过ELISA法,检测细胞培养上清中肿瘤坏死因子α(tumor necrosis factorα,TNF-α)含量,观察ox-LDL对THP-1巨噬细胞功能的影响。结果:细胞形态学结果表明,我们成功利用ox-LDL诱导THP-1巨噬细胞形成泡沫细胞;进一步发现ox-LDL诱导THP-1巨噬细胞表面的清道夫受体CD36表达升高,并促进细胞吞噬功能增加,进一步促进细胞内胆固醇含量显著升高(P0.05);同时,ox-LDL能够刺激巨噬细胞大量分泌TNF-α(P0.05)。结论:ox-LDL通过增强清道夫受体CD36表达,提高巨噬细胞的吞噬功能,引起大量胆固醇聚集,产生细胞毒性损伤,并促进TNF-α炎性因子的大量分泌。  相似文献   

12.
目的:探讨棕榈酸(Palmiticacid,PA)对人肝癌细胞系SMMC-7721侵袭转移能力的影响,并通过检测肝癌细胞系中CD147-MMPs信号通路在PA影响下的变化,初探PA影响肝癌细胞侵袭转移的分子机制。方法:PA(0、20、50、100μM)作用SMMC-7721细胞后(8、16、24h),MTT法检测细胞增殖,划痕及Transwell实验评价细胞迁移侵袭能力,Western-blot及real-time PCR检测CD147蛋白及其mRNA的水平,ELISA检测基质金属蛋白酶(MMP-2,MMP-9)的水平。结果:与对照组相比,PA作用SMMC-7721细胞后,细胞存活率无显著差异(P0.05);细胞迁移和侵袭能力显著增高(P0.05);CD147蛋白及其mRNA的表达显著增高(P0.05);培养上清中MMP-9的浓度显著增高(P0.05),MMP-2的水平则无变化。不同的梯度组之间相比较,细胞迁移和侵袭能力、CD147的表达水平(蛋白及其mRNA)以及培养上清中MMP-9的浓度均随PA作用时间和作用剂量的增大而产生更显著的增高。结论:PA通过活化CD147-MMPs信号通路促进SMMC-7721细胞的迁移侵袭。  相似文献   

13.
ABSTRACT: Previous work has demonstrated that phorbol ester (TPA)-induced adherence of human U937 myeloid leukemia cells can be blocked upon down-modulation of the β2-integrin CD11b after stable transfection of U937 cells with a pMTH1 vector-containing the CD11b gene in antisense orientation (asCD11b-U937) [Otte et al., (2011)]. In the present study, alterations in metabolism-associated factors, particularly intra- and extracellular proteases were investigated. A measurement of telomerase activity in the leukemic cells revealed continuously decreasing telomere adducts within 72?h of TPA treatment in pMTH1-U937 cells. In contrast, telomerase activity sustained in asCD11b-U937 upon TPA-induced differentiation. Flow cytometric analysis confirmed unchanged CD11b levels in TPA-induced asCD11b-U937 in contrast to elevated levels in pMTH1-U937 whereby the expression of other β2-integrins including CD11a, CD11c and CD18 was increased in both populations after TPA treatment. Moreover, adherent pMTH1-U937 demonstrated the expression of monocytic differentiation markers including F4-80 and CD14 and an increased MIP-1α production which remained at low or undetectable in TPA-induced asCD11b-U937. These effects indicated an altered response of the different cell populations to the TPA-induced differentiation process. Indeed, Western blot analysis revealed differences in the expression levels of intracellular metabolic factors including MnSOD and p97/VCP and after measurement of 20?S proteasomal proteolytic activity. In addition, increased levels of extracellular metabolic factors including the matrix metalloproteinases MMP-1, MMP-7 and MMP-9 were observed in pMTH1-U937 cells in contrast to unaltered levels in asCD11b-U937 cells.  相似文献   

14.
The formation of macrophage foam cells, which is the key event in atherosclerosis, occurs by the uptake of oxidized low-density lipoprotein (Ox-LDL) via the scavenger receptor (CD36) pathway. Ca(2+) plays an important role in atherosclerosis. However, in the spatiotemporal view, the correlation between kinetic changes of intracellular-free calcium ([Ca(2+)](i)) and the cellular dysfunctions in the formation of macrophage foam cells has not yet been studied in detail. By the use of confocal laser scanning microscope and flow cytometer, we have detected Ca(2+) dynamics, the assembly of F-actin, and the expression of CD36 under the exposure of U937-derived macrophages to Ox-LDL. The uptake of Ox-LDL significantly increased [Ca(2+)](i) in U937-derived macrophages in both acute and chronic treatments (P<0.01). In particular, the increases of the induced [Ca(2+)](i) were different in the presence or absence of extracellular Ca(2+) under acute exposure. A time-dependent rise in F-actin assembly and CD36 expression at 12 and 24h was induced, respectively, by Ox-LDL. The spatiotemporal increases of [Ca(2+)](i) induced by Ox-LDL probably have the key effect on the early phrase in the formation of macrophage foam cells.  相似文献   

15.
目的:研究扇贝裙边糖氨聚糖时氧化低密度脂蛋白(ox-LDL)诱导的U937细胞泡沫化过程中血管内皮生长因子(VEGF)的影响,探讨其抗动脉粥样硬化作用的机理。方法:采用U937细胞与80mg/L的ox-LDL孵育48h建立U937泡沫细胞模型。将培养的U937细胞随机分为六组,正常对照组、模型组(ox-LDL)、肝素对照组(ox-LDL加100mg/L肝素)和低、中、高浓度的SS-GAG药物组(ox-LDL加200mg/L,400mg/L,800mg/L的SS-GAG)。采用酶联免疫吸附实验(ELISA)检测细胞分泌的VEGF的量,观察不同浓度SS-GAG对U937细胞泡沫化过程中VEGF表达量的影响。结果:培养的U937泡沫细胞中VEGF的表达量明显高于正常U937细胞(P<0.01),而加入SS-GAG的药物组和肝素对照组则有不同程度降低,以800mg/mL药物组降低最为明显(P<0.01)。结论:泡沫细胞形成过程中伴有VEGF的高表达,SS-GAG能够抑制其表达从而发挥抗动脉粥样硬化作用。  相似文献   

16.

Background

Inflammatory lung diseases are a major morbidity factor in children. Therefore, novel strategies for early detection of inflammatory lung diseases are of high interest. Bacterial lipopolysaccharide (LPS) is recognized via Toll-like receptors and CD14. CD14 exists as a soluble (sCD14) and membrane-associated (mCD14) protein, present on the surface of leukocytes. Previous studies suggest sCD14 as potential marker for inflammatory diseases, but their potential role in pediatric lung diseases remained elusive. Therefore, we examined the expression, regulation and significance of sCD14 and mCD14 in pediatric lung diseases.

Methods

sCD14 levels were quantified in serum and bronchoalveolar lavage fluid (BALF) of children with infective (pneumonia, cystic fibrosis, CF) and non-infective (asthma) inflammatory lung diseases and healthy control subjects by ELISA. Membrane CD14 expression levels on monocytes in peripheral blood and on alveolar macrophages in BALF were quantified by flow cytometry. In vitro studies were performed to investigate which factors regulate sCD14 release and mCD14 expression.

Results

sCD14 serum levels were specifically increased in serum of children with pneumonia compared to CF, asthma and control subjects. In vitro, CpG induced the release of sCD14 levels in a protease-independent manner, whereas LPS-mediated mCD14 shedding was prevented by serine protease inhibition.

Conclusions

This study demonstrates for the first time the expression, regulation and clinical significance of soluble and membrane CD14 receptors in pediatric inflammatory lung diseases and suggests sCD14 as potential marker for pneumonia in children.  相似文献   

17.
1-Phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) is a synthetic inhibitor toward glucosyl transferase. Here, we showed the functional role of sphingolipids on CD54 expression of endothelial cells (ECs) by the use of PDMP. CD54 mRNA expression in human umbilical vein endothelial cells (HUVECs) was not changed by PDMP; however, PDMP treatment significantly enhanced the expression of membrane-bound CD54 (mCD54) on HUVECs. In contrast, the amount of soluble form of CD54 (sCD54) in the culture supernatants of HUVECs was diminished by PDMP. Similar results were obtained when HUVECs were incubated with metalloproteinase inhibitor, KB-R8301, or in the presence of C2-ceramide. The above effect of PDMP, KB-R8301, and C2-ceramide in HUVECs was commonly found in unstimulated, TNF-alpha-stimulated, and IL-1beta-stimulated HUVECs. These data provide the possibility that the shedding of mCD54 into sCD54 by metalloproteinase-like enzyme is inhibited by PDMP, in which PDMP-induced accumulation of ceramide may act as a second messenger.  相似文献   

18.
19.
Soluble CD14 (sCD14), a 55-kDa glycoprotein found in plasma, has been shown to act as a shuttle for bacterial LPS and phospholipids, transporting LPS and phospholipid monomers from LPS aggregates or liposomes to high density lipoprotein particles. sCD14 has also been shown to mediate the transport of LPS and phosphatidylinositol into cells. Here we show that sCD14 mediates not only the influx but also the efflux of cellular phospholipids. Addition of sCD14 enhanced efflux of cellular phospholipids labeled with [(3)H]palmitic acid, [(3)H]oleic acid, or [(3)H]choline chloride from differentiated THP-1 monocytic cells. Efflux was dependent on the concentration of sCD14 added and was essentially complete in 30 min. The role of membrane-bound CD14 (mCD14) in lipid efflux was assessed using matched pairs of cell lines that express or fail to express this protein. While efflux was very dependent on mCD14 in U373 cells, it was not dependent on mCD14 in Chinese hamster ovary cells, suggesting a role for additional cellular proteins in determining the pathway of phospholipid efflux. A deletion mutant of sCD14 lacking the LPS binding site had less ability to efflux phospholipids than intact sCD14, suggesting that this site is needed for CD14 to serve in phospholipid transport. [(3)H]Palmitate-labeled lipids released by sCD14 were precipitated with anti-CD14 then analyzed by HPLC. Phosphatidylcholine was the dominant phospholipid exported and bound to sCD14. These results demonstrate that sCD14 mediates efflux of phospholipids from cells and suggest that sCD14 contributes to phospholipid transport in blood.  相似文献   

20.
CD23, the low-affinity receptor for IgE, exists in membrane and soluble forms. Soluble CD23 (sCD23) fragments are released from membrane (m)CD23 by the endogenous metalloprotease a disintegrin and metalloprotease 10. When purified tonsil B cells are incubated with IL-4 and anti-CD40 to induce class switching to IgE in vitro, mCD23 is upregulated, and sCD23 accumulates in the medium prior to IgE synthesis. We have uncoupled the effects of mCD23 cleavage and accumulation of sCD23 on IgE synthesis in this system. We show that small interfering RNA inhibition of CD23 synthesis or inhibition of mCD23 cleavage by an a disintegrin and metalloprotease 10 inhibitor, GI254023X, suppresses IL-4 and anti-CD40-stimulated IgE synthesis. Addition of a recombinant trimeric sCD23 enhances IgE synthesis in this system. This occurs even when endogenous mCD23 is protected from cleavage by GI254023X, indicating that IgE synthesis is positively controlled by sCD23. We show that recombinant trimeric sCD23 binds to cells coexpressing mIgE and mCD21 and caps these proteins on the B cell membrane. Upregulation of IgE by sCD23 occurs after class-switch recombination, and its effects are isotype-specific. These results suggest that mIgE and mCD21 cooperate in the sCD23-mediated positive regulation of IgE synthesis on cells committed to IgE synthesis. Feedback regulation may occur when the concentration of secreted IgE becomes great enough to allow binding to mCD23, thus preventing further release of sCD23. We interpret these results with the aid of a model for the upregulation of IgE by sCD23.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号