首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
  • Intraspecific trait variation (ITV; i.e. variability in mean and/or distribution of plant attribute values within species) can occur in response to multiple drivers. Environmental change and land‐use legacies could directly alter trait values within species but could also affect them indirectly through changes in vegetation cover. Increasing variability in environmental conditions could lead to more ITV, but responses might differ among species. Disentangling these drivers on ITV is necessary to accurately predict plant community responses to global change.
  • We planted herb communities into forest soils with and without a recent history of agriculture. Soils were collected across temperate European regions, while the 15 selected herb species had different colonizing abilities and affinities to forest habitat. These mesocosms (384) were exposed to two‐level full‐factorial treatments of warming, nitrogen addition and illumination. We measured plant height and specific leaf area (SLA).
  • For the majority of species, mean plant height increased as vegetation cover increased in response to light addition, warming and agricultural legacy. The coefficient of variation (CV) for height was larger in fast‐colonizing species. Mean SLA for vernal species increased with warming, while light addition generally decreased mean SLA for shade‐tolerant species. Interactions between treatments were not important predictors.
  • Environmental change treatments influenced ITV, either via increasing vegetation cover or by affecting trait values directly. Species’ ITV was individualistic, i.e. species responded to different single resource and condition manipulations that benefited their growth in the short term. These individual responses could be important for altered community organization after a prolonged period.
  相似文献   

2.
Plant community composition and functional traits respond to chronic drivers such as climate change and nitrogen (N) deposition. In contrast, pulse disturbances from ecosystem management can additionally change resources and conditions. Community responses to combined environmental changes may further depend on land‐use legacies. Disentangling the relative importance of these global change drivers is necessary to improve predictions of future plant communities. We performed a multifactor global change experiment to disentangle drivers of herbaceous plant community trajectories in a temperate deciduous forest. Communities of five species, assembled from a pool of 15 forest herb species with varying ecological strategies, were grown in 384 mesocosms on soils from ancient forest (forested at least since 1850) and postagricultural forest (forested since 1950) collected across Europe. Mesocosms were exposed to two‐level full‐factorial treatments of warming, light addition (representing changing forest management) and N enrichment. We measured plant height, specific leaf area (SLA) and species cover over the course of three growing seasons. Increasing light availability followed by warming reordered the species towards a taller herb community, with limited effects of N enrichment or the forest land‐use history. Two‐way interactions between treatments and incorporating intraspecific trait variation (ITV) did not yield additional inference on community height change. Contrastingly, community SLA differed when considering ITV along with species reordering, which highlights ITV’s importance for understanding leaf morphology responses to nutrient enrichment in dark conditions. Contrary to our expectations, we found limited evidence of land‐use legacies affecting community responses to environmental changes, perhaps because dispersal limitation was removed in the experimental design. These findings can improve predictions of community functional trait responses to global changes by acknowledging ITV, and subtle changes in light availability. Adaptive forest management to impending global change could benefit the restoration and conservation of understorey plant communities by reducing the light availability.  相似文献   

3.
Human activities are decreasing biodiversity and changing the climate worldwide. Both global change drivers have been shown to affect ecosystem functioning, but they may also act in concert in a non‐additive way. We studied early‐stage litter mass loss rates and soil microbial properties (basal respiration and microbial biomass) during the summer season in response to plant species richness and summer drought in a large grassland biodiversity experiment, the Jena Experiment, Germany. In line with our expectations, decreasing plant diversity and summer drought decreased litter mass loss rates and soil microbial properties. In contrast to our hypotheses, however, this was only true for mass loss of standard litter (wheat straw) used in all plots, and not for plant community‐specific litter mass loss. We found no interactive effects between global change drivers, that is, drought reduced litter mass loss rates and soil microbial properties irrespective of plant diversity. High mass loss rates of plant community‐specific litter and low responsiveness to drought relative to the standard litter indicate that soil microbial communities were adapted to decomposing community‐specific plant litter material including lower susceptibility to dry conditions during summer months. Moreover, higher microbial enzymatic diversity at high plant diversity may have caused elevated mass loss of standard litter. Our results indicate that plant diversity loss and summer drought independently impede soil processes. However, soil decomposer communities may be highly adapted to decomposing plant community‐specific litter material, even in situations of environmental stress. Results of standard litter mass loss moreover suggest that decomposer communities under diverse plant communities are able to cope with a greater variety of plant inputs possibly making them less responsive to biotic changes.  相似文献   

4.
Conflicting hypotheses predict how traits mediate species establishment and community assembly. Traits of newly establishing individuals are predicted to converge, or be more similar to the resident, preexisting community, when the biotic or abiotic environment favors a single best phenotype, but are predicted to diverge when trait differences reduce competitive interactions. We tested these competing hypotheses using transplant seedlings in an old‐field environment, and assessed the contribution of inter‐ and intra‐specific transplant trait variation to community‐level patterns. Using a soil moisture gradient and resident plant removals, we determined when traits of newly‐establishing plants converge or diverge from the resident community by calculating community weighted mean traits for transplant and resident communities. We saw evidence of environmentally‐ and competitively‐driven trait shifts that resulted in both trait convergence and divergence from the resident community, whose traits reflect the combined effects of both drivers. Leaf dry matter content (LDMC) of transplants diverged in the presence of competition, whereas plant height and stem‐specific density (SSD) showed the opposite pattern, converging with the resident community in their presence. Specific leaf area (SLA) shifted with competition but did not reflect resident community SLA. All transplant traits were influenced by soil moisture, often in an interaction with competition, indicating that the strength of convergence or divergence is contingent on the abiotic environment. Intraspecific differences in transplant traits among treatments were evident in three of four traits; intraspecific height and SLA trends mirrored transplant community‐level trends, whereas intraspecific shifts in SSD were distinct from community‐level trends. Our study shows competition between plant species may cause traits of newly establishing plants to converge with the resident community, as frequently as it selects for trait divergence. These opposing effects of competition suggest that it plays a pervasive role in both intraspecific and species‐level trait differences among communities.  相似文献   

5.
In grasslands, fire management and fertilization are established drivers of plant community change, but associated soil fungal responses are less well defined. We predicted that soil fungal communities would change seasonally, that decades of fire cessation and nitrogen (N) fertilization would alter fungal distributions, and that plant and fungal community change would be correlated. Surface soils were sampled monthly for 1 y from a 30-y fire by fertilization experiment to evaluate fungal community dynamics and assess correlation with plant community heterogeneity. ITS gene community composition was seasonally stable, excepting increased arbuscular mycorrhizal fungal summer abundance in the burned, fertilized treatment. Long-term treatments affected soil fungal and plant communities, with correlated heterogeneity patterns. Despite woody encroachment in the fire cessation treatment, soil fungal communities did not resemble those of forests. This study provides evidence supporting the strength of feedbacks between fungal and plant community change in response to long-term grassland fire and N management changes.  相似文献   

6.
  • Forest understorey plants are sensitive to light availability, and different species groups can respond differently to changing light conditions. A plant trait tightly linked to light capture is specific leaf area (SLA). Studies considering the relative role of within‐ and among‐species SLA variation across different species groups (e.g. specialists and generalists) are rarely implemented in temperate forest understories varying in their maturity.
  • We examined community‐level SLA patterns of beech forest understories along a light availability gradient, and for habitat specialists and generalists separately. We then disentangled and quantified the contribution of intraspecific trait variability and interspecific trait differences in shaping SLA patterns.
  • We revealed that the increase in community‐level SLA with decreasing light availability was primarily driven by beech forest specialists (and, to a lesser extent, by forest generalists), and this pattern was mainly determined by specialists’ high intraspecific variability. Community‐level SLA was therefore formed by different responses at different organizational levels, i.e. within and among species, and for separate species groups.
  • This study provides insights into factors shaping the shade tolerance strategy in beech forest understorey plants; specialists persistence under putative less favourable conditions (i.e. high irradiation) may be fostered by their ability to adjust their light capture strategies intraspecifically.
  相似文献   

7.
The aim of this study was to analyse and quantify the effects of the canopy of the native-invasive N-fixer woody shrub Retama monosperma in the dune ecosystem, affecting the structure and function of the dune environment as well as plant community, in the context of the facilitation mechanism. Air temperature and relative humidity; soil pH, electric conductivity, organic matter (OM) and nutrient content; above and below-ground vegetation biomass, litter mass, species richness and Shannon diversity were determined and compared from sampling plots below the R. monosperma canopy and in canopy gaps within a coastal dune system in SW Spain. The relationships between soil OM and nutrient contents and above and below-ground vegetation biomass, litter mass, species richness and Shannon diversity were also assessed. A predominance of positive interactions was confirmed. The canopy of R. monosperma ameliorated temperature extremes beneath, and soil OM and nutrient concentrations were increased by 188–466%, compared to those found in gaps. Plant biomass increased by 442% beneath the canopy and was composed almost exclusively of herbaceous annuals. Plant diversity was not affected. Plant communities were clearly structured as fertility islands, distributed in an environmentally stressful dune matrix characterized by scarce vegetation cover and low biomass.  相似文献   

8.
  1. Mires are characterized by plant communities of high conservation and societal value, which have experienced a major decline in area in many parts of the world, particularly Europe. Evidence suggests that they may be particularly vulnerable to changes in climate and nutrient addition. Although they have been the focus of extensive paleoecological research, few attempts have been made to examine the dynamics of mire vegetation during the current era of anthropogenic environmental change.
  2. To assess long‐term change in the spatial structure and composition of a lowland mire community, in 2016 we resurveyed plots first surveyed in 1951. Measures of species richness and composition were compared between the two surveys, and changes in community composition were related to plant traits.
  3. Overall, mean species richness declined by 26%. The area of occupancy declined in 37% of species, which were primarily oligotrophic species typical of nutrient‐poor bog communities. Conversely, occupancy increased in 21% of species, especially those that were more tolerant of higher nutrient availability. These changes were associated with variation in plant functional traits, as indicated by an increase mean Ellenberg trait values for nitrogen and mean temperature, and a decline in values for precipitation. These results suggest that eutrophication and climate change have been key drivers of floristic change on this site.
  4. Synthesis. This investigation provides a rare assessment of the dynamics of a mire community over a multi‐decadal interval. Results indicate that substantial change has occurred in the composition of the community, and the distribution of species within it. The investigation provides evidence of the impact of environmental change on the composition and structure of a lowland mire community, and highlights challenges for its future conservation.
  相似文献   

9.
In late‐successional environments, low in available nutrient such as the forest understory, herbaceous plant individuals depend strongly on their mycorrhizal associates for survival. We tested whether in temperate European forests arbuscular mycorrhizal (AM) woody plants might facilitate the establishment of AM herbaceous plants in agreement with the mycorrhizal mediation hypothesis. We used a dataset spanning over 400 vegetation plots in the Weser‐Elbe region (northwest Germany). Mycorrhizal status information was obtained from published resources, and Ellenberg indicator values were used to infer environmental data. We carried out tests for both relative richness and relative abundance of herbaceous plants. We found that the subset of herbaceous individuals that associated with AM profited when there was a high cover of AM woody plants. These relationships were retained when we accounted for environmental filtering effects using path analysis. Our findings build on the existing literature highlighting the prominent role of mycorrhiza as a coexistence mechanism in plant communities. From a nature conservation point of view, it may be possible to promote functional diversity in the forest understory through introducing AM woody trees in stands when absent.  相似文献   

10.
  • Soil fungal communities play an important role in the successful invasion of non‐native species. It is common for two or more invasive plant species to co‐occur in invaded ecosystems.
  • This study aimed to determine the effects of co‐invasion of two invasive species (Erigeron annuus and Solidago canadensis) with different cover classes on soil fungal communities using high‐throughput sequencing.
  • Invasion of E. annuus and/or Scanadensis had positive effects on the sequence number, operational taxonomic unit (OTU) richness, Shannon diversity, abundance‐based cover estimator (ACE index) and Chao1 index of soil fungal communities, but negative effects on the Simpson index. Thus, invasion of E. annuus and/or Scanadensis could increase diversity and richness of soil fungal communities but decrease dominance of some members of these communities, in part to facilitate plant further invasion, because high soil microbial diversity could increase soil functions and plant nutrient acquisition. Some soil fungal species grow well, whereas others tend to extinction after non‐native plant invasion with increasing invasion degree and presumably time. The sequence number, OTU richness, Shannon diversity, ACE index and Chao1 index of soil fungal communities were higher under co‐invasion of E. annuus and Scanadensis than under independent invasion of either individual species.
  • The co‐invasion of the two invasive species had a positive synergistic effect on diversity and abundance of soil fungal communities, partly to build a soil microenvironment to enhance competitiveness of the invaders. The changed diversity and community under co‐invasion could modify resource availability and niche differentiation within the soil fungal communities, mediated by differences in leaf litter quality and quantity, which can support different fungal/microbial species in the soil.
  相似文献   

11.
12.
13.
14.
15.
土壤线虫对气候变化的响应研究进展   总被引:2,自引:0,他引:2  
宋敏  刘银占  井水水 《生态学报》2015,35(20):6857-6867
全球变化对陆地生态系统功能具有重要而深远的影响。陆地生态系统地下部分具有重要的生态功能,其组成及结构对气候变化的响应将进一步减缓或加剧全球化进程。土壤线虫在各类生态系统中分布十分广泛,是地下食物网的重要组分,在维持土壤生物多样性及营养物质循环过程中发挥重要作用,其组成及结构对不同气候变化驱动因子的响应机制与模式不尽相同。增温及降水格局变化主要是通过改变线虫生境而直接影响其种群密度与结构,两者通常表现为正效应且作用效果随处理时间的延长而增强。CO2与大气氮沉降主要是通过影响地上植被,凋落物质量,土壤理化性质等间接过程影响土壤线虫。同时,不同的全球变化因子之间存在着复杂的交互作用,深入理解这些因子之间交互作用对线虫群落的影响模式与机制对于探讨未来气候变化情景下生态统生物多样性及养分循环过程具有重要的理论指导意义。  相似文献   

16.
17.
Understanding ecosystem carbon (C) and nitrogen (N) cycling under global change requires experiments maintaining natural interactions among soil structure, soil communities, nutrient availability, and plant growth. In model Douglas-fir ecosystems maintained for five growing seasons, elevated temperature and carbon dioxide (CO2) increased photosynthesis and increased C storage belowground but not aboveground. We hypothesized that interactions between N cycling and C fluxes through two main groups of microbes, mycorrhizal fungi (symbiotic with plants) and saprotrophic fungi (free-living), mediated ecosystem C storage. To quantify proportions of mycorrhizal and saprotrophic fungi, we measured stable isotopes in fungivorous microarthropods that efficiently censused the fungal community. Fungivorous microarthropods consumed on average 35% mycorrhizal fungi and 65% saprotrophic fungi. Elevated temperature decreased C flux through mycorrhizal fungi by 7%, whereas elevated CO2 increased it by 4%. The dietary proportion of mycorrhizal fungi correlated across treatments with total plant biomass (n= 4, r2= 0.96, P= 0.021), but not with root biomass. This suggests that belowground allocation increased with increasing plant biomass, but that mycorrhizal fungi were stronger sinks for recent photosynthate than roots. Low N content of needles (0.8–1.1%) and A horizon soil (0.11%) coupled with high C : N ratios of A horizon soil (25–26) and litter (36–48) indicated severe N limitation. Elevated temperature treatments increased the saprotrophic decomposition of litter and lowered litter C : N ratios. Because of low N availability of this litter, its decomposition presumably increased N immobilization belowground, thereby restricting soil N availability for both mycorrhizal fungi and plant growth. Although increased photosynthesis with elevated CO2 increased allocation of C to ectomycorrhizal fungi, it did not benefit plant N status. Most N for plants and soil storage was derived from litter decomposition. N sequestration by mycorrhizal fungi and limited N release during litter decomposition by saprotrophic fungi restricted N supply to plants, thereby constraining plant growth response to the different treatments.  相似文献   

18.
Restoration of areas used for intensive even-aged Norway spruce (Picea abies Karst.) plantations often involves felling and subsequent spontaneous vegetation succession. However, the accumulated litter layer may hamper vegetation development, and thereby postpone recovery or even change the outcome.We studied effects of the litter layer on vegetation establishment during two seasons following a clear-cut of Norway spruce in Denmark. We experimentally assessed the response of multiple vegetation properties to litter removal, with and without wildlife exclusion by fencing, and in combination with sowing of trees, while fencing. Burning was tested as an alternative way to remove the litter layer.Vegetation establishment was poor, when the litter layer was intact, and cover developed slowly remaining below 10% after two years, irrespective of fencing. In contrast, litter removal and fencing together gave significantly faster recovery and reached nearly 60% mean cover. Vegetation cover was driven by few dominant species, especially the sedge Carex pilulifera. Species richness was similar in all treatments, but increased with sowing of trees. Fencing resulted in taller birch seedlings independently of litter removal, but enhanced by seedling density. Litter removal seemed to favor species with lighter seeds, lower specific leaf area (SLA) and lower Ellenberg N value, i.e. associated with relative infertile conditions. Disturbing the litter by burning seemed to have an effect comparable to mechanical removal, and could be a management alternative.Our results showed that a persistent litter layer after spruce plantation removal may hamper the initial vegetation establishment. Actively removing litter may serve as an additional restoration intervention to overcome this legacy. However, as grazing can keep this potential in check, wildlife exclusion may be necessary as well. To speed up recovery and diversify vegetation structure after spruce plantation removal, we suggest patchy disturbance of the litter, essentially combined with wildlife exclusion.  相似文献   

19.
20.
We used microbial lipid analysis to analyze microbial biomass and community structure during 6 years of experimental treatment at the Jasper Ridge Global Change Experiment (JRGCE), a long‐term multi‐factor global change experiment in a California annual grassland. The microbial community fingerprint and specific biomarkers varied substantially from year to year, in both control and experimental treatment plots. Possible drivers of the variability included plant growth, soil moisture, and ambient temperature. Surprisingly, background variation in the microbial community was of a larger magnitude than even very significant treatment effects, and this variation appeared to constrain responses to treatment. Microbial communities were mostly not responsive or not consistently responsive to the experimental treatments. Both arbuscular mycorrhizal fungi biomarker abundance (16 : 1 ω5c) and the fungal to bacterial ratio were lower under nitrogen addition in most years. Bacterial lipid biomarker abundances (15 : 0 iso and 16 : 1 ω7c) were higher under nitrogen addition in 2002, the year of largest microbial biomass, suggesting that bacteria could respond more to nitrogen addition in years of better growth conditions. Nitrogen addition and warming led to an interactive effect on the Gram‐positive bacterial biomarker and the fungal to bacterial ratio. These patterns indicate that in California grassland ecosystems, microbial communities may not respond substantially to future changes in climate and that nitrogen deposition may be a determinant of the soil response to global change. Further, year‐to‐year variation in microbial growth or community composition may be important determinants of ecosystem response to global change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号