首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Using Thr(P)-inhibitor-1 and Ser(P)-casein as substrates, studies on the activation of calcineurin purified from bovine brain have been carried out. The phosphatase requires the synergistic action of Ca2+, calmodulin and another divalent cation (Mg2+, Mn2+, Co2+ or Ni2+, but not Zn2+) for full expression of its activity. Ca2+ and Ca2+ X calmodulin act as allosteric activators to transform the phosphatase to a relaxed conformation, while Mg2+ acts solely as a cofactor for the catalytic action of the enzyme. In addition to their function as cofactors for catalysis, transition metal ions can also substitute for Ca2+ as allosteric activators. Ca2+ and calmodulin exert their activating effects mainly by increasing the Vm of the phosphatase reaction with little effect on the Km values for the substrates or on the KA values for the divalent cation cofactors. The predominant factor in dictating the catalytic properties of calcineurin is the divalent cation cofactor. For example, with Mg2+ as a cofactor, the phosphatase exhibits an optimum around pH 8.0-8.5; while with a transition metal ion as a cofactor, the optimum is around pH 7.0-7.5, regardless of whether Thr(P)-inhibitor-1 or Ser(P)-casein serves as a substrate, in the absence or the presence of Ca2+ X calmodulin.  相似文献   

14.
15.
The kinetics of tissue plasminogen activator (t-PA) and DSPAalpha1-catalyzed plasminogen activation using untreated and TAFIa-treated fibrin degradation products (FDPs), ranging in weight average molecular weight (M(w)) from 0.48 x 10(6) to 4.94 x 10(6) g/mol, were modeled according to the steady-state template model. The FDPs served as effective cofactors for both activators. The intrinsic catalytic efficiencies of both t-PA (17.4 x 10(5) m(-1) s(-1)) and DSPAalpha1 (6.0 x 10(5) m(-1) s(-1)) were independent of FDP M(w). The intrinsic catalytic efficiency of t-PA was 12-fold higher than that measured under identical conditions with intact fibrin as the cofactor. At sub-saturating levels of cofactor and substrate, rates were strongly dependent on FDP M(w) with DSPAalpha1 but not t-PA. Loss of activity with decreasing FDP M(w) correlated with loss of finger-dependent binding of the activators to the FDPs. TAFIa treatment of the FDPs resulted in 90- and 215-fold decreases in the catalytic efficiencies of t-PA (0.20 x 10(5) m(-)(1) s(-1)) and DSPAalpha1 (0.028 x 10(5) m(-1) s(-1)), yielding cofactors that were still 30- and 50-fold better than fibrinogen with t-PA and DSPAalpha1, respectively. Our results show that for both activators the products released during fibrinolysis are very effective cofactors for plasminogen activation, and both t-PA and DSPAalpha1 cofactor activity are strongly down-regulated by TAFIa.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号