首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
Aim Winter snow has been suggested to regulate terrestrial carbon (C) cycling by modifying microclimate, but the impacts of change in snow cover on the annual C budget at a large scale are poorly understood. Our aim is to quantify the C balance under changing snow depth. Location Non‐permafrost region of the northern forest area. Methods Here, we used site‐based eddy covariance flux data to investigate the relationship between depth of snow cover and ecosystem respiration (Reco) during winter. We then used the Biome‐BGC model to estimate the effect of reductions in winter snow cover on the C balance of northern forests in the non‐permafrost region. Results According to site observations, winter net ecosystem C exchange (NEE) ranged from 0.028 to 1.53 gC·m?2·day?1, accounting for 44 ± 123% of the annual C budget. Model simulation showed that over the past 30 years, snow‐driven change in winter C fluxes reduced non‐growing season CO2 emissions, enhancing the annual C sink of northern forests. Over the entire study area, simulated winter Reco significantly decreased by 0.33 gC·m?2·day?1·year?1 in response to decreasing depth of snow cover, which accounts for approximately 25% of the simulated annual C sink trend from 1982 to 2009. Main conclusion Soil temperature is primarily controlled by snow cover rather than by air temperature as snow serves as an insulator to prevent chilling impacts. A shallow snow cover has less insulation potential, causing colder soil temperatures and potentially lower respiration rates. Both eddy covariance analysis and model‐simulated results show that both Reco and NEE are significantly and positively correlated with variation in soil temperature controlled by variation in snow depth. Overall, our results highlight that a decrease in winter snow cover restrains global warming as less C is emitted to the atmosphere.  相似文献   

2.
The net photosynthetic rate (P N), the sample room CO2 concentration (CO2S) and the intercellular CO2 concentration (C i) in response to PAR, of C3 (wheat and bean) and C4 (maize and three-colored amaranth) plants were measured. Results showed that photorespiration (R p) of wheat and bean could not occur at 2 % O2. At 2 % O2 and 0 μmol mol?1 CO2, P N can be used to estimate the rate of mitochondrial respiration in the light (R d). The R d decreased with increasing PAR, and ranged between 3.20 and 2.09 μmol CO2 m?2 s?1 in wheat. The trend was similar for bean (between 2.95 and 1.70 μmol CO2 m?2 s?1), maize (between 2.27 and 0.62 μmol CO2 m?2 s?1) and three-colored amaranth (between 1.37 and 0.49 μmol CO2 m?2 s?1). The widely observed phenomenon of R d being lower than R n can be attributed to refixation, rather than light inhibition. For all plants tested, CO2 recovery rates increased with increasing light intensity from 32 to 55 % (wheat), 29 to 59 % (bean), 54 to 87 % (maize) and 72 to 90 % (three-colored amaranth) at 50 and 2,000 μmol m?2 s?1, respectively.  相似文献   

3.
We report a data-set of dissolved methane (CH4) in three rivers (Comoé, Bia and Tanoé) and five lagoons (Grand-Lahou, Ebrié, Potou, Aby and Tendo) of Ivory Coast (West Africa), during the four main climatic seasons (high dry season, high rainy season, low dry season and low rainy season). The surface waters of the three rivers were over-saturated in CH4 with respect to atmospheric equilibrium (2221–38719%), and the seasonal variability of CH4 seemed to be largely controlled by dilution during the flooding period. The strong correlation of CH4 concentrations with the partial pressure of CO2 (pCO2) and dissolved silicate (DSi) confirm the dominance of a continental sources (from soils) for both CO2 and CH4 in these rivers. Diffusive air–water CH4 fluxes ranged between 25 and 1187 μmol m?2 day?1, and annual integrated values were 288 ± 107, 155 ± 38, and 241 ± 91 μmol m?2 day?1 in the Comoé, Bia and Tanoé rivers, respectively. In the five lagoons, surface waters were also over-saturated in CH4 (ranging from 1496 to 51843%). Diffusive air–water CH4 fluxes ranged between 20 and 2403 μmol m?2 day?1, and annual integrated values were 78 ± 34, 338 ± 217, 227 ± 79, 330 ± 153 and 326 ± 181 μmol m?2 day?1 in the Grand-Lahou, Ebrié, Potou, Aby and Tendo lagoons, respectively. The largest CH4 over-saturations were observed in the Tendo and Aby lagoons that are permanently stratified systems (unlike the other three lagoons), leading to anoxic bottom waters favorable for a large CH4 production. In addition, these two stratified lagoons showed low pCO2 values due to high primary production, which suggests an efficient transfer of organic matter across the pycnocline. As a result, the stratified Tendo and Aby lagoons were respectively, a low source of CO2 to the atmosphere and a sink of atmospheric CO2 while the other three well-mixed lagoons were strong sources of CO2 to the atmosphere but less over-saturated in CH4.  相似文献   

4.
Stereocaulon foliolosum a fruticose type of lichen under its natural habitat is subjected to low temperature, high light conditions and frequent moisture stress due its rocky substratum. To understand as to how this lichen copes up with these stresses, we studied the reflectance properties, light utilization capacity and the desiccation tolerance under laboratory conditions. S. foliolosum showed light saturation point for photosynthesis at 390 μmol CO2 m?2 s?1 and the light compensation point for photosynthesis at 64 μmol CO2 m?2 s?1. Our experiments show that S. foliolosum has a low absorptivity (30–35 %) towards the incident light. The maximum rates of net photosynthesis and apparent electron transport observed were 1.9 μmol CO2 m?2 s?1 and 45 μmol e? m?2 s?1, respectively. The lichen recovers immediately after photoinhibition under low light conditions. S. foliolosum on subjecting to desiccation results in the decrease of light absorptivity and the reflectance properties associated with water status of the thalli show a change. During desiccation, a simultaneous decrease in photosynthesis, dark respiration and quenching in the fluorescence properties was observed. However, all the observed changes show a rapid recovery on rewetting the lichen. Our study shows that desiccation does not have a severe or long-term impact on S. foliolosum and the lichen is also well adapted to confront high light intensities.  相似文献   

5.
Forest soils and canopies are major components of ecosystem CO2 and CH4 fluxes. In contrast, less is known about coarse woody debris and living tree stems, both of which function as active surfaces for CO2 and CH4 fluxes. We measured CO2 and CH4 fluxes from soils, coarse woody debris, and tree stems over the growing season in an upland temperate forest. Soils were CO2 sources (4.58 ± 2.46 µmol m?2 s?1, mean ± 1 SD) and net sinks of CH4 (?2.17 ± 1.60 nmol m?2 s?1). Coarse woody debris was a CO2 source (4.23 ± 3.42 µmol m?2 s?1) and net CH4 sink, but with large uncertainty (?0.27 ± 1.04 nmol m?2 s?1) and with substantial differences depending on wood decay status. Stems were CO2 sources (1.93 ± 1.63 µmol m?2 s?1), but also net CH4 sources (up to 0.98 nmol m?2 s?1), with a mean of 0.11 ± 0.21 nmol m?2 s?1 and significant differences depending on tree species. Stems of N. sylvatica, F. grandifolia, and L. tulipifera consistently emitted CH4, whereas stems of A. rubrum, B. lenta, and Q. spp. were intermittent sources. Coarse woody debris and stems accounted for 35% of total measured CO2 fluxes, whereas CH4 emissions from living stems offset net soil and CWD CH4 uptake by 3.5%. Our results demonstrate the importance of CH4 emissions from living stems in upland forests and the need to consider multiple forest components to understand and interpret ecosystem CO2 and CH4 dynamics.  相似文献   

6.
Localized permafrost disturbances such as active layer detachments (ALDs) are increasing in frequency and severity across the Canadian Arctic impacting terrestrial ecosystem functioning. However, the contribution of permafrost disturbance-carbon feedbacks to the carbon (C) balance of Arctic ecosystems is poorly understood. Here, we explore the short-term impact of active layer detachments (ALDs) on carbon dioxide (CO2) exchange in a High Arctic semi-desert ecosystem by comparing midday C exchange between undisturbed areas, moderately disturbed areas (intact islands of vegetation within an ALD), and highly disturbed areas (non-vegetated areas due to ALD). Midday C exchange was measured using a static chamber method between June 23 and August 8 during the 2009 and 2010 growing seasons. Results show that areas of high disturbance had significantly reduced gross ecosystem exchange and ecosystem respiration (R E) compared to control and moderately disturbed areas. Moderately disturbed areas showed significantly enhanced net ecosystem exchange compared to areas of high disturbance, but were not significantly different from control areas. Disturbance did not significantly impact soil thermal, physical or chemical properties. According to average midday fluxes, ALDs as a whole (moderately disturbed areas: ?1.942 μmol m?2 s?1+ highly disturbed areas: 2.969 μmol m?2 s?1) were a small CO2 source of 1.027 μmol m?2 s?1 which did not differ significantly from average midday fluxes in control areas 1.219 μmol m?2 s?1. The findings of this study provide evidence that the short-term impacts of ALDs on midday, net C exchange and soil properties in a High Arctic semi-desert are minimal.  相似文献   

7.
To reduce CO2 emissions from alcoholic fermentation, Arthrospira platensis was cultivated in tubular photobioreactor using either urea or nitrate as nitrogen sources at different light intensities (60 μmol m?2 s?1?≤?I?≤?240 μmol m?2 s?1). The type of carbon source (pure CO2 or CO2 from fermentation) did not show any appreciable influence on the main cultivation parameters, whereas substitution of nitrate for urea increased the nitrogen-to-cell conversion factor (Y X/N ), and the maximum cell concentration (X m ) and productivity (P X ) increased with I. As a result, the best performance using gaseous emissions from alcoholic fermentation (X m ?=?2,960?±?35 g m?3, P X ?=?425?±?5.9 g m?3 day?1 and Y X/N ?=?15?±?0.2 g g?1) was obtained at I?=?120 μmol m?2 s?1 using urea as nitrogen source. The results obtained in this work demonstrate that the combined use of effluents rich in urea and carbon dioxide could be exploited in large-scale cyanobacteria cultivations to reduce not only the production costs of these photosynthetic microorganisms but also the environmental impact associated to the release of greenhouse emissions.  相似文献   

8.
Measurement of net ecosystem exchange was made using the eddy covariance method above three forests along a north-south climatic gradient in Sweden: Flakaliden in the north, Knottåsen in central and Asa in south Sweden. Data were obtained for 2 years at Flakaliden and Knottåsen and for one year at Asa. The net fluxes (Nep) were separated into their main components, total ecosystem respiration (Rt) and gross primary productivity (Pg). The maximum half-hourly net uptake during the heart of the growing season was highest in the southernmost site with ?0.787 mg COm?2 s?1 followed by Knottåsen with ?0.631 mg COm?2 s?1 and Flakaliden with ?0.429 mg COm?2 s?1. The maximum respiration rates during the summer were highest in Knottåsen with 0.245 mg COm?2 s?1 while it was similar at the two other sites with 0.183 mg COm?2 s?1. The annual Nep ranged between uptake of ?304 g C m?2 year?1 (Asa) and emission of 84 g C m?2 year?1 (Knottåsen). The annual Rt and Pg ranged between 793 to 1253 g C m?2 year?1 and ?875 to ?1317 g C m?2 year?1, respectively. Biomass increment measurements in the footprint area of the towers in combination with the measured net ecosystem productivity were used to estimate the changes in soil carbon and it was found that the soils were losing on average 96–125 g C m?2 year?1. The most plausible explanation for these losses was that the studied years were much warmer than normal causing larger respiratory losses. The comparison of net primary productivity and Pg showed that ca 60% of Pg was utilized for autotrophic respiration.  相似文献   

9.
Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence [summer night mean friction velocity (u*) = 0.7 m s?1], during which bark beetles killed or infested 85% of the aboveground respiring biomass. Chamber‐based estimates of ecosystem respiration during the growth season, developed from foliage, wood, and soil CO2 efflux measurements, declined 35% after 85% of the forest basal area had been killed or impaired by bark beetles (from 7.1 ± 0.22 μmol m?2 s?1 in 2005 to 4.6 ± 0.16 μmol m?2 s?1 in 2011). Soil efflux remained at ~3.3 μmol m?2 s?1 throughout the mortality, while the loss of live wood and foliage and their respiration drove the decline of the chamber estimate. Eddy covariance estimates of fluxes at night remained constant over the same period, ~3.0 μmol m?2 s?1 for both 2005 (intact forest) and 2011 (85% basal area killed or impaired). Eddy covariance fluxes were lower than chamber estimates of ecosystem respiration (60% lower in 2005, and 32% in 2011), but the mean night estimates from the two techniques were correlated within a year (r2 from 0.18 to 0.60). The difference between the two techniques was not the result of inadequate turbulence, because the results were robust to a u* filter of >0.7 m s?1. The decline in the average seasonal difference between the two techniques was strongly correlated with overstory leaf area (r2 = 0.92). The discrepancy between methods of respiration estimation should be resolved to have confidence in ecosystem carbon flux estimates.  相似文献   

10.
The transfer of carbon (C) from Amazon forests to aquatic ecosystems as CO2 supersaturated in groundwater that outgases to the atmosphere after it reaches small streams has been postulated to be an important component of terrestrial ecosystem C budgets. We measured C losses as soil respiration and methane (CH4) flux, direct CO2 and CH4 fluxes from the stream surface and fluvial export of dissolved inorganic C (DIC), dissolved organic C (DOC), and particulate C over an annual hydrologic cycle from a 1,319-ha forested Amazon perennial first-order headwater watershed at Tanguro Ranch in the southern Amazon state of Mato Grosso. Stream pCO2 concentrations ranged from 6,491 to 14,976 ??atm and directly-measured stream CO2 outgassing flux was 5,994 ± 677 g C m?2 y?1 of stream surface. Stream pCH4 concentrations ranged from 291 to 438 ??atm and measured stream CH4 outgassing flux was 987 ± 221 g C m?2 y?1. Despite high flux rates from the stream surface, the small area of stream itself (970 m2, or 0.007% of watershed area) led to small directly-measured annual fluxes of CO2 (0.44 ± 0.05 g C m2 y?1) and CH4 (0.07 ± 0.02 g C m2 y?1) per unit watershed land area. Measured fluvial export of DIC (0.78 ± 0.04 g C m?2 y?1), DOC (0.16 ± 0.03 g C m?2 y?1) and coarse plus fine particulate C (0.001 ± 0.001 g C m?2 y?1) per unit watershed land area were also small. However, stream discharge accounted for only 12% of the modeled annual watershed water output because deep groundwater flows dominated total runoff from the watershed. When C in this bypassing groundwater was included, total watershed export was 10.83 g C m?2 y?1 as CO2 outgassing, 11.29 g C m?2 y?1 as fluvial DIC and 0.64 g C m?2 y?1 as fluvial DOC. Outgassing fluxes were somewhat lower than the 40?C50 g C m?2 y?1 reported from other Amazon watersheds and may result in part from lower annual rainfall at Tanguro. Total stream-associated gaseous C losses were two orders of magnitude less than soil respiration (696 ± 147 g C m?2 y?1), but total losses of C transported by water comprised up to about 20% of the ± 150 g C m?2 (±1.5 Mg C ha?1) that is exchanged annually across Amazon tropical forest canopies.  相似文献   

11.
A nitrogen-based model of maintenance respiration (Rm) would link Rm with nitrogen-based photosynthesis models and enable simpler estimation of dark respiration flux from forest canopies. To test whether an N-based model of Rm would apply generally to foliage of boreal and subalpine woody plants, I measured Rm (CO2 efflux at night from fully expanded foliage) for foliage of seven species of trees and shrubs in the northern boreal forest (near Thompson, Manitoba, Canada) and seven species in the subalpine montane forest (near Fraser, Colorado, USA). At 10°C, average Rm for boreal foliage ranged from 0.94 to 6.8μmol kg?1 s?1 (0.18–0.58 μmol m?2 s?1) and for subalpine foliage it ranged from 0.99 to 7.6 μmol kg?1 s?1 (0.28–0.64μmol m?2 s?1). CO2 efflux at 10°C for the samples was only weakly correlated with sample weight (r = 0.11) and leaf area (r = 0.58). However, CO2 efflux per unit foliage weight was highly correlated with foliage N concentration [r = 0.83, CO2 flux at 10°C (mol kg?1 s?1) = 2.62 × foliage N (mol kg?1)J, and slopes were statistically similar for the boreal and subalpine sites (P=0.28). CO2 efflux per unit of foliar N was 1.8 times that reported for a variety of crop and wildland species growing in warmer climates.  相似文献   

12.
Climate change is likely to affect agroecosystems in many ways. This study was performed to investigate how a rice–winter wheat rotation agroecosystem in southeast China would respond to global warming. By using an infrared heater system, the soil surface temperature was maintained about 1.5 °C above ambient milieu over 3 years. In the third growing season (2009–2010), the evapotranspiration (ET) rate, crop production, soil respiration, and soil carbon pool were monitored. The ET rate was 23 % higher in the warmed plot as compared to the control plot during the rice paddy growing season, and the rice grain yield was 16.3 % lower, but there was no significant difference in these parameters between the plots during the winter wheat-growing season. The phenology of the winter wheat shifted under experimental warming, and ET may decrease late in the winter wheat-growing season. Experimental warming significantly enhanced soil respiration, with mean annual soil respiration rates of 2.57 ± 0.17 and 1.96 ± 0.06 μmol CO2 m?2 s?1 observed in the warmed and control plots, respectively. After 3 years of warming, a significant decrease in the total organic carbon was observed, but only in the surface soil (0–5 cm). Warming also stimulated the belowground biomass, which may have compensated for any heat-induced loss of soil organic carbon. Paddy rice seemed to be more vulnerable to warming than winter wheat in terms of water-use efficiency and grain production.  相似文献   

13.
Soil carbon (C) fluxes, soil respiration and dissolved organic carbon (DOC) leaching were explored along the young Damma glacier forefield chronosequence (7–128 years) over a three-year period. To gain insight into the sources of soil CO2 effluxes, radiocarbon signatures of respired CO2 were measured and a vegetation-clipping experiment was performed. Our results showed a clear increase in soil CO2 effluxes with increasing site age from 9 ± 1 to 160 ± 67 g CO2–C m?2 year?1, which was linked to soil C accumulation and development of vegetation cover. Seasonal variations of soil respiration were mainly driven by temperature; between 62 and 70 % of annual CO2 effluxes were respired during the 4-month long summer season. Sources of soil CO2 effluxes changed along the glacier forefield. For most recently deglaciated sites, radiocarbon-based age estimates indicated ancient C to be the dominant source of soil-respired CO2. At intermediate site age (58–78 years), the contribution of new plant-fixed C via rhizosphere respiration amounted up to 90 %, while with further soil formation, heterotrophically respired C probably from accumulated ‘older’ soil organic carbon (SOC) became increasingly important. In comparison with soil respiration, DOC leaching at 10 cm depth was small, but increased similarly from 0.4 ± 0.02 to 7.4 ± 1.6 g DOC m?2 year?1 over the chronosequence. A strong rise of the ratio of SOC to secondary iron and aluminium oxides strongly suggests that increasing DOC leaching with site age results from a faster increase of the DOC source, SOC, than of the DOC sink, reactive mineral surfaces. Overall, C losses from soil by soil respiration and DOC leaching increased from 9 ± 1 to 70 ± 17 and further to 168 ± 68 g C m?2 year?1 at the <10, 58–78, and 110–128 year old sites. By comparison, total ecosystem C stocks increased from 0.2 to 1.1 and to 3.1 kg C m?2 from the young to intermediate and old sites. Therefore, the ecosystem evolved from a dominance of C accumulation in the initial phase to a high throughput system. We suggest that the relatively strong increase in soil C stocks compared to C fluxes is a characteristic feature of initial soil formation on freshly exposed rocks.  相似文献   

14.
Soil respiration (R s) plays a key role in any consideration of ecosystem carbon (C) balance. Based on the well-known temperature response of respiration in plant tissue and microbes, R s is often assumed to increase in a warmer climate. Yet, we assume that substrate availability (labile C input) is the dominant influence on R s rather than temperature. We present an analysis of NPP components and concurrent R s in temperate deciduous forests across an elevational gradient in Switzerland corresponding to a 6 K difference in mean annual temperature and a considerable difference in the length of the growing season (174 vs. 262 days). The sum of the short-lived NPP fractions (“canopy leaf litter,” “understory litter,” and “fine root litter”) did not differ across this thermal gradient (+6 % from cold to warm sites, n.s.), irrespective of the fact that estimated annual forest wood production was more than twice as high at low compared to high elevations (largely explained by the length of the growing season). Cumulative annual R s did not differ significantly between elevations (836 ± 5 g C m?2 a?1 and 933 ± 40 g C m?2 a?1 at cold and warm sites, +12 %). Annual soil CO2 release thus largely reflected the input of labile C and not temperature, despite the fact that R s showed the well-known short-term temperature response within each site. However, at any given temperature, R s was lower at the warm sites (downregulation). These results caution against assuming strong positive effects of climatic warming on R s, but support a close substrate relatedness of R s.  相似文献   

15.
Understanding the response of ecosystem respiration (ER) to major environmental drivers is critical for estimating carbon sequestration and large-scale modeling research. Temperature effect on ER is modified by other environmental factors, mainly soil moisture, and such information is lacking for switchgrass (Panicum virgatum L.) ecosystems. The objective of this study was to examine seasonal variation in ER and its relationship with soil temperature (T s) and moisture in a switchgrass field. ER from the nighttime net ecosystem CO2 exchange measurements by eddy covariance system during the 2011 and 2012 growing seasons was analyzed. Nighttime ER ranged from about 2 (early growing season) to as high as 13 μmol m?2 s?1 (peak growing period) and showed a clear seasonality, with low rates during warm (>30 °C) and dry periods (<0.20 m3 m?3 of soil water content). No single temperature or moisture function described variability in ER on the seasonal scale. However, an exponential temperature–respiration function explained over 50 % of seasonal variation in ER at adequate soil moisture (>0.20 m3 m?3), indicating that soil moisture <0.20 m3 m?3 started to limit ER. Due to the limitation of soil–atmosphere gas exchange, ER rates declined markedly in wet soil conditions (>0.35 m3 m?3) as well. Consequently, both dry and wet conditions lowered temperature sensitivity of respiration (Q 10). Stronger ER–T s relationships were observed at higher soil moisture levels. These results demonstrate that soil moisture greatly influences the dynamics of ER and its relationship with T s in drought prone switchgrass ecosystems.  相似文献   

16.
How soil cover types and rainfall patterns influence carbon (C) release in temperate desert ecosystems has largely been unexplored. We removed intact crusts down to 10 cm from the Shapotou region, China, and measured them in PVC mesocosms, immediately after rainfall. C release rates were measured in soils with four cover types (moss-crusted soil, algae-crusted soil, mixed (composed of moss, algae, and lichen)-crusted soil, and mobile dune sand). We investigated seven different rainfall magnitudes (0–1, 1–2, 2–5, 5–10, 10–15, 15–20, and >20 mm) under natural conditions. C release from all four BSCs increased with increasing rainfall amount. With a rainfall increase from 0 to 45 mm, carbon release amounts increased from 0.13 ± 0.09 to 15.2 ± 1.35 gC m?2 in moss-crusted soil, 0.08 ± 0.06 to 6.43 ± 1.23 gC m?2 in algae-crusted soil, 0.11 ± 0.08 to 8.01 ± 0.51 gC m?2 in mixed-crusted soil, and 0.06 ± 0.04 to 8.47 ± 0.51 gC m?2 in mobile dune sand, respectively. Immediately following heavy rainfall events (44.9 mm), moss-crusted soils showed significantly higher carbon release rates than algae- and mixed-crusted soils and mobile dune sands, which were 0.95 ± 0.02, 0.30 ± 0.03, 0.13 ± 0.04, and 0.51 ± 0.02 μmol CO2 m?2 s?1, respectively. Changes in rainfall patterns, especially large rain pulses (>10 mm) affect the contributions of different soil cover types to carbon release amounts; moss-crusted soils sustain higher respiration rates than other biological crusts after short-term extreme rainfall events.  相似文献   

17.
青藏高原高寒湿地生态系统CO2通量   总被引:1,自引:1,他引:0  
依据涡度相关系统连续观测的2005年CO2通量数据,对青藏高原东北隅的高寒湿地生态系统源/汇功能及其部分环境影响因素进行了分析.结果表明,高寒湿地生态系统为明显的碳源,在植物生长季(5~9月份)吸收230.16 gCO2·m-2,非生长季(1~4月份及10~12月份)释放546.18 gCO2·m-2,其中净排放最高在5月份,为181.49 gCO2·m-2,净吸收最高在8月份,为189.69 gCO2·m-2,年释放量为316.02 gCO2·m-2.在平均日变化中,最大吸收值出现在7月份12:00,为(0.45±0.0012) mgCO2·m-2·s-1,最大排放速率出现在8月份0:00,为(0.22±0.0090) mgCO2·m-2·s-1.生长季中6~9月份表现为明显的单峰型日变化,非生长季的变化幅度较小.净生态系统交换量(NEE)和生态系统总初级生产力(GPP)与气温、空气水气饱和亏和地表反射率等环境因素呈现相似的相关性,与地上生物量和群落叶面积指数则为线性负相关,生态系统呼吸(Res)则与上述因子的相关性呈现相反的趋势.  相似文献   

18.
Effects of three levels of photosynthetic photon flux (PPF: 60, 160 and 300 μmol m−2s−1) were investigated in one-month-old Phalaenopsis plantlets acclimatised ex vitro. Optimal growth, chlorophyll and carotenoid concentations, and a high carotenoid:chlorophyll a ratio were obtained at 160 μmol m−2s−1, while net CO2 assimilation (A), stomatal conductance (g), transpiration rate (E) and leaf temperature peaked at 300 μmol m−2s−1, indicating the ability of the plants to grow ex vitro. Adverse effects of the highest PPF were reflected in loss of chlorophyll, biomass, non-protein thiol and cysteine, but increased proline. After acclimatisation, glucose-6-phosphate dehydrogenase, shikimate dehydrogenase, phenylalanine ammonia-lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD) increased, as did lignin. Peroxidases (POD), which play an important role in lignin synthesis, were induced in acclimatised plants. Polyphenol oxidase (PPO) and β-glucosidase (β-GS) activities increased to a maximum in acclimatised plants at 300 μmol m−2s−1. A positive correlation between PAL, CAD activity and lignin concentration was observed, especially at 160 and 300 μmol m−2s−1. The study concludes that enhancement of lignin biosynthesis probably not only adds rigidity to plant cell walls but also induces defence against radiation stress. A PPF of 160 μmol m−2s−1was suitable for acclimatisation when plants were transferred from in vitro conditions.  相似文献   

19.
There is little information available regarding seasonal and annual variations in soil CO2 efflux from Korean Larch plantations, which are an important component of forests’ carbon balance in temperate China. In this study, the soil respiration rate (R s), soil temperature (T 10) and soil moisture (SM10) at 10 cm depth were observed in a Korean Larch (Larix olgensis Herry.) plantation in Northeast China from 2008 to 2012. Mean R s in growing season (GS) varied greatly, ranged from 2.32 ± 0.08 to 3.88 ± 0.09 μmol CO2 m?2 s?1 (mean ± SE) over the period of 2008–2012. In comparison with T-model, the increase of explained variability by applying both T 10 and SM10 to the T-M model is very small. It is indicated that R s was controlled largely by T 10 in the present study. By accounting for 22.2 and 17.7 % of the total soil CO2 emissions in 2010/2011 and 2011/2012, respectively, the soil CO2 efflux in dormant season (DS) was an essential component of the total soil CO2 efflux. The Q 10 value in the study period was always smaller for GS than DS, suggesting that soil carbon cycling may be more sensitive to the temperature changes at low than at high temperature range. These results indicated that climate changes may have great potential impacts on temperate Larch plantations in Northeast China, owing to soil carbon emissions of Larch plantation during the long period of DS being more sensitive to T 10 than in GS, and played a significant role in the annual forest ecosystems carbon budget.  相似文献   

20.
Tropical papyrus wetlands have the ability to assimilate and sequester significant amounts of carbon. However, the spatial extent, productivity and carbon sink strength associated with papyrus wetlands remains poorly characterised. The objective of this study was to collate information from peer-reviewed publications and relevant government and NGO reports to better understand carbon dynamics within papyrus dominated wetlands, and to assess the processes that regulate the magnitude of the carbon sink. Papyrus wetlands were shown to exhibit high rates of photosynthetic carbon dioxide (CO2) assimilation of up to 40 μmol CO2 m?2 s?1 where the incident photosynthetic photon flux density was ≥1,000 μmol m?2 s?1, high rates of net primary production ranging between 14 and 52 g DM m?2 d?1 and represent a significant carbon sink where up to 88 t C ha?1 is stored in the aboveground and belowground components of the papyrus vegetation. Under flooded conditions significant detrital and peat deposits accumulate in excess of 1 m in depth, representing an additional carbon store in the order of 640 t C ha?1. This study also highlighted the lack of empirical data on emissions of other radiatively important trace gases such as methane and nitrous oxide and also the vulnerability of these carbon sinks to both future changes in climate, in particular periods of hydrological drawdown, and anthropogenic land use change where the papyrus vegetation is removed in favour of subsistence agricultural cropping systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号