首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of parental care opens the door for the evolution of brood parasitic strategies that allow individuals to gain the benefits of parental care without paying the costs. Here we provide the first documentation for alloparental care in coral reef fish and we discuss why these patterns may reflect conspecific and interspecific brood parasitism. Species‐specific barcodes revealed the existence of low levels (3.5% of all offspring) of mixed interspecific broods, mostly juvenile Amblyglyphidodon batunai and Pomacentrus smithi damselfish in Altrichthys broods. A separate analysis of conspecific parentage based on microsatellite markers revealed that mixed parentage broods are common in both species, and the genetic patterns are consistent with two different modes of conspecific brood parasitism, although further studies are required to determine the specific mechanisms responsible for these mixed parentage broods. While many broods had offspring from multiple parasites, in many cases a given brood contained only a single foreign offspring, perhaps a consequence of the movement of lone juveniles between nests. In other cases, broods contained large numbers of putative parasitic offspring from the same parents and we propose that these are more likely to be cases where parasitic adults laid a large number of eggs in the host nest than the result of movements of large numbers of offspring from a single brood after hatching. The evidence that these genetic patterns reflect adaptive brood parasitism, as well as possible costs and benefits of parasitism to hosts and parasites, are discussed.  相似文献   

2.
Genotypes are frequently used to assess alternative reproductive strategies such as extra‐pair paternity and conspecific brood parasitism in wild populations. However, such analyses are vulnerable to genotyping error or molecular artefacts that can bias results. For example, when using multilocus microsatellite data, a mismatch at a single locus, suggesting the offspring was not directly related to its putative parents, can occur quite commonly even when the offspring is truly related. Some recent studies have advocated an ad‐hoc rule that offspring must differ at more than one locus in order to conclude that they are not directly related. While this reduces the frequency with which true offspring are identified as not directly related young, it also introduces bias in the opposite direction, wherein not directly related young are categorized as true offspring. More importantly, it ignores the additional information on allele frequencies which would reduce overall bias. In this study, we present a novel technique for assessing extra‐pair paternity and conspecific brood parasitism using a likelihood‐based approach in a new version of program cervus . We test the suitability of the technique by applying it to a simulated data set and then present an example to demonstrate its influence on the estimation of alternative reproductive strategies.  相似文献   

3.
Species that provide intensive parental care could suffer fitness costs associated with conspecific brood parasitism. Here we evaluate the effect of conspecific brood parasitism on apparent annual survival probability of female Prothonotary Warblers Protonotaria citrea using a multistate model with imperfect state assignment analysed in a hierarchical Bayesian framework. We found no difference in annual survival probability between host and non‐host females. These findings agree with previous work in that there seems to be little apparent cost of conspecific brood parasitism to female Warblers in this system.  相似文献   

4.
Abstract.  1. Brood parasitism occurs when individuals parasitise each others' investment into parental care, and has been documented primarily as an interspecific interaction. Intraspecific brood parasitism, in contrast, is often difficult to detect and quantify, and evidence for it is comparatively scarce. The present study documents the occurrence of intraspecific brood parasitism by females of the tunnelling dung beetle Onthophagus taurus , and investigates the contributions of two variables to the propensity of female brood parasitism: female body size and dung desiccation rate.
2. Female O. taurus were found to routinely utilise brood balls made by conspecific females as food provisions for their own offspring.
3. Contrary to expectations, large and small females did not differ in the likelihood of engaging in brood-parasitic behaviour.
4. Dung desiccation rate appeared to influence likelihood of brood parasitism. Females that were given access to rapidly drying dung were significantly more likely to detect and utilise brood balls produced by conspecific females.
5. While interspecific brood parasitism has been documented in dung beetles before, the present study is among the first to present evidence for intraspecific brood parasitism as an alternative reproductive tactic of female dung beetles. Results are discussed in the context of the evolutionary ecology of onthophagine beetles.  相似文献   

5.
Kin selection theory predicts that, in species where progeny members compete for limiting parental care, individual offspring should be more prone to monopolize parental resources as their genetic relatedness to brood competitors decreases. Mixed parentage among broodmates may arise as a consequence, for example, of extra-pair fertilization or brood parasitism events. In this experimental study of barn swallows (Hirundo rustica), we reciprocally partially cross-fostered hatchlings between broods and compared the behaviour of pairs of related and unrelated broodmates in a competitive context, both under normal food provisioning regime and after mild food deprivation. We found that scramble competition for food mediated by visual and vocal solicitation displays (begging) is inversely related to relatedness among competitors, independent of their level of satiation. Nestlings may modulate their competitive behaviour according to vocal cues that vary with their origin and allow kin recognition. We also uncover direct fitness costs to both parents and offspring arising from mixed parentage in a brood, in terms of increased parental workload and reduced survival of the nestlings. Such previously neglected costs may select for reduced frequency of extra-pair fertilizations and brood parasitism in species with extensive parental care.  相似文献   

6.
Parental investment with a superior alien in the brood   总被引:1,自引:0,他引:1  
When a parent's parentage differs across breeding attempts, established theory predicts that the parent should invest more in a brood when perceived parentage is high. We present a model of parental investment in which offspring unrelated to the parent have a competitive advantage over the parent's own offspring and take a larger share of investment. We show that this can weaken or, if the competitive advantage is great, reverse the predicted relationship between perceived parentage and parental investment. A moderate competitive advantage of extra-pair young over within-pair young could partly explain the lack of any clear relationship between paternal care and paternity in many studies, and could easily arise if females choose extra-pair partners for good genes. Our results are also relevant to interspecific avian brood parasitism. As parasites reared together with host offspring are often superior competitors, their hosts could benefit from increasing investment in response to suspected parasitism.  相似文献   

7.
In many taxa, females lay eggs in the nests of other conspecifics. To determine the conditions under which conspecific brood parasitism develops, it is necessary to identify parasitic offspring and the females who produce them; however, for most systems parasitism can be difficult to observe and most genetic approaches have relatively low resolving power. In this study, we used protein fingerprinting from egg albumen and 10 microsatellite loci to genetically match parasitic ducklings to their mothers in a population of ruddy ducks (Oxyura jamaicensis). We found that 67% of nests contained parasitic offspring, and we successfully identified their mothers in 61% of the cases. Of the parasitic females identified, 77% also had nests of their own (i.e. a dual tactic, where females both nest and lay parasitically), and we found no evidence that parasitic females pursued a specialist (parasitism only) tactic. We also found that parasitic egg laying was not influenced by nest loss, predation or female condition. Thus, in contrast to most waterfowl studied to date, female ruddy ducks appear to lay parasitic eggs whenever the opportunity arises.  相似文献   

8.
Chicks of obligate brood parasites employ a variety of morphologicaland behavioral strategies to outcompete nest mates. Elevatedcompetitiveness is favored by natural selection because parasiticchicks are not related to their host parents or nest mates.When chicks of conspecific brood parasites (CBPs) are unrelatedto their hosts, they and their parents would also benefit fromtraits that enhance competitiveness. However, these traits mustbe inducible tactics in CBPs, since conspecific brood parasitism(CBP) is facultative. Such tactics could be induced by resourcespassed to offspring through the egg. Thus, females engagingin CBP should allocate to their eggs resources that will enhanceoffspring competitiveness. We tested this prediction in a populationof European starlings (Sturnus vulgaris) breeding in southernSweden. Previous research showed that almost all CBPs in thispopulation are floater females that have yet to breed in thecurrent season. We identified putative brood parasitic eggsthrough monitoring egg laying and verified parasitism usingprotein fingerprinting. We then determined whether parasiticeggs were larger, larger-yolked, or had higher concentrationsof yolk testosterone or androstenedione than control eggs. The14 brood parasitic eggs laid in active nests (those with clutchesof at least two eggs that were eventually incubated) did notdiffer from controls in any of these characteristics. Ten dumpedeggs, laid in nonactive nest-boxes or on the ground, were smallerand smaller-yolked than control eggs but did not differ in yolkandrogen concentrations. The failure of our prediction couldbe the result of high costs of investing in eggs, lack of competition-basedbenefits for chicks, or physiological constraints on egg manipulation.  相似文献   

9.
In the context of parentage assignment using genomic markers, key issues are genotyping errors and an absence of parent genotypes because of sampling, traceability or genotyping problems. Most likelihood‐based parentage assignment software programs require a priori estimates of genotyping errors and the proportion of missing parents to set up meaningful assignment decision rules. We present here the R package APIS, which can assign offspring to their parents without any prior information other than the offspring and parental genotypes, and a user‐defined, acceptable error rate among assigned offspring. Assignment decision rules use the distributions of average Mendelian transmission probabilities, which enable estimates of the proportion of offspring with missing parental genotypes. APIS has been compared to other software (CERVUS, VITASSIGN), on a real European seabass (Dicentrarchus labrax) single nucleotide polymorphism data set. The type I error rate (false positives) was lower with APIS than with other software, especially when parental genotypes were missing, but the true positive rate was also lower, except when the theoretical exclusion power reached 0.99999. In general, APIS provided assignments that satisfied the user‐set acceptable error rate of 1% or 5%, even when tested on simulated data with high genotyping error rates (1% or 3%) and up to 50% missing sires. Because it uses the observed distribution of Mendelian transmission probabilities, APIS is best suited to assigning parentage when numerous offspring (>200) are genotyped. We have demonstrated that APIS is an easy‐to‐use and reliable software for parentage assignment, even when up to 50% of sires are missing.  相似文献   

10.
Following nest destruction, the laying of physiologically committed eggs (eggs that are ovulated, yolked, and making their way through the oviduct) in the nests of other birds is considered a viable pathway for the evolution of obligate interspecific brood parasitism. While intraspecific brood parasitism in response to nest predation has been experimentally demonstrated, this pathway has yet to be evaluated in an interspecific context. We studied patterns of egg laying following experimental nest destruction in captive zebra finches, Taeniopygia guttata, a frequent intraspecific brood parasite. We found that zebra finches laid physiologically committed eggs indiscriminately between nests containing conspecific eggs and nests containing heterospecific eggs (of Bengalese finches, Lonchura striata vars. domestica), despite the con‐ and heterospecific eggs differing in both size and coloration. This is the first experimental evidence that nest destruction may provide a pathway for the evolution of interspecific brood parasitism in birds.  相似文献   

11.
In 1965, Hamilton and Orians (HO) hypothesized that the starting point for the evolution of obligate interspecific brood parasitism in birds was the facultative laying of physiologically committed eggs in neighbouring active nests of con‐ and heterospecifics, following predation of a bird’s own nest during the laying stage. We tested this prediction of the HO hypothesis by using captive pairs of zebra finches (Taeniopygia guttata), a species with evidence for intraspecific parasitism both in the wild and in captivity. As predicted, in response to experimental nest removal, subjects laid eggs parasitically in simulated active conspecific nests above chance levels. Across subsequent trials, we detected both repeatability and directional change in laying patterns, with some subjects switching from parasitism to depositing eggs in the empty nest. Taken together, these results support the assumptions and predictions of the HO hypothesis, and indicate that the zebra finch is a potential model species for future behavioural and genetic studies in captive brood parasite research.  相似文献   

12.
Intraspecific brood parasitism (IBP) is a remarkable phenomenon by which parasitic females can increase their reproductive output by laying eggs in conspecific females' nests in addition to incubating eggs in their own nest. Kin selection could explain the tolerance, or even the selective advantage, of IBP, but different models of IBP based on game theory yield contradicting predictions. Our analyses of seven polymorphic autosomal microsatellites in two eider duck colonies indicate that relatedness between host and parasitizing females is significantly higher than the background relatedness within the colony. This result is unlikely to be a by-product of relatives nesting in close vicinity, as nest distance and genetic identity are not correlated. For eider females that had been ring-marked during the decades prior to our study, our analyses indicate that (i) the average age of parasitized females is higher than the age of nonparasitized females, (ii) the percentage of nests with alien eggs increases with the age of nesting females, (iii) the level of IBP increases with the host females' age, and (iv) the number of own eggs in the nest of parasitized females significantly decreases with age. IBP may allow those older females unable to produce as many eggs as they can incubate to gain indirect fitness without impairing their direct fitness: genetically related females specialize in their energy allocation, with young females producing more eggs than they can incubate and entrusting these to their older relatives. Intraspecific brood parasitism in ducks may constitute cooperation among generations of closely related females.  相似文献   

13.
Parentage and the evolution of parental behavior   总被引:13,自引:10,他引:3  
Parentage is the proportion of juveniles in a brood that areoffspring of potential care givers. We analyzed how reductionsin parentage affect the evolution of parental behavior usinga static optimization model. The main benefit of parental effortwas an increase in the survival of offspring, and the main costswere reduced opportunities to seek additional matings or toparasitize neighbors and or reduced survival. Both the costsand benefits included terms for relatedness to young. The effectof parentage depended on (1) whether parents responded in ecologicaltime (facultative response) or in evolutionary time (nonfacultativeresponse), (2) whether the cues enabling assessment of parentagepermitted discrimination among offspring, and (3) whether parentagewas the same among different groups of juveniles (unrestricted)or varied between them (restricted). When parents did not knowtheir own parentage and mean parentage was the same for allmatings, reduced parentage affected the costs and benefits equally,so, as in several previous models, there was no effect on theoptimal level of parental effort. Parentage did affect optimalparental effort when mean parentage to the present brood differedfrom that to young from alternative or future matings. Loweredparentage reduced optimal parental effort when the cost of parentingwas missed opportunities for extrapair copulations or broodparasitism or when parentage was consistently higher in alternativeor future matings. Nonlinear changes in parentage with age gavecomplex trajectories of parental care, with individuals of differentages having similar parentage but exhibiting different levelsof parental effort. Correlations between parentage and othervariables in the model (such as opportunities for additionalmatings) sometimes masked, but never eliminated, the effectsof parentage. When parents could discriminate their own youngin a brood, overall parental effort was reduced, but nepotismwas increased. When parents could not discriminate their ownoffspring but had general cues about average parentage to thebrood, effects varied depending on the costs and benefits ofparental behavior. When parental behavior was costly to caregivers, parentage had more effect than when parenting was notcostly. Likewise, parentage had less effect when care greatlyincreased offspring survival than when care was less necessary.Our analyses reconcile conflicting results from previous modelsand suggest a general framework for analyzing parental behaviorwithin populations and among higher taxonomic groups.  相似文献   

14.
Sexual reproduction relies on the recognition of conspecifics for breeding. Most experiments in birds have implicated a critical role for early social learning in directing subsequent courtship behaviours and mating decisions. This classical view of avian sexual imprinting is challenged, however, by studies of megapodes and obligate brood parasites, species in which reliable recognition is achieved despite the lack of early experience with conspecifics. By rearing males with either conspecific or heterospecific brood mates, we experimentally tested the effect of early social experience on the association preferences and courtship behaviours of two sympatrically breeding ducks. We predicted that redheads (Aythya americana), which are facultative interspecific brood parasites, would show a diminished effect of early social environment on subsequent courtship preferences when compared with their host and congener, the canvasback (Aythya valisineria). Contrary to expectations, cross-fostered males of both species courted heterospecific females and preferred them in spatial association tests, whereas control males courted and associated with conspecific females. These results imply that ontogenetic constraints on species recognition may be a general impediment to the initial evolution of interspecific brood parasitism in birds. Under more natural conditions, a variety of mechanisms may mitigate or counteract the effects of early imprinting for redheads reared in canvasback broods.  相似文献   

15.
Recent field studies have demonstrated that many bird species practice intra-specific brood parasitism. They lay eggs in the nests of other individuals of the same species, let the foster parents rear their offspring and avoid the cost of parental care. It has been shown that many birds, including starlings, swallows and geese, practice intra-specific brood parasitism in various forms. Intra-specific brood parasitism can be viewed in terms of optimal resource allocation: how many eggs should be put in the nests of other individuals under the risk of being parasitized by others. The situation here is a game, because the fitness of a parasitic individual depends on how other individuals behave (how many individuals practice parasitism and to what extent). The ecology of intra-specific brood parasitism has been investigated extensively by field ornithologists recently and it is full of material for modeling population/evolutionary biology. In this paper, I present a simple individual-based model to challenge the resource allocation problem in intra-specific brood parasitism. Previous theoretical studies of intra-specific brood parasitism have been based on ESS or quantitative genetics models, where a population is implicitly assumed to be homogeneous and the distribution form of the trait being studied (the allocation rate or the number of eggs laid parasitically) is inherently monomorphic. This paper aims to explore the evolution of intra-specific brood parasitism without these restrictions. In the model, an individual is assigned a strategy, an allocation ratio of eggs that are laid parasitically in the nests of other individuals, and the strategy is inherited by offspring either asexually or sexually. Based on the simulation analysis, the evolution of the allocation rate (the extent of intra-specific brood parasitism) is discussed. The extension of this model to a tractable analytical model is also discussed.  相似文献   

16.
Parentage studies and family reconstructions have become increasingly popular for investigating a range of evolutionary, ecological and behavioural processes in natural populations. However, a number of different assignment methods have emerged in common use and the accuracy of each may differ in relation to the number of loci examined, allelic diversity, incomplete sampling of all candidate parents and the presence of genotyping errors. Here, we examine how these factors affect the accuracy of three popular parentage inference methods (colony , famoz and an exclusion‐Bayes’ theorem approach by Christie (Molecular Ecology Resources, 2010a, 10, 115) to resolve true parent–offspring pairs using simulated data. Our findings demonstrate that accuracy increases with the number and diversity of loci. These were clearly the most important factors in obtaining accurate assignments explaining 75–90% of variance in overall accuracy across 60 simulated scenarios. Furthermore, the proportion of candidate parents sampled had a small but significant impact on the susceptibility of each method to either false‐positive or false‐negative assignments. Within the range of values simulated, colony outperformed FaMoz, which outperformed the exclusion‐Bayes’ theorem method. However, with 20 or more highly polymorphic loci, all methods could be applied with confidence. Our results show that for parentage inference in natural populations, careful consideration of the number and quality of markers will increase the accuracy of assignments and mitigate the effects of incomplete sampling of parental populations.  相似文献   

17.
Determining how many and which codominant marker loci are required for accurate parentage assignment is not straightforward because levels of marker polymorphism, linkage, allelic distributions among potential parents and other factors produce differences in the discriminatory power of individual markers and sets of markers. p-loci software identifies the most efficient set of codominant markers for assigning parentage at a user-defined level of success, using either simulated or actual offspring genotypes of known parentage. Simulations can incorporate linkage among markers, mating design and frequencies of null alleles and/or genotyping errors. p-loci is available for windows systems at http://marineresearch.oregonstate.edu/genetics/ploci.htm.  相似文献   

18.
Conspecific brood parasitism in birds occurs when a female inserts her egg into the clutch of her own species. If successful, i.e. the parasitic egg is accepted by the host, then the host female or pair rears the offspring of the parasite. In the present study, we studied natural conspecific brood parasitism in Black-headed Gulls (Larus ridibundus), and conducted series of the experiments with mimetic (conspecific) and non-mimetic (conspecific painted light blue) eggs to explore responses of the tested pairs towards these alien eggs. The natural parasitism rate was 10% and the probability of being parasitized significantly increased with nest density. Experimentally parasitized pairs rejected both types of experimental eggs at a similar rate: 14.3 % for mimetic and 25.5% for non-mimetic within 2 days. Non-mimetic eggs were more selectively rejected than mimetic eggs. The relationships between the probability of egg rejection (dependent variable) and predictor (independent) variables were examined by fitting generalized linear models. Contrast and intraclutch variation in ground color and spotting pattern and the volume of the egg had no significant effect on rejection behavior in either non-mimetic or mimetic eggs. However, nest density significantly positively affected rejection behavior of the Black-headed Gulls in both non-mimetic and mimetic treatments.  相似文献   

19.
The giant water bug Appasus major exhibits a peculiar reproductive behavior where females lay eggs on the backs of males. A male and female pair performs frequent repeat copulations during the oviposition behavior, and the male carries the deposited eggs until hatching. Such characteristic behaviors predict that the eggs are fertilized by the brooding males. If males carry eggs of other unrelated males, the egg carrying will drastically decrease the fitness of the carriers. In this study, we examined genetic relationships between the 489 eggs and nine males carrying them collected from the field, using microsatellite DNA markers. We revealed that in total, 28.4% of the eggs were of other male origin. This is the first report of frequent brood parasitism in an aquatic egg‐carrying hemipteran insect. The brood parasitism is adaptive for the females probably because it enables them to increase the chance of oviposition, or it can equalize motility risk of the eggs of each mate.  相似文献   

20.
Host-parasite relatedness may facilitate the evolution of conspecific brood parasitism, but empirical support for this contention remains inconclusive. One reason for this disparity may relate to the diversity of parasitic tactics, a key distinguishing feature being whether the parasite has a nest of her own. Previous work suggests that parasites without nests of their own may be of inferior phenotypic quality, but because of difficulties in identifying these parasitic individuals, little is known about their host selection criteria. We used high-resolution molecular maternity tests to assign parasitic offspring to known parasites with and without their own nests in a population of Barrow's goldeneyes (Bucephala islandica). We determined whether parasite nesting status, host-parasite relatedness and distance between host and parasite nests affected the probability of parasitizing a host and the number of eggs laid per host. We also investigated whether nesting parasites, conventionally nesting females and non-nesting parasites differed regarding their age, structural size, body condition, nesting phenology or total brood size. The probability of engaging in parasitism increased with host-parasite relatedness and spatial proximity to host nests for nesting and non-nesting females alike. However, nesting parasites increased the number of eggs donated with relatedness to the host, while non-nesting parasites did not do so. Non-nesting parasites laid fewer eggs in total, but did not differ by any of the other quality measures from conventional nesters or nesting parasites. Our study provides the first demonstration that nesting and non-nesting parasites from the same population may use different host selection criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号