首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Following nest destruction, the laying of physiologically committed eggs (eggs that are ovulated, yolked, and making their way through the oviduct) in the nests of other birds is considered a viable pathway for the evolution of obligate interspecific brood parasitism. While intraspecific brood parasitism in response to nest predation has been experimentally demonstrated, this pathway has yet to be evaluated in an interspecific context. We studied patterns of egg laying following experimental nest destruction in captive zebra finches, Taeniopygia guttata, a frequent intraspecific brood parasite. We found that zebra finches laid physiologically committed eggs indiscriminately between nests containing conspecific eggs and nests containing heterospecific eggs (of Bengalese finches, Lonchura striata vars. domestica), despite the con‐ and heterospecific eggs differing in both size and coloration. This is the first experimental evidence that nest destruction may provide a pathway for the evolution of interspecific brood parasitism in birds.  相似文献   

3.
Bill M. Strausberger 《Oecologia》1998,116(1-2):267-274
I studied relationships between temporal patterns of host availability, brood parasitism, and egg mass for the parasitic brown-headed cowbird (Molothrus ater). At a study site consisting largely of edge habitat in north-eastern Illinois, I found 834 bird nests from 27 species. A total of 407 cowbird eggs and nestlings were found in these nests over three laying seasons. Nearly all (n= 379; 93%) were found in the nests of seven host species. For these species and all taken together, weekly nest availability generally decreased whereas parasitism frequency generally increased throughout the cowbird laying season, but the proportions of nests parasitized and the mean number of cowbird eggs in them did not. Additionally, no correlation was found between the proportions of nests parasitized and nest availability. Cowbird egg mass generally increased throughout the laying season, indicating that foraging conditions improved and that, early in the laying season, egg mass and quality may be less important than quantity. Consistently high weekly levels of parasitism indicate that cowbird reproduction was less limited by resources needed for egg production and more by the availability of suitable host nests. Fluctuating weekly host availabilities suggest that previously established, constant rates of cowbird egg laying would produce an excess of eggs during periods of low host availability. Further, the low frequency of parasitism (1%) of nests in stages too advanced for successful parasitism, and of abandoned nests, is consistent with the hypothesis that cowbirds' consistently high rate of egg production helps assure an egg is available when an appropriate nest is found. Frequently, nests were parasitized multiple times, raising the possibility that cowbirds were interfering with their own reproduction. A diverse host community increases the possibility that a decline of any one host species is unlikely to affect cowbird reproduction significantly. Received 11 July 1997 / Accepted: 31 March 1998  相似文献   

4.
Individual eastern bluebird (Sialia sialis) females produce clutches of eggs with unique coloration and older females and females in better body condition lay more pigmented blue‐green eggs. Conspecific brood parasitism in this species is not uncommon and bluebirds occasionally reject what appear to be normal eggs by moving them to the periphery of the nest. I used UV‐visual reflectance spectrometry to objectively measure coloration of eggs and nest material. To estimate the conspicuousness of the trait, I calculated the contrast between eggs and background nest material. I found high achromatic and chromatic contrast between the coloration of eggs and of the nests, suggesting that bluebird eggs are highly conspicuous. To test the hypothesis that expression of blue‐green coloration eggs facilitates recognition of eggs laid by conspecific brood parasites, I cross‐fostered individual eggs into host nests during egg laying and monitored the fate of those eggs. I found no support, however, for the hypothesis that egg coloration facilitates discrimination of parasitic eggs from host eggs.  相似文献   

5.
ABSTRACT Nest‐site selection and nest defense are strategies for reducing the costs of brood parasitism and nest predation, two selective forces that can influence avian nesting success and fitness. During 2001–2002, we analyzed the effect of nest‐site characteristics, nesting pattern, and parental activity on nest predation and brood parasitism by cowbirds (Molothrus spp.) in a population of Brown‐and‐yellow Marshbirds (Pseudoleistes virescens) in the Buenos Aires province, Argentina. We examined the possible effects of nest detectability, nest accessibility, and nest defense on rates of parasitism and nest predation. We also compared rates of parasitism and nest predation and nest survival time of marshbird nests during the egg stage (active nests) with those of the same nests artificially baited with passerine eggs after young fledged or nests failed (experimental nests). Most nests (45 of 48, or 94%) found during the building or laying stages were parasitized, and 79% suffered at least one egg‐predation event. Cowbirds were responsible for most egg predation, with 82 of 107 (77%) egg‐predation events corresponding to eggs punctured by cowbirds. Nests built in thistles had higher rates of parasitism and egg predation than nests in other plant, probably because cowbirds were most active in the area where thistles were almost the only available nesting substrate. Parasitism rates also tended to increase as the distance to conspecific nests increased, possibly due to cooperative mobbing and parental defense by marshbirds. The proportion of nests discovered by cowbirds was higher for active (95%) than for experimental (29%) nests, suggesting that cowbirds used host parental activity to locate nests. Despite active nest defense, parental activity did not affect either predation rates or nest‐survival time. Thus, although nest defense by Brown‐and‐yellow Marshbirds appears to be based on cooperative group defense, such behavior did not reduce the impact of brood parasites and predators.  相似文献   

6.
I studied intraspecific nest parasitism in the grey starlingSturnus cineraceus in 1992 and 1993. The population in this study consisted of 290 nests (157 nests in 1992 and 133 nests in 1993) in which the clutches were completed before May 10 in the year studied. Twenty-nine nests in 1992 and 32 nests in 1993 contained at least 1 parasitic egg. Hatching success per nest of parasitized nests was slightly higher than that of non-parasitized nests. However, fledging success per nest of parasitized nests was significantly lower than that of non-parasitized nests. Thus parasitism appeared to reduce the reproductive success of hosts. Hosts exhibited a few behaviors that minimized the potential cost of brood parasitism. These behaviors included throwing out the parasitic egg and nest guarding. Hosts threw out parasitic eggs before the onset of laying, but they never did so to parasitic eggs laid after that period. The nest guarding level was low during the hosts’ laying periods, and one observed nest was parasitized during this time. Thus, nest-guarding behavior was not effective as an anti-parasite behavior. Grey starlings do not appear to adopt strategies effective in reducing parasitism.  相似文献   

7.
We compared the length of time parasitic and nonparasitic female birds spent on nests while laying eggs (laying bouts) to evaluate the hypothesis that rapid laving by parasitic Brown-headed Cowbirds Molothrus ater and other parasitic birds is a specialization for brood parasitism. Brown-headed Cowbirds typically spent less than 1 min on host nests while laying (41.0 ± 4.58 [mean ± s.e.] s, n = 21). In contrast, mean laving bouts of six nonparasitic icterine species ranged from 21.5 min to 53.4 min, and laying bouts of 13 other passerine species ranged from 20.7 min to 103.7 min. By spending only a few seconds on the nest while laying, brood parasites probably increase their chances of parasitizing nests unnoticed by hosts or, if noticed, are harassed by hosts for less time. Rapid laying may be adaptive if aggression by hosts can thwart attempted parasitism by chasing away the parasite, preventing the parasite from entering the nest or injuring the parasite. Rapid laying may increase the likelihood that the parasitic egg will be accepted. We tested some of these hypotheses by recording the responses of three frequently parasitized species to a stuffed female cowbird placed on their nests for 1 min. All species attacked the model vigorously; however, the mean time for discovery of the model ranged from 3 min to 17 min, ample time for female cowbirds to parasitize the nests. We concluded that rapid laying by parasitic birds is an adaptation for parasitism and, in Brown-headed Cowbirds, reduces the chances that the parasite will be attacked by hosts.  相似文献   

8.
In recent decades, numerous studies have examined factors affecting risk of host nest parasitism in well‐known avian host–parasite systems; however, little attention has been paid to the role of host nest availability. In accordance with other studies, we found that nest visibility, reed density and timing of breeding predicted brood parasitism of Great Reed Warblers Acrocephalus arundinaceus by the Common Cuckoo Cuculus canorus. More interestingly, hosts had a greater chance of escaping brood parasitism if nesting was synchronized. Cuckoo nest searching was governed primarily by nest visibility at high host‐nest density. However, even well‐concealed nests were likely to be parasitized during periods when just a few hosts were laying eggs, suggesting that Cuckoos adjust their nest‐searching strategy in relation to the availability of host nests. Our results demonstrate that host vulnerability to brood parasitism varies temporally and that Cuckoo females are able to optimize their nest‐searching strategy. Moreover, our study indicated that Cuckoos always manage to find at least some nests to parasitize. Thus, in this case, the co‐evolutionary arms race should take place mainly in the form of parasitic egg rejection rather than via frontline pre‐parasitism defence.  相似文献   

9.
Conspecific brood parasitism (CBP), an alternative reproductive tactic where some females lay eggs in the nests of other females of the same species, occurs in many animals with egg care. It is particularly common in waterfowl, for reasons that are debated. Many waterfowl females nest near their birthplace, making it likely that some local females are relatives. We analyse brood parasitism in a Hudson Bay population of common eiders, testing predictions from two alternative hypotheses on the role of relatedness in CBP. Some models predict host-parasite relatedness, others predict that parasites avoid close relatives as hosts. To distinguish between the alternatives, we use a novel approach, where the relatedness of host-parasite pairs is tested against the spatial population trend in pairwise relatedness. We estimate parasitism, nest take-over and relatedness with protein fingerprinting and bandsharing analysis of egg albumen, nondestructively sampled from each new egg in the nest throughout the laying period. The results refute the hypothesis that parasites avoid laying eggs in the nests of related hosts, and corroborate the alternative of host-parasite relatedness. With an estimated r of 0.12-0.14, females laying eggs in the same nest are on average closer kin than nesting neighbour females. Absence of a population trend in female pairwise relatedness vs. distance implies that host-parasite relatedness is not only an effect of strong natal philopatry: some additional form of kin bias is also involved.  相似文献   

10.
Generalist parasites exploit multiple host species at the population level, but the individual parasite's strategy may be either itself a generalist or a specialist pattern of host species use. Here, we studied the relationship between host availability and host use in the individual parasitism patterns of the Shiny Cowbird Molothrus bonariensis, a generalist avian obligate brood parasite that parasitizes an extreme range of hosts. Using five microsatellite markers and an 1120‐bp fragment of the mtDNA control region, we reconstructed full‐sibling groups from 359 cowbird eggs and chicks found in nests of the two most frequent hosts in our study area, the Chalk‐browed Mockingbird Mimus saturninus and the House Wren Troglodytes aedon. We were able to infer the laying behavior of 17 different females a posteriori and found that they were mostly faithful to a particular laying area and host species along the entire reproductive season and did not avoid using previously parasitized nests (multiple parasitism) even when other nests were available for parasitism. Moreover, we found females using the same host nest more than once (repeated parasitism), which had not been previously reported for this species. We also found few females parasitizing more than one host species. The use of an alternative host was not related to the main hosts' nest availability. Overall, female shiny cowbirds use a spatially structured and host species specific approach for parasitism, but they do so nonexclusively, resulting in both detectable levels of multiple parasitism and generalism at the level of individual parasites.  相似文献   

11.
ABSTRACT Avian brood parasites usually remove or puncture host eggs. Several hypotheses have been proposed to explain the function of these behaviors. Removing or puncturing host eggs may enhance the efficiency of incubation of cowbird eggs (incubation‐efficiency hypothesis) or reduce competition for food between cowbird and host chicks in parasitized nests (competition‐reduction hypothesis) and, in nonparasitized nests, may force hosts to renest and provide cowbirds with new opportunities for parasitism when nests are too advanced to be parasitized (nest‐predation hypothesis). Puncturing eggs may also allow cowbirds to assess the development of host eggs and use this information to decide whether to parasitize a nest (test‐incubation hypothesis). From 1999 to 2002, we tested these hypotheses using a population of Creamy‐bellied Thrushes (Turdus amaurochalinus) in Argentina that was heavily parasitized by Shiny Cowbirds (Molothrus bonariensis). We found that 56 of 94 Creamy‐bellied Thrush nests (60%) found during nest building or egg laying were parasitized by Shiny Cowbirds, and the mean number of cowbird eggs per parasitized nest was 1.6 ± 0.1 (N= 54 nests). At least one thrush egg was punctured in 71% (40/56) of parasitized nests, and 42% (16/38) of nonparasitized nests. We found that cowbird hatching success did not differ among nests where zero, one, or two thrush eggs were punctured and that the proportion of egg punctures associated with parasitism decreased as incubation progressed. Thus, our results do not support the incubation‐efficiency, nest‐predation, or test‐incubation hypotheses. However, the survival of cowbird chicks in our study was negatively associated with the number of thrush chicks. Thus, our results support the competition‐reduction hypothesis, with Shiny Cowbirds reducing competition between their young and host chicks by puncturing host eggs in parasitized nests.  相似文献   

12.
Variations from the normal female-male sequence of eggs in nests of the leafcutter bee,Megachile rotundata, were examined. Three alternatives were considered: Out-of-sequence males (i) were diploids, (ii) were the result of supersedure of nests or intraspecific brood parasitism, or (iii) were the result of females occasionally laying a male-female sequence. Electrophoretic data provided definitive evidence of diploid males and of multiple females laying in 7 of 18 nests. In the others, the remaining explanation is that females occasionally lay male eggs before female eggs in a nest.  相似文献   

13.
ABSTRACT Brood parasites often must overcome host defenses that may include behaviors that serve other functions, such as deterrence of predators and nest attendance during laying and incubation. Host use by brood parasites may also be influenced by competitors in areas where more than one parasitic species occurs. We identified the degree to which behavior of potential hosts and potential competitors affected laying by Brown‐headed Cowbirds (Molothrus ater) and Bronzed Cowbirds (M. aeneus) at a site in south Texas where they co‐occur. We watched potential host nests during the presunrise period to record cowbird laying and document nest visitation, laying, cowbird‐host encounters, and nest attentiveness by hosts. Hosts were frequently at their nests when cowbirds laid eggs (83% of 121 watches among nests of five host species) and cowbirds regularly encountered hosts (43–74% and 40–77% of watches per species of host for Brown‐headed and Bronzed cowbirds, respectively). Host nest defense infrequently interfered with cowbird laying and cowbirds rarely interacted with one another during laying. Overall, 12% of the 42 cowbird laying attempts that elicited host nest defense failed, resulting in cowbird eggs either laid atop hosts as they sat in nests or laid outside the nest cup. We clearly documented that relatively small hosts can thwart parasitism by cowbirds. Thus, the potential for successful defense of nests should be considered when assessing the evolution of behaviors to deter the removal of host eggs by cowbirds and mechanisms leading to nest abandonment. Regarding the latter, the presence of a cowbird at a nest would be a poor indicator for parasitism as some laying attempts were thwarted and unparasitized broods were reared at those nests. Despite the potential for nest defense to affect host use by cowbirds, we did not detect an effect of nest defense. Because most host defense was ineffective, we examined hypotheses for the timing of cowbird laying and host nest attendance. Our analysis of time of day of laying by Brown‐headed Cowbirds at our site and data compiled from the literature suggests that laying time is best predicted by the time of civil twilight (first light) rather than sunrise.  相似文献   

14.
Factors related to bacterial environment of nests are of primary interest for understanding the causes of embryo infection and the evolution of antimicrobial defensive traits in birds. Nest visitors such as parasites could act as vectors for bacteria and/or affect the hygienic conditions of nests and hence influence the nest bacterial environment. In the present study, we explored some predictions of this hypothetical scenario in the great spotted cuckoo (Clamator glandarius)–magpie (Pica pica) system of brood parasitism. Great spotted cuckoos visit the nests of their magpie hosts and frequently damage some of the host eggs when laying eggs or on subsequent visits. Therefore, it represents a good system for testing the effect of nest visitors on the bacterial environment of nests. In accordance with this hypothesis, we found that the bacterial load of magpie eggshells was greater in parasitized nests, which may suggest that brood parasitism increases the probability of bacterial infection of magpie eggs. Moreover, comparisons of bacterial loads of cuckoo and magpie eggs revealed that: (1) cuckoo eggshells harboured lower bacterial densities than those of their magpie hosts in the same nests and (2) the prevalence of bacteria inside unhatched eggs was higher for magpies than for great spotted cuckoos. These interspecific differences were predicted because brood parasitic eggs (but not host eggs) always experience the bacterial environments of parasitized nests. Therefore, the results obtained in the present study suggest that parasitic eggs are better adapted to environments with a high risk of bacterial contamination than those of their magpie hosts. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 836–848.  相似文献   

15.
Conspecific brood parasitism (CBP) is an alternative reproductive tactic found in many animals with parental care. Parasitizing females lay eggs in the nests of other females (hosts) of the same species, which incubate and raise both their own and the foreign offspring. The causes and consequences of CBP are debated. Using albumen fingerprinting of eggs for accurately detecting parasitism, we here analyse its relation to female condition and clutch size in High Arctic common eiders Somateria mollissima borealis. Among 166 clutches in a Svalbard colony, 31 (19%) contained eggs from more than one female, and 40 of 670 eggs (6%) were parasitic. In 6 cases an active nest with egg(s) was taken over by another female. Many suitable nest sites were unoccupied, indicating that CBP and nest takeover are reproductive tactics, not only consequences of nest site shortage. Similarity in body mass between female categories suggests that condition does not determine whether a nesting female becomes parasitised. There was no evidence of low condition in parasites: egg size was similar in hosts and parasites, and parasitism was equally frequent early and late in the laying season. Meta‐analysis of this and 3 other eider studies shows that there is a cost of being parasitised in this precocial species: host females laid on average 7% fewer eggs than other females.  相似文献   

16.
Dickinson JL 《Molecular ecology》2007,16(13):2610-2612
Conspecific brood parasitism, where females of the same species lay eggs in each other's nests, is common in waterfowl, and is usually considered costly to host females, which are stuck looking after eggs and chicks that are not their own. However, since female waterfowl often exhibit an unusual propensity to nest near where they were born, there has been some uncertainty over whether, in ducks and geese, laying in nests of conspecifics really is parasitism. Do parasitic and host females tend to be related? And is parasitism actually a form of cooperation in disguise? In a population in Hudson Bay, Andersson & Waldeck (this issue) found that ‘parasitic’ eggs in nests of the common eider, Somateria mollissima sedentaria, are more closely related to host eggs than expected by chance. In fact, host and ‘donor’ eggs are more closely related than are females breeding at neighbouring nests. The Hudson Bay population of common eiders is unusual, because unlike in more benign climates, females do not tend to breed near their natal nest. Spatial proximity alone cannot account for the high relatedness between host eggs and ‘dumped’ or donor eggs. Instead, the high relatedness values are probably the result of active recognition, where females favour kin, either when dumping or accepting eggs. These new data, along with evidence indicating that the donor lays the first egg in the nest nearly half the time, suggest that what appears to be parasitism in common eiders may be a form of kin‐based cooperation.  相似文献   

17.
Brood parasite – host systems continue to offer insights into species coevolution. A notable system is the redstart Phoenicurus phoenicurus parasitized by the ‘redstart‐cuckoo’ Cuculus canorus gens. Redstarts are the only regular cuckoo hosts that breed in cavities, which challenges adult cuckoos in egg laying and cuckoo chicks in host eviction. We investigated parasitism in this system and found high overall parasitism rates (31.1% of 360 redstart nests), but also that only 33.1% of parasitism events (49 of 148 eggs) were successful in laying eggs into redstart nest cups. The majority of cuckoo eggs were mislaid and found on the rim of the nest; outside the nest cup. All available evidence suggests these eggs were not ejected by hosts. The effective parasitism rate was therefore only 12.8% of redstart nests. Redstarts responded to natural parasitism by deserting their nests in 13.0% of cases, compared to desertion rates of 2.8% for non‐parasitized nests. Our egg parasitism experiments found low rates (12.2%) of rejection of artificial non‐mimetic cuckoo eggs. Artificial mimetic and real cuckoo eggs added to nests were rejected at even lower rates, and were always rejected via desertion. Under natural conditions, only 21 cuckoo chicks fledged of 150 cuckoo eggs laid. Adding to this low success, is that cuckoo chicks are sometimes unable to evict all host young, and were more likely to die as a result compared to cuckoo chicks reared alone. This low success seems to be mainly due to the cavity nesting strategy of the redstart which is a challenging obstacle for the cuckoo. The redstart‐cuckoo system appears to be a fruitful model system and we suggest much more emphasis should be placed on frontline defences such as nest site selection strategies when investigating brood parasite–host coevolution.  相似文献   

18.
A field study of the breeding ecology of the Japanese aucha perch, Siniperca kawamebari, and brood parasitism by the Japanese minnow, Pungtungia herzi, on nests of the perch was carried out from 1989 to 1991. Observations of perch nests under natural conditions in 1990 showed that brood parasitism by the minnow was concentrated on host nests in which nest owners had just begun their nesting cycle. When spawned in a perch nest with recently spawned perch eggs, parasite eggs always hatched earlier than host eggs. An experiment with imitation perch eggs in 1991 confirmed that changing colour of host eggs was the cue for the parasites to distinguish between different developmental stages of host eggs. Parasite eggs rapidly disappeared without guarding by a host male (Baba et al. 1990). This loss was caused by predation by fishes. Parasite fry left the nest immediately after hatching, so parasite eggs spawned in a host nest in an early stage should be well guarded until they hatch. In the field, minnows deposited their eggs in perch nests which had larger numbers of newly spawned perch eggs. Since the perch males always deserted their nests when their own eggs disappeared, the parasite's choice of host nests with larger numbers of host eggs may ensure survival of the parasite eggs. The timing of egg deposition and choice of host nest by the minnow appear to be adaptive in terms of brood parasitism on nests of the perch.  相似文献   

19.
We assessed whether nest size affects the probability of nest loss using dyads of large and small (large being twice the size of small) inactive Great Reed Warbler Acrocephalus arundinaceus nests placed at similar sites in Great Reed Warbler territories. Large nests were not predated significantly more frequently than small nests. Experimentally enlarged active Great Reed Warbler nests suffered non‐significantly higher predation compared with non‐manipulated control nests. Our experiments did not support the nest‐size hypothesis and suggested that nest size does not appear to be a factor affecting the risk of nest predation in this species. The probability of brood parasitism by the Common Cuckoo Cuculus canorus was also unaffected by experimental nest enlargement, supporting the commonly accepted hypothesis that the Common Cuckoo searches for suitable host nests by host activity during nest building rather than nest size.  相似文献   

20.
Brood parasites rely entirely on the parental care of host species to raise the parasitic nestlings until independence. The reproductive success of avian brood parasites depends on finding host nests at a suitable stage (i.e. during egg laying) for parasitism and weakly defensive (i.e. non‐ejector) hosts. Finding appropriate nests for parasitism may, however, vary depending on ecological conditions, including parasite abundance in the area, which also varies from one year to another and therefore may influence coevolutionary relationships between brood parasites and their hosts. In this scenario, we explored: 1) the degree of laying synchronization between great spotted cuckoos Clamator glandarius and magpies Pica pica during two breeding seasons, which varied in the level of selection pressure due to brood parasitism (i.e. parasitism rate); 2) magpie responses to natural parasitism in the pre‐laying period and successfulness of parasitic eggs laid at this stage; and 3) magpie responses to experimental parasitism performed at different breeding stages. We found that, during the year of higher parasitism rate, there was an increase in the percentage of parasitic eggs laid before magpies started laying. However, the synchronization of laying was poor both years regardless of the differences in the parasitism rate. The ejection rate was significantly higher during the pre‐egg‐laying and the post‐hatching stages than during the laying stage, and hatching success of parasitic eggs laid during the pre‐egg‐laying stage was zero. Thus, non‐synchronized parasitic eggs are wasted and therefore poor synchronization should be penalized by natural selection. We discuss four different hypotheses explaining poor synchronization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号