首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
对氨基苯甲酸是一种重要的有机合成中间体,广泛应用于医药、染料等行业。近年来对氨基苯甲酸作为一种潜在的高强度共聚物单体越来越受到重视。对氨基苯甲酸作为叶酸合成的前体之一,其合成在大肠杆菌体内由叶酸合成途径的pabA、pabB和pabC三个基因负责,催化分支酸合成对氨基苯甲酸。本研究以实验室构建的酪氨酸高产工程菌TYR002作为出发菌株,首先弱化双功能分支酸突变酶/预苯酸脱氢酶TyrA的表达,以减少酪氨酸积累,然后利用3种不同强度的组成型启动子分别调控pabA、pabB和pabC的表达。摇瓶发酵表明不同的组合调控模式下大肠杆菌发酵培养基中的对氨基苯甲酸积累量存在显著差异,最高可获得0.67 g/L的摇瓶发酵产量。进一步通过发酵条件优化和分批补料发酵,在5L发酵罐中获得了6.4g/L的对氨基苯甲酸产量。本研究为改善对氨基苯甲酸生物合成效率提供了重要理论参考。  相似文献   

2.
丙二酸是一种重要的有机二元羧酸,其应用价值遍及化工、医药、食品等领域。本文以大肠杆菌为底盘细胞,过表达了ppc、aspC、panD、pa0132、yneI和pyc基因,成功构建了丙二酸合成重组菌株大肠杆菌BL21(TPP)。该菌株在摇瓶发酵条件下,丙二酸产量达到0.61 g/L。在5 L发酵罐水平,采用间歇补料的方式丙二酸的积累量达3.32 g/L。本研究应用了融合蛋白技术,将ppc和aspC、pa0132和yneI分别进行融合表达,构建了工程菌BL21(SCR)。在摇瓶发酵水平,该菌株丙二酸的积累量达到了0.83 g/L,较出发菌株BL21(TPP)提高了36%。在5 L发酵罐中,工程菌BL21(SCR)的丙二酸产量最高达5.61 g/L,较出发菌株BL21(TPP)提高了69%。本研究实现了丙二酸在大肠杆菌中的生物合成,为构建丙二酸合成的细胞工厂提供了理论依据和技术基础,同时也对其他二元羧酸的生物合成具有启发和指导意义。  相似文献   

3.
为提高酿酒酵母工程菌S7香紫苏醇产量,采用摇瓶培养,研究了其生长和代谢特点,发现产物合成与菌体生长密切关联。在3 L发酵罐中通过补料-溶氧联动控制的方式,以葡萄糖、乙醇和葡萄糖/乙醇混合物为碳源进行高密度培养,香紫苏醇产量分别达到253 mg/L、386 mg/L和408 mg/L,最高产量是摇瓶培养的27倍。说明添加乙醇作为碳源有助于香紫苏醇合成。研究结果对优化酿酒酵母细胞工厂,高效生产萜类化合物具有重要参考价值。  相似文献   

4.
水杨酸葡萄糖苷(salicylate 2-O-β-D-glucoside,SAG),是植物中水杨酸的一种存在形式。水杨酸葡萄糖苷也具有消炎止痛的作用,和水杨酸、阿司匹林对比,表现出更小的刺激性,是一种具有潜力的消炎护肤物质。通过生物法利用可再生资源进行水杨酸类物质的生产方式,与传统工业法生产相比对环境更加友好。本研究以大肠杆菌(Escherichia coli)Tyr002作为出发菌株,引入铜绿假单胞菌(Pseudomonas aeruginosa)异分支酸裂解酶基因pchB,首先构建了大肠杆菌水杨酸生产菌株。通过调控下游不同芳香族氨基酸代谢途径关键基因表达,菌株摇瓶发酵水杨酸产量达到1.05 g/L。之后,通过在水杨酸生产菌株中引入植物来源水杨酸糖基转移酶,对水杨酸进行糖苷化修饰。新构建的菌株摇瓶发酵水杨酸葡萄糖苷产量达到5.7 g/L。在5 L发酵罐分批补料发酵中,水杨酸葡萄糖苷的产量达到36.5 g/L,是目前报道的最高产量。本研究为水杨酸类化合物的微生物合成提供了重要参考。  相似文献   

5.
通过研究长孢被孢霉(Mortierella elongate)的发酵过程,并采用摇瓶分批补料发酵模式考察了起始补料时间及补料基质对长孢被孢霉合成微生物油脂的影响。结果发现该菌株合成油脂主要在发酵48~96 h进行,且N源对菌株的生长有促进作用,采用限氮补料发酵可大幅度提高微生物油脂的产量。最适培养条件:可溶性淀粉20 g/L,玉米浆3 g/L,补料起始时间为发酵48 h,单次补加可溶性淀粉4 g。在此条件下,油脂产量较不补料时增加了521.74 mg,增长率为237.1%。  相似文献   

6.
探究大肠杆菌细胞内负责L-丙氨酸合成的转氨酶对菌株代谢及L-色氨酸合成的影响。运用Red重组技术分别对编码L-丙氨酸转氨酶的基因alaA、alaC和avtA进行敲除。通过摇瓶和50 L罐中探究其对L-色氨酸积累、L-丙氨酸代谢及菌体生长变化情况。结果显示,除3种L-丙氨酸转氨酶全部缺失的工程菌L-丙氨酸合成受阻、菌体生长受到较强抑制外,其它各任意一种或两种丙氨酸转氨酶缺失菌株的生长并未有较大差异,但色氨酸的合成变化显著。其中alaA和alaC双基因缺失的E.coli FS-T4工程菌,摇瓶发酵L-色氨酸产量达6.08 g/L,L-丙氨酸含量仅0.16 g/L,较出发菌株分别提高了26.7%和降低了91.0%。在50 L罐中E.coli FS-T4工程菌L-色氨酸产量最高可达41.9 g/L,糖酸转化率达20.5%,分别较出发菌株提高了13.8%和5.1%。转氨酶AlaA和AlaC的同时缺失,既可以满足细胞整体氨基酸池的需要,而且有利于减少杂酸的积累,使得更多的碳源流向L-色氨酸的合成。  相似文献   

7.
[目的]构建能够专一性合成光学纯(R,R)-2,3-丁二醇的大肠杆菌工程菌,并进行发酵条件优化。[方法]将来源于多粘芽孢杆菌的(R,R)-2,3-丁二醇脱氢酶基因bdh,来源于阴沟肠杆菌的α-乙酰乳酸合成酶基因bud B和α-乙酰乳酸脱羧酶基因bud A与表达载体p Tr C99A连接,导入大肠杆菌中构建人工合成途径。筛选最适的培养基和发酵条件,提高(R,R)-2,3-丁二醇的产量、产率和得率。[结果]获得高效合成(R,R)-2,3-丁二醇的工程菌株GXASB,筛选到最适碳源及其浓度为120 g/L木薯淀粉,最适pH为6.5,最适接种量为10%,在发酵罐中进行同步糖化法发酵,(R,R)-2,3-丁二醇产量达到105.28 g/L,光学纯为99.1%,得率为0.47 g/g,生产强度为1.95 g/(L·h)。[结论]在大肠杆菌中表达基因簇bud B-bud A-bdh能够专一性合成光学纯(R,R)-2,3-丁二醇,经优化发酵条件后,能够显著提高(R,R)-2,3-丁二醇的合成效率。同时工程菌能够利用非粮原料木薯淀粉高效生产(R,R)-2,3-丁二醇,补料发酵产量达到105.28 g/L,为使用廉价原料工业化生产(R,R)-2,3-丁二醇提供参考。  相似文献   

8.
左旋多巴是治疗帕金森氏病的首选药物,生物酶法合成左旋多巴具有工艺简单、条件温和、立体选择性高和环境友好等优点。本论文以实验室前期构建的表达具核梭杆菌(Fusobacterium nucleatum) TPL (Fn-TPL)的重组大肠杆菌为基础,采用单因素实验通过对5 L发酵罐发酵工艺优化以及补料策略的研究,确定了分批发酵的工艺参数:pH 6. 5,诱导温度30℃,诱导剂乳糖20 g/L。在5 L发酵罐中,进一步研究了10 mL/h、20 mL/h、30 mL/h三个速率的恒速流加对菌体生物量和TPL酶活的影响。结果表明,补料速率为20 mL/h时,生物量最高为30. 43 g dcw/L,体积酶活最高为9 420 U/L,较摇瓶发酵培养活力提高了3. 3倍。  相似文献   

9.
酪醇是一种多酚类天然产物,广泛应用于化工、医药和食品等领域。目前大肠杆菌(Escherichia coli)从头合成酪醇存在发酵菌体密度低和产量低等问题。为此,本研究将前期获得苯丙酮酸脱羧酶突变体ARO10F138L/D218G与不同来源的醇脱氢酶融合表达,最优组合ARO10F138L/D218G-L-YahK酪醇产量达到1.09 g/L。为进一步提高酪醇产量,敲除了4-羟基苯乙酸竞争途径关键基因feaB,使酪醇产量提高了21.15%,达到1.26g/L。针对酪醇发酵菌体密度低的问题,通过群体感应系统动态调控酪醇合成途径,减轻酪醇对底盘细胞的毒性作用,缓解生长抑制,使其产量提高了33.82%,达到1.74 g/L。在2 L发酵罐中,群体感应动态调控工程菌TRFQ5的酪醇产量达到4.22g/L,OD600值达到42.88,分别较静态诱导表达工程菌TRF5提高了38.58%和43.62%。本研究应用基因敲除技术,阻断了酪醇合成竞争途径;同时结合群体感应动态调控策略,减轻了酪醇毒性对底盘细胞的生长抑制,从而有效地提高了酪醇产量。本研究对其他高毒性化学品的生物合成具有良好的借鉴和应用价值。  相似文献   

10.
将表达酿酒酵母3-磷酸甘油脱氢酶基因(GPD1)和3-磷酸甘油酯酶基因(HOR2)的质粒PSE-gpd1-hor2转化到甘油激酶基因(glpK)和甘油脱氢酶基因(gldA)双缺失的大肠杆菌JM109C中,构建产甘油的工程菌JM109C/PSE-gpd1-hor2.接种JM109C/pSE-gpd1-hor2和Klebsiella在含1%葡萄糖的摇瓶发酵培养基中37℃发酵56 h,1,3-丙二醇的最高产量为1.28 g/L,葡萄糖摩尔转化率为37.5%;在30 L发酵罐中发酵68 h,1,3-丙二醇的最高产量为24.09 g/L,葡萄糖摩尔转化率为38.0%;5 g/L的乙酸、乳酸,10 g/L的乙醇分别使1,3-丙二醇的产量降低了91.41%、54.68%和51.56%.  相似文献   

11.
顺,顺-粘康酸是重要的平台化学品。目前,生物合成顺,顺-粘康酸还缺乏高性能菌株,已报道的主要工程菌株不仅需要诱导表达,遗传不稳定,而且发酵培养基组分复杂,不利于大规模工业化生产。构建能利用简单无机盐培养基、遗传稳定且不需要诱导表达的新型工程菌受到人们的关注。本研究在实验室前期构建的产三脱氢莽草酸工程菌株WJ060中,整合合成顺,顺-粘康酸的3个外源基因(aro Z、aro Y、cat A),并且利用3个不同强度的组成型启动子进行组合调控,成功构建了27株顺,顺-粘康酸工程菌,得到的最优工程菌MA30的产量达到1.7 g/L。为了进一步提高顺,顺-粘康酸工程菌的生产能力,利用基因组复制工程构建突变体库,结合高通量筛选方法,经过两轮筛选,成功筛选到了顺,顺-粘康酸产量提高超过8%的大肠杆菌MA30-G2。利用5 L发酵罐进行分批补料发酵,MA30-G2的顺,顺-粘康酸产量达到了11.5 g/L。本研究采用组合调控和高通量筛选相结合的策略不仅促进了顺,顺-粘康酸的生物合成,同时也为其他生物基化学品的生物制造提供了重要参考。  相似文献   

12.
Abstract— Pyridoxine (50mg/kg, per os) given for 7 consecutive days did not modify the content of dopamine, noradrenaline, and serotonin in the neostriatum of the brain 3, 6 and 18 h after the last dose, but significantly increased DOPA/5HTP decarboxylase activity in both the neostriatum and liver. The administration of l-DOPA and pyridoxine (100 and 50mg/kg, per os, respectively) together for 7 days increased DOPA/5HTP decarboxylase activity in the brain to the same extent as did l-DOPA and pyridoxine given individually. Liver DOPA/5HTP decarboxylase activity remained normal when both drugs were administered together. However it decreased significantly after l-DOPA administration for 7 days but not after pyridoxine treatment. In cats under treatment with l-DOPA for 7 days, actinomycin D given for the final 3 days prevented the increased DOPA/5HTP decarboxylase activity induced by l-DOPA in the neostriatum and mesencephalon but had no effect on the enzymatic activity in the liver. These findings indicate that differences exist between brain and liver DOPA/SHTP decarboxylase activity in uivo. In addition, denatured supernatant from livers of animals treated with l-DOPA contained a dialysable compound which inhibits DOPA/SHTP decarboxylase activity in the supernatant from livers of untreated cats. In animals who received pyridoxine along with l-DOPA, no such inhibitor was found. These results may explain the mechanism by which l-DOPA exerts its beneficial effects and why pyridoxine administered with l-DOPA reduces the therapeutic effectiveness of l-DOPA in Parkinson's disease. These findings are consistent with the possibility that a tetrahydro-isoquinoline derivative formed in vivo in the liver after l-DOPA therapy for 7 days might affect DOPA/5HTP decarboxylase activity in the liver but not in brain. A tetrahydroisoquinoline derivative did not appear to be formed when l-DOPA and pyridoxine were administrated together suggesting that pyridoxine protected the enzyme and favored a more rapid degradation of l-DOPA peripherally with less l-DOPA available for the CNS.  相似文献   

13.
1,2-Propanediol (1,2-PD) is a major commodity chemical currently derived from propylene. Previously, we have demonstrated the production of enantiomerically pure (R)-1,2-propanediol from glucose by an engineered E. coli expressing genes for NADH-linked glycerol dehydrogenase and methylglyoxal synthase. In this work, we investigate three methods to improve 1,2-PD in E. coli. First, we investigated improving the host by eliminating production of a byproduct, lactate. To do this, we constructed strains with mutations in two enzymes involved in lactate production, lactate dehydrogenase and glyoxalase I. (Surprisingly, when mutations were made in its ability to produce lactate, one strain of E. coli [MM294], produced a small amount of 1,2-PD without any added genes.) Second, we constructed a complete pathway to 1,2-PD from the glycolytic intermediate, dihydroxyacetone phosphate. Our previous 1, 2-PD producing strains relied on at least one endogenous E. coli activity and only produced 0.7 g/L of 1,2-PD. The complete pathway involved the coexpression of methylglyoxal synthase (mgs), glycerol dehydrogenase (gldA), and either yeast alcohol dehydrogenase (adhI) or E. coli 1,2-propanediol oxidoreductase (fucO). Third, we investigated bioprocessing improvements by carrying out a fed-batch fermentation with the best engineered strain (expressing mgs, gldA, and fucO). A final titer of 4.5 g/L of (R)-1,2-PD was produced, with a final yield of 0.19 g of 1,2-PD per gram of glucose consumed. This work provides a basis for further strain and process improvement.  相似文献   

14.
Escherichia coli W3110 was previously engineered to produce xylitol from a mixture of glucose plus xylose by expressing xylose reductase (CbXR) and deleting xylulokinase (DeltaxylB), combined with either plasmid-based expression of a xylose transporter (XylE or XylFGH) (Khankal et al., J Biotechnol, 2008) or replacing the native crp gene with a mutant (crp*) that alleviates glucose repression of xylose transport (Cirino et al., Biotechnol Bioeng 95:1167-1176, 2006). In this study, E. coli K-12 strains W3110 and MG1655 and wild-type E. coli B were compared as platforms for xylitol production from glucose-xylose mixtures using these same strategies. The engineered strains were compared in fed-batch fermentations and as non-growing resting cells. Expression of CRP* in the E. coli B strains tested was unable to enhance xylose uptake in the presence of glucose. Xylitol production was similar for the (crp*, DeltaxylB)-derivatives of W3110 and MG1655 expressing CbXR (average specific productivities of 0.43 g xylitol g cdw(-1 )h(-1) in fed-batch fermentation). In contrast, results varied substantially between different DeltaxylB-derivative strains co-expressing either XylE or XylFGH. The differences in genetic background between these host strains can therefore profoundly influence metabolic engineering strategies.  相似文献   

15.
The enzymatic decarboxylations of l-DOPA and l-5-hydroxytryptophan (l-5-HTP) by aromatic l-amino acid decarboxylase (AADC) were measured with homogenates from human brain regions, caduate nucleus and hypothalamus, using our new and highly sensitive methods for l-DOPA decarboxylase and l-5-HTP decarboxylase by high-performance liquid chromatography with electrochemical detection (HPLC-ED). Dopamine formed from l-DOPA as substrate was measured for DOPA decarboxylase activity using d-DOPA for the blank. For 5-HTP decarboxylase activity, serotonin (5-HT) formed from l-5-HTP was measured, and the blank value in presence of NSD-1055 was subtracted. NSD-1055 inhibited 5-HTP decarboxylase activity completely at a concentration of 0.2 mM. In this study, the properties of l-5-HTP decarboxylase activity in human caudate nucleus were first examined. AADC activities in human brains were found to be widely variable for both l-DOPA and l-5-HTP as substrates. The ratio of the activities for l-DOPA and l-5-HTP were found to be significantly higher in hypothalamus than in caudate nucleus. AADC activity for l-DOPA in the brain was found to be linear up to 40 min of incubation, while that for l-5-HTP was found to be linear up to 240 min of incubation. The optimum pyridoxal phosphate concentration was found to be similar for both substrates and was between 0.01 and 0.1 mM. The optimum pH values were found to be 7.2 and 8.2 for l-DOPA decarboxylase and l-5-HTP decarboxylase, respectively. Km and Vmax values for a human caudate nucleus l-DOPA decarboxylase were found to be 414 μM and 482 pmol/min/g wet weight, respectively, while those for l-5-HTP decarboxylase were found to be 90 μM and 71 pmol/min/g wet weight, respectively.  相似文献   

16.
来自恶臭假单胞菌的腈水解酶具有高效催化3-氰基吡啶产烟酸的能力,对表达该酶的基因psn进行发酵和产酶条件优化,通过对C源、N源、磷酸盐、金属离子、温度、诱导剂浓度和诱导时间进行单因素考察,获得最适培养基条件(g/L):葡萄糖5、蛋白胨15、酵母粉5、(NH4)2SO45、K2HPO424.5、KH2PO45.76、MgSO40.48;最佳诱导条件:培养2.5 h后添加IPTG诱导,浓度0.2 mmol/L,诱导温度30℃。在该条件下培养,重组大肠杆菌的腈水解酶比酶活可达到45.67 U/mL,比优化前提高了2.26倍。在此基础上,于5 L发酵罐上进行C、N源的补料研究,获得最适分批补料策略,发现其腈水解酶活力可达到75.40 U/mL,是优化前的3.74倍。  相似文献   

17.
The chemical monomer p-hydroxystyrene (pHS) is used for producing a number of important industrial polymers from petroleum-based feedstocks. In an alternative approach, the microbial production of pHS can be envisioned by linking together a number of different metabolic pathways, of which those based on using glucose for carbon and energy are currently the most economical. The biological process conserves petroleum when glucose is converted to the aromatic amino acid L-tyrosine, which is deaminated by a tyrosine/phenylalanine ammonia-lyase (PAL/TAL) enzyme to yield p-hydroxycinnamic acid (pHCA). Subsequent decarboxylation of pHCA gives rise to pHS. Bacteria able to efficiently decarboxylate pHCA to pHS using a pHCA decarboxylase (PDC) include Bacillus subtilis, Pseudomonas fluorescens and Lactobacillus plantarum. Both B. subtilis and L. plantarum possess high levels of pHCA-inducible decarboxylase activity and were chosen for further studies. The genes encoding PDC in these organisms were cloned and the pHCA decarboxylase expressed in Escherichia coli strains co-transformed with a plasmid encoding a bifunctional PAL/TAL enzyme from the yeast Rhodotorula glutinis. Production of pHS from glucose was ten-fold greater for the expressed L. plantarum pdc gene (0.11mM), compared to that obtained when the B. subtilis PDC gene (padC) was used. An E. coli strain (WWQ51.1) expressing both tyrosine ammonia-lyase(PAL) and pHCA decarboxylase (pdc), when grown in a 14L fermentor and under phosphate limited conditions, produced 0.4g/L of pHS from glucose. We, therefore, demonstrate pHS production from an inexpensive carbohydrate feedstock by fermentation using a novel metabolic pathway comprising genes from E. coli, L. plantarum and R. glutinis.  相似文献   

18.
3-脱氢莽草酸是芳香族氨基酸合成代谢途径中的一种重要中间产物。除可作为一种高效的抗氧化剂,还可用于合成己二酸、香草醛等一些重要的化工产品,具有重要的应用价值。相关研究证明具有去酪氨酸反馈抑制的3-脱氧-D-阿拉伯庚酮糖-7-磷酸合成酶基因aroFFBR以及转酮醇酶基因tktA可以有效影响3-脱氢莽草酸的过量合成。通过增加aroFFBR和tktA串联过量表达的拷贝数,可使工程菌株在摇瓶发酵条件下3-脱氢莽草酸产量提高2.93倍。通过同源重组无痕基因敲除技术依次敲除出发菌大肠杆菌Escherichia coli AB2834的乳酸、乙酸、乙醇等副产物合成途径中的重要基因ldhA、ackA-pta和adhE,可使工程菌株的3-脱氢莽草酸产量进一步提高,达到了1.83 g/L,是初始出发菌株大肠杆菌E.coli AB2834产量的6.7倍。利用5 L发酵罐进行分批补料发酵,62 h后工程菌株3-脱氢莽草酸产量达到了25.48 g/L。本研究可为构建有应用前景的3-脱氢莽草酸生产菌株提供重要参考。  相似文献   

19.
20.
【背景】大肠杆菌由于生长性能优良、遗传背景清晰,常被用作苏氨酸生产菌。【目的】敲除大肠杆菌Escherichia coli THR苏氨酸合成途径的非必需基因,并异源表达苏氨酸合成必需的关键酶,构建一株苏氨酸高产菌株。【方法】利用FLP/FRT重组酶系统,敲除E. coli THR中lysC、pfkB和sstT,同时进行谷氨酸棒杆菌中lysC~(fbr)、thrE和丙酮丁醇梭菌中gapC的重组质粒构建并转化到宿主菌中。【结果】以E. coli THR为出发菌株,敲除其苏氨酸合成途径中表达天冬氨酸激酶Ⅲ (AKⅢ)的基因lysC、磷酸果糖激酶Ⅱ基因pfkB及苏氨酸吸收蛋白表达基因sstT,使菌株积累苏氨酸的产量达到75.64±0.35g/L,比出发菌株增加9.9%。随后异源表达谷氨酸棒杆菌中解除了反馈抑制的天冬氨酸激酶(lysC~(fbr))、苏氨酸分泌转运蛋白(thrE)及丙酮丁醇梭菌中由gapC编码的NADP+依赖型甘油醛-3-磷酸脱氢酶,获得重组菌株E. coli THR6菌株。该菌株积累苏氨酸的产量提高到105.3±0.5 g/L,糖酸转化率提高了43.20%,单位产酸能力提高到5.76 g/g DCW,最大生物量为18.26 g DCW/L。【结论】单独敲除某个基因或改造某个途径不能使苏氨酸大量合成和积累,对多个代谢途径共同改造是构建苏氨酸工程菌的最有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号