首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】合成气发酵对大力开发可再生资源和促进国家可持续发展具有重要意义,研究旨在探究不同生境微生物转化H2/CO2产乙酸及其合成气发酵的潜力。【方法】采集剩余污泥、牛粪、产甲烷污泥和河道底物样品在中温(37 °C)条件下生物转化H2/CO2气体,将来源于牛粪样品的H2/CO2转化富集物用于合成气发酵,通过454高通量技术和定量PCR技术分析复杂微生物群落的组成,GC气相色谱法检测气体转化产生的挥发性脂肪酸(VFAs)浓度。【结果】牛粪和剩余污泥微生物利用H2/CO2气体生成乙酸、乙醇和丁酸等,最高乙酸浓度分别为63 mmol/L和40 mmol/L,明显高于河道底物和产甲烷污泥样品的最高乙酸浓度3 mmol/L和16 mmol/L。牛粪和剩余污泥微生物中含有种类多样化的同型产乙酸菌,剩余污泥中同型产乙酸菌主要为Clostridium spp.、Sporomusa malonica和Acetoanaerobium noterae,牛粪中则为Clostridium spp.、Treponema azotonutricium和Oxobacter pfennigii。【结论】同型产乙酸菌的丰富度和数量两个因素都对复杂微生物群落转化H2/CO2产乙酸效率至关重要;转化H2/CO2得到的富集物可用于合成气发酵产乙酸和乙醇,这为基于混合培养技术的合成气发酵提供了依据。  相似文献   

2.
罗衎  符波  张丽娟  刘宏波  刘和 《生物工程学报》2014,30(12):1901-1911
同型产乙酸菌是一类具有巨大工业应用潜力的微生物类群,可利用合成气生成乙醇和乙酸等燃料和化学品。本研究采集城市污泥样品利用Hungate滚管法进行同型产乙酸菌的筛选,并利用其进行H2/CO2气体的生物转化,研究了p H对其乙酸和乙醇生成情况的影响。结果表明,所获得的同型产乙酸菌混培物组成为永达尔梭菌,纺缍形赖氨酸芽胞杆菌和蜡样芽胞杆菌等。该混培物最适p H为5-7。p H为7时混培物利用H2/CO2气体得到乙酸浓度可达到31.69 mmol/L。本研究获得了一种可利用H2/CO2合成乙酸的同型产乙酸菌混培物,为合成气生物转化的工业应用提供了有效的微生物资源。  相似文献   

3.
【背景】异于同型产乙酸菌通常利用Wood-Ljungdahl途径将2分子CO2还原为1分子乙酰辅酶A,Clostridium bovifaecis缺失Wood-Ljungdahl途径甲基支路第1步将CO2还原为甲酸的甲酸脱氢酶,需甲酸存在时将1分子甲酸和1分子CO2还原为乙酰辅酶A发生葡萄糖的同型产乙酸型发酵。已有报道显示,硝酸盐也可作为同型产乙酸菌的电子受体,而且对不同同型产乙酸菌的代谢影响有所不同,然而硝酸盐对这种独特的甲酸脱氢酶缺失型Wood-Ljungdahl途径固碳的影响尚不清楚。【目的】探究硝酸盐对C.bovifaecis甲酸脱氢酶缺失型Wood-Ljungdahl途径固碳的影响。【方法】硝酸盐浓度分别为10 mmol/L和30 mmol/L时,以未添加硝酸盐为对照实验,研究C.bovifaecis在葡萄糖+甲酸+CO2为基质条件下的细菌生长、底物消耗和产物生成情况。【结果】10 mmol/L和30 mmol/L硝酸盐存在时,主要产物乙醇浓度分别为5.80 mmol/L和1.66 mmo...  相似文献   

4.
朱慧  符波  鲁帅领  刘宏波  刘和 《微生物学通报》2018,45(11):2320-2330
【背景】同型产乙酸菌是一类利用乙酰辅酶A途径固定CO_2合成自身细胞物质并生成乙酸、乙醇等代谢产物的厌氧菌群,其分布广泛、种类繁多且代谢多样。深入研究同型产乙酸菌菌株的代谢能力及特性,对探索该种群的生理生化特性及其环境作用至关重要。【目的】研究一株同型产乙酸菌Clostridium sp. BXX的最适培养条件及其自养与异养生长特性。【方法】设置BXX菌株培养温度10-55°C、初始pH 6.0-9.0、NaCl浓度0-2.0%、不同氮源,测定菌体细胞含量和产物生成浓度,确定菌株最适培养条件。研究BXX菌株分别以H_2/CO_2、合成气、CO、葡萄糖、1,2-丙二醇、甲酸钠、乙二醇甲醚、甘油、丙酮酸和乳酸为底物时的底物消耗、产物生成、菌体细胞含量和pH等,探究其自养和异养生长特性。【结果】BXX菌株的最适培养温度为30°C,初始pH为7.0,NaCl浓度为1.0%,氮源为酵母粉。BXX菌株能以H2/CO2、合成气、葡萄糖、1,2-丙二醇、甲酸钠、乙二醇甲醚和甘油为底物生长,不能以CO、丙酮酸或乳酸为底物生长。【结论】BXX菌株既能自养生长产乙酸,又能异养生长产乙醇。BXX菌株是乙酸发酵的优良菌种资源,有较好的工业应用潜力。  相似文献   

5.
污泥厌氧消化产酸发酵过程中乙酸累积机制   总被引:4,自引:0,他引:4  
刘和  许科伟  王晋  李秀芬  陈坚 《微生物学报》2010,50(10):1327-1333
[目的]研究污泥厌氧消化产挥发性脂肪酸(VFA)过程中的有机物碳流的转化机制,阐明乙酸累积机理。[方法]研究溴乙烷磺酸盐(BES)和氯仿(CHCl3)抑制模型下中间代谢产物和气体的累积,检测各产乙酸功能菌群数量,推断污泥产酸发酵过程中的有机物碳流方向和乙酸累积机理。[结果]BES模型乙酸浓度达27 mmol/L,fhs基因拷贝数比对照组高2-3倍,产氢产乙酸菌略有下降。CHCl3模型乙酸浓度达22 mmol/L,fhs基因拷贝数比BES组低一个数量级,产氢产乙酸菌下降明显。[结论]BES特异性较高,除产甲烷菌外对其他厌氧产酸细菌没有影响,乙酸浓度增加并且其主要来源于水解发酵产酸以及同型产乙酸过程。氯仿除抑制产甲烷菌外,对同型乙酸菌和产氢产乙酸菌也有强烈的抑制作用。  相似文献   

6.
酸碱调控污泥厌氧发酵实现乙酸累积及微生物种群变化   总被引:2,自引:0,他引:2  
刘和  刘晓玲  张晶晶  陈坚 《微生物学报》2009,49(12):1643-1649
摘要:【目的】通过对污泥厌氧发酵pH调控,研究挥发性脂肪酸的累积、产酸微生物种群变化及产氢产乙酸菌群对乙酸产生的贡献。【方法】测定不同pH条件下污泥厌氧发酵过程中挥发性脂肪酸的累积;分别应用末端限制性片段长度多态性(T-RFLP)和荧光原位杂交技术(FISH)分析产酸系统中微生物种群结构的变化及产氢产乙酸菌的数量。【结果】 pH为10.0时,有机酸和乙酸的产率在发酵结束时分别达到652.6 mg COD/g-VS和322.4 mg COD/g-VS,显著高于其它pH条件。T-RFLP结果表明,pH值为12  相似文献   

7.
【目的】革兰氏阴性菌Geobacter metallireducens可以与乙酸型产甲烷菌Methanosaeta harundinacea或Methanosarcina barkeri通过种间直接电子传递(DIET)还原CO2产甲烷。本实验室前期的研究发现Methanosarcina mazei和Geobacteraceae在铁还原富集培养中形成团聚体,可能存在直接电子传递。然而,革兰氏阳性菌(如Clostridium spp.)与产甲烷菌是否存在种间直接电子传递尚不明确。【方法】采用Hungate厌氧滚管法,以乙醇为唯一电子供体从铁还原富集培养体系中获得产甲烷分离物(S6)。通过T-RFLP及克隆文库分析群落多样性,结合循环伏安法等电化学方法研究产甲烷分离物的电活性。【结果】Clostridium spp.(与C.tunisiense相似性最高)和M.barkeri分别在S6细菌和古菌群落中占优势。S6与G.metallireducens共培养后铁还原和产甲烷能力未明显增加,Clostridium spp.可能与G.metallireducens类似,将电子直接传递给产甲烷菌M.barkeri产甲烷。此外,电化学检测发现,在用透析袋包裹电极阻碍微生物与电极表面通过直接接触形成生物膜的条件下,电流密度显著降低,并且循环伏安扫描无明显氧化还原峰。【结论】产甲烷分离物S6中存在直接电子传递途径。本工作提出在产甲烷分离物中占优势的革兰氏阳性菌Clostridium spp.和M.barkeri之间可能存在种间直接电子传递。  相似文献   

8.
采用产氢产乙酸/同型产乙酸两相耦合工艺对剩余污泥进行了半连续式厌氧发酵,主要研究了pH值和产甲烷抑制剂2-bromoethanesulphonate(BES)对耦合系统定向产乙酸的影响.结果表明:碱性pH(pH=10.0)和添加BES都能促进A相乙酸的积累,提高乙酸的产率,同时碱性pH比添加BES更有利于污泥的水解.当...  相似文献   

9.
氢营养型产甲烷代谢途径研究进展   总被引:1,自引:0,他引:1  
冷欢  杨清  黄钢锋  白丽萍 《微生物学报》2020,60(10):2136-2160
产甲烷古菌是一类极端厌氧的古菌域微生物,可以利用CO_2、甲醇、乙酸等简单化合物产甲烷并获得能量。目前能够培养的氢营养型(CO_2/H_2)产甲烷古菌的种类较多,而且在三类产甲烷代谢类型中,氢营养型产甲烷途径的产能效率最高,并具有多种模式的特殊能量利用系统。近年来,随着质谱、光谱和晶体技术的发展与运用,人们对产甲烷代谢途径的研究进一步深入,尤其是对氢营养型产甲烷途径的生化机制有了新的认识,揭示了产甲烷古菌在能量极限条件下独特、高效的能量利用模式。本文从能量储存、代谢途径、蛋白功能与催化机制等方面概述产甲烷古菌利用CO_2/H_2产甲烷的详细过程,并对产甲烷古菌代谢途径的研究方向与技术发展进行展望。  相似文献   

10.
【背景】电化学厌氧消化(electrochemical anaerobic digestion,EAD)系统的代谢途径由具备不同功能的微生物所主导,其代谢通量与功能微生物丰度、活性及群落结构相关。【目的】探究EAD产甲烷代谢通量与微生物的关系。【方法】采用代谢通量分析(metabolic flux analysis,MFA)方法,以pH为扰动因子得到微生物群落与产甲烷通量的响应关系。【结果】pH 7.5扰动时产甲烷通量最大为0.398 4±0.029 3,较对照组(pH 6.9)的0.297 4±0.012 7和扰动组(pH 6.3)的0.136 5±0.012 0分别提高了25%和65%。另外,平均有33.8%±3.1%的氢气(通量)用于还原二氧化碳产甲烷和乙酸,平均有21.0%±2.6%的乙酸(通量)转化为甲烷。此外,产甲烷通量与Mariniphaga、Methanosaeta和Desulfomicrobium的丰度呈正相关,与Sedimentibacter的丰度呈负相关且影响显著。【结论】在EAD产甲烷体系中产甲烷菌和产酸菌共存时,pH值略大于7.0的环境有利于甲烷的生成,改变E...  相似文献   

11.
内蒙古自治区二连盆地、海拉尔盆地是我国重要的煤层气产区,其中生物成因煤层气是煤层气的重要来源,但复杂物质转化产甲烷相关微生物群落结构及功能尚不清楚。【目的】研究煤层水中的微生物代谢挥发性脂肪酸产甲烷的生理特征及群落特征。【方法】以内蒙古自治区二连盆地和海拉尔盆地的四口煤层气井水作为接种物,分别添加乙酸钠、丙酸钠和丁酸钠厌氧培养;定期监测挥发性脂肪酸降解过程中甲烷和底物的变化趋势,应用高通量测序技术,分析原始煤层气井水及稳定期产甲烷菌液的微生物群落结构。【结果】除海拉尔盆地H303煤层气井微生物不能代谢丙酸外,其他样品均具备代谢乙酸、丙酸和丁酸产生甲烷的能力,其生理生态参数存在显著差异,产甲烷延滞期依次是乙酸丁酸丙酸;最大比产甲烷速率和底物转化效率依次是丙酸乙酸丁酸。富集培养后,古菌群落结构与煤层气井水的来源显著相关,二连盆地优势古菌为氢营养型产甲烷古菌Methanocalculus (相对丰度13.5%–63.4%)和复合营养型产甲烷古菌Methanosarcina (7.9%–51.3%),海拉尔盆地的优势古菌为氢营养型产甲烷古菌Methanobacterium(24.3%–57.4%)和复合营养型产甲烷古菌Methanosarcina(29.6%–66.5%);细菌群落则与底物类型显著相关,硫酸盐还原菌Desulfovibrio(12.0%–41.0%)、互营丙酸氧化菌Syntrophobacter(39.6%–75.5%)和互营丁酸菌Syntrophomonas(8.5%–21.9%)分别在乙酸钠、丙酸钠和丁酸钠处理组显著富集。【结论】煤层气井水微生物可降解挥发性脂肪酸(乙酸、丙酸和丁酸)并具有产甲烷潜力;乙酸可能被古菌直接代谢产甲烷,而丙酸和丁酸通过互营细菌和产甲烷古菌代谢产甲烷。Desulfovibrio、Syntrophobacter和Syntrophomonas分别在乙酸、丙酸和丁酸代谢过程中发挥了重要作用。这些结果为煤层气生物强化开采提供了一定的微生物资源基础。  相似文献   

12.
【目的】探究新疆低阶煤生物甲烷转化过程微生物群落组成及多样性。【方法】采用厌氧培养方法和末端限制性片段长度多态性技术(Terminal restriction fragment length polymorphism,T-RFLP)分析新疆低阶煤本源微生物对甲烷转化及有机酸含量的影响,分析新疆哈密大南湖长焰煤生物甲烷转化过程中微生物群落动态变化。【结果】研究表明长焰煤和褐煤对本源微生物产甲烷影响较小,随着低阶煤生物甲烷转化时间的延长,甲烷产量呈上升趋势,转化60 d后长焰煤甲烷产量高达10.28 m L/g,挥发性有机酸(VFA)浓度则最低;微生物多样性指数变化不明显,不同转化时间微生物主要类群为放线菌门(Actinobacteria),拟杆菌门(Bacteroidetes),厚壁菌门(Firmicutes),变形菌门(Proteobacteria);甲烷菌的群落结构相对于细菌较简单,在整个低阶煤生物转化产甲烷过程中共有古菌类群为甲烷八叠球菌属(Methanosarcina)、甲烷盐菌属(Methanohalobium)、甲烷叶菌属(Methanolobus)、甲烷食甲基菌属(Methanomethylovorans),它们是构成群落结构的基本菌群。【结论】低阶煤生物甲烷转化过程微生物群落具有丰富的多样性,且不同时期多样性有较大差异。甲烷菌群落结构相对于细菌较简单,共有类群明显。  相似文献   

13.
为探究微生物电解池耦合厌氧消化(MEC-AD)产甲烷代谢通量与微生物的关系。实验以电压为扰动因子,采用代谢通量分析(MFA)的方法,得到微生物群落与产甲烷通量的响应关系。结果表明:电压扰动后产甲烷通量和产氢通量均发生显著变化,而电压扰动对产乙酸通量的影响较小,其中0.6 V扰动时产甲烷通量最大为0.522±0.051,较对照组1.0 V的0.295±0.013和1.4 V的0.395±0.029分别提高了77%和32%。另外,平均有15.7%±2.9%的H_(2)(通量)用于还原CO_(2)产甲烷和乙酸,平均有27.7%±6.9%的乙酸(通量)转化为CH_(4)。毛螺旋菌(Lachnospiraceae)的丰度对乙酸通量有显著影响,产CH_(4)通量与理研菌属(Petrimonas)、互营单胞菌属(Syntrophomonas)、拟杆菌属(Blvii28)、假单胞菌属(Acinetobacter)的丰度呈正相关,与梭菌属(Tuzzerella)、球形螺旋菌属(Sphaerochaeta)的丰度呈负相关。而影响产H2通量和产CH_(4)通量的物种具有相似性,多为拟杆菌、梭菌、假单胞菌和厚壁菌。此外,物种种间互作关系也是影响MEC-AD产甲烷通量的重要因素。  相似文献   

14.
青藏高原三个盐碱湖的产甲烷菌群和产甲烷代谢途径分析   总被引:1,自引:0,他引:1  
【目的】分析青藏高原不同类型盐碱湖中的优势产甲烷菌群和优势产甲烷代谢途径。【方法】以不同盐度和植被类型的公珠错、昆仲错和无植被的兹格塘错的沉积物为研究对象,通过高通量测序和q PCR定量古菌16S r RNA多样性分析优势古菌类群;模拟原位盐浓度及p H,比较不同产甲烷底物(甲醇、三甲胺、乙酸和H_2/CO_2)富集沉积物的产甲烷速率,分析其优势产甲烷菌代谢类型。通过添加产甲烷抑制剂(2-溴乙烷磺酸盐),检测沉积物中产甲烷底物积累,确定不同盐碱湖中主要的产甲烷途径。【结果】昆仲错的优势菌群包括甲基/乙酸型的甲烷八叠球菌科(Methanosarcinaceae,11%),乙酸型的甲烷鬃菌科(Methanosaetaceae,7.9%)和氢型甲烷菌甲烷杆菌目(Methanomicrobiales,7.4%);公珠错和兹格塘错的优势菌群为甲烷鬃菌科(Methanosaetaceae)分别占15%和15.3%,及甲烷杆菌属(Methanobacterium)和甲基型的甲烷叶菌属(Methanolobus)。公珠错和昆仲错分别以乙酸和甲醇产甲烷速率最高,而兹格塘错从不同底物产甲烷速率无差异。抑制甲烷产生后,公珠错主要积累乙酸,昆仲错主要积累甲醇;兹格塘错不仅甲烷排放低,也无产甲烷物质显著积累。【结论】昆仲错沉积物中的甲烷主要来自甲醇,公珠错中的甲烷主要来自乙酸,而兹格塘错产甲烷和底物积累不活跃。因而推测高原盐碱湖主要的产甲烷途径和菌群可能与周围植被类型的相关性更高,而与盐度的直接相关性较低。  相似文献   

15.
李金  韩瑞枝  许国超  董晋军  倪晔 《微生物学报》2015,55(11):1427-1436
摘要:【目的】通过克隆来源于糖丁基梭菌(Clostridium saccharobutylicum DSM13864)丁醇合成途径的关键酶基因(thlA,bcs-operon和adhE),构建产丁醇大肠杆菌。【方法】以Clostridium saccharobutylicum DSM13864的基因组为模板,分别扩增丁醇途径关键酶基因thlA,bcs-operon(crt-bcd1-etfB2-fixB2-hbd)和adhE,构建了两个重组质粒pETDuet-bcs和pRSFDuet-thlA-adhE,并成功转入E.coli JM109(DE3)实现异源表达,使大肠杆菌具备产丁醇能力。在半厌氧条件下进行重组菌的发酵,并研究不同培养基对产丁醇的影响。【结果】该重组菌在半厌氧条件下经摇瓶发酵丁醇产量达到25.4 mg/L,通过优化培养基后,在TB发酵培养基中丁醇产量可达到34.1 mg/L。【结论】通过构建重组共表达质粒,将糖丁基梭菌来源的丁醇途径关键酶基因在大肠杆菌中表达,成功构建产丁醇大肠杆菌。该研究提供了一株易于操作的丁醇发酵重组大肠杆菌,避免了传统梭菌发酵丁醇生产中苛刻的厌氧条件、易产孢子等限制问题。  相似文献   

16.
白蚁肠道微生物   总被引:12,自引:0,他引:12  
对近年来白蚁肠道微生物方面的研究成果作一综述,主要强调白蚁肠道中存在的原生动物、发酵性细菌、固氮菌、螺旋体、同型产乙酸细菌、产甲烷细菌和硫酸盐还原菌对白蚁消化木质纤维素类食物有着重要的作用。  相似文献   

17.
【目的】探究土霉素残留对蔬菜自然发酵过程中微生物群落演替和代谢产物动力学的影响,为评估抗生素残留对蔬菜发酵的影响提供理论基础。【方法】超高效液相色谱-串联质谱法测定土霉素残留;高效液相色谱法测定有机酸、电子鼻和气相色谱-质谱联用测定挥发性成分和高通量技术测定微生物种类。【结果】蔬菜自然发酵过程中,土霉素残留从4.00 mg/L下降到2.53 mg/L;不含抗生素残留的蔬菜发酵含有同型和异型乳酸发酵,而土霉素残留的蔬菜发酵仅含有同型乳酸发酵;同时,其特征微生物由Lactobacillus pentosus和Lactobacillus plantarum转变为Lactobacillus paratarrginis、Lactobacillus buchneri和Lactobacillus kisonensis;土霉素残留明显影响了乳酸、柠檬酸、乙酸、香茅醇、3-辛醇、异硫氰酸烯丙酯、乙酸香叶酯、乙烯基硬脂醚和异硫氰酸苯乙酯等代谢产物的含量。【结论】土霉素残留影响了蔬菜乳酸发酵的类型、微生物群落的演替、有机酸和挥发性化合物的形成过程,因此应将抗生素残留纳入发酵蔬菜原料的质量控制指标。  相似文献   

18.
【背景】识别出具有驱油功能的内源性微生物群是当前设计高效微生物采油技术的迫切需求。【目的】通过宏基因组分析找出原位油藏微生物中具有产酸/产气功能的潜在核心微生物群。【方法】利用室内模拟体系,对原位油藏微生物进行有机营养(从有氧到无氧)的激活,运用生物信息、多元统计分析以及网络分析等方法,寻找潜在内源性核心功能微生物群。【结果】有机营养激活了原位油藏样本中以Bacillus licheniformis为核心的产酸菌群(包括Coprothermobacter proteolyticus、Marinobacterspp.、Anaerobaculumhydrogeniformans和Petrotogamobilis),该菌群具有以丙酮酸/乙酰辅酶A为原料发酵乳酸、乙酸以及甲酸的功能;激活了以Enterococcus faecium为核心的产气菌群(包括Shinella zoogloeoides、Paracoccus denitrificans、Paracoccus spp.和Enterobacter cloacae),该菌群具备以(亚)硝酸盐、(亚)硫酸盐、石油烃为原料生产含氮/硫/碳等气体的能力。2个核心菌群内部分菌同时具有产酸和产气通路基因,激活过程中2个菌群的丰度变化呈负相关关系。【结论】利用有机营养激活体系及宏基因组测序分析技术,筛选出了油藏样本中具备产酸、产气能力的核心功能菌群,为后续进一步的功能菌株研究提供了潜在靶标及功能指向。  相似文献   

19.
一碳气体主要包括CO、CO_(2)和CH_(4)等,这些气体来源于陆地生物活动、工业废气以及气化合成气等,其中CO_(2)与CH_(4)是温室气体,对全球气候变化有着重要的影响。利用微生物进行一碳气体生物转化既可以解决废气排放的问题,又能生产燃料及多种化学品。近年来,运用CRISPR/Cas9等基因编辑技术对一碳气体利用微生物进行改造,是提高它们的产物得率、增加产物类型的重要途径。本文主要围绕甲烷营养菌、自养乙酸菌、一氧化碳营养菌等一碳气体利用微生物,综述了其生物学特性、好氧和厌氧代谢途径、代谢产物,以及常用的基因编辑技术(利用同源重组的基因中断技术、二类内含子ClosTron法、CRISPR/Cas基因编辑及以噬菌体重组酶介导的DNA大片段引入等)在它们中的应用,为后续相关研究提供参考。  相似文献   

20.
寺河矿煤地质产甲烷微生物菌群的保藏和产甲烷性能   总被引:1,自引:0,他引:1  
【背景】煤地质产甲烷微生物菌群可以代谢煤基质产生甲烷,对于实现煤层气资源的再利用具有重要意义。【目的】检测产甲烷菌群在保藏过程中群落结构的动态变化以及在产气实验中甲烷气的生成情况,以验证保藏方法的可行性,同时为煤层气的微生物增产奠定基础。【方法】分别于不同温度条件下比较3种菌种保藏方法,即甘油/L-半胱氨酸法、富营养法和煤基-基础盐法。通过产气实验检测不同保藏条件下产甲烷菌群的活力。同时,采用454高通量测序技术测定16S r RNA基因序列,分析25°C条件下煤基-基础盐菌种保藏过程中微生物群落结构的变化。【结果】比较了9组菌种保藏方法,发现菌种最佳保藏条件为25°C的煤基-基础盐保藏。在该条件下保藏的产甲烷菌群活性最高,甲烷生成量最大。以无烟煤为碳源进行产气实验时甲烷生成量为12%-25%,而以褐煤为碳源时甲烷生成量可达24%-73%。在25°C的煤基-基础盐菌种保藏条件下,保藏初期细菌的主要优势菌为假单胞菌属(Pseudomonas),而古菌的主要优势菌为甲烷八叠球菌属(Methanosarcina)。随着保藏时间的增加,细菌的群落结构变化显著,发酵细菌及产氢产乙酸细菌成为优势细菌,古菌的群落结构则相对稳定。【结论】菌种保藏的最佳条件为25°C的煤基-基础盐,保藏的产甲烷菌群能长期维持在较高的活性状态,具有较好的产甲烷能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号