首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
Variation in diversification rates is often studied by investigating traits related to species' ecology and life history. Often, however, it is unknown whether these traits evolve gradually or in punctuated bursts during speciation. Using phylogenetic data and species' present-day trait information, we present a novel approach to assessing the mode of character change while accounting for trait-dependent speciation and extinction. Our model, "Binary-State Speciation and Extinction-node enhanced state shift" (BiSSE-ness), estimates both the rate of change occurring along lineages and the probability of change occurring during speciation, as well as independent speciation and extinction rates for each character state. Using simulations, we found that BiSSE-ness is able to distinguish along-lineage and speciational change and accurately estimate the parameters associated with character change and diversification rates. We applied BiSSE-ness to an empirical primate data set and found evidence for along-lineage changes in primate mating systems and social behaviors, whereas shifts in habitat were associated with speciation. In cases where trait changes may be linked to the speciation process itself (e.g., niche-related traits), BiSSE-ness provides a suitable framework with which to simultaneously address questions regarding species diversification and character change.  相似文献   

2.
Understanding the patterns of biodiversity through time and space is a challenging task. However, phylogeny‐based macroevolutionary models allow us to account and measure many of the processes responsible for diversity buildup, namely speciation and extinction. The general latitudinal diversity gradient (LDG) is a well‐recognized pattern describing a decline in species richness from the equator polewards. Recent macroecological studies in ectomycorrhizal (EM) fungi have shown that their LDG is shifted, peaking at temperate rather than tropical latitudes. Here we investigate this phenomenon from a macroevolutionary perspective, focusing on a well‐sampled group of edible EM mushrooms from the genus Amanita—the Caesar's mushrooms, which follow similar diversity patterns. Our approach consisted in applying a suite of models including (1) nontrait‐dependent time‐varying diversification (Bayesian analysis of macroevolutionary mixtures [BAMM]), (2) continuous trait‐dependent diversification (quantitative‐state speciation and extinction [QuaSSE]), and (3) diversity‐dependent diversification. In short, results give strong support for high speciation rates at temperate latitudes (BAMM and QuaSSE). We also find some evidence for different diversity‐dependence thresholds in “temperate” and “tropical” subclades, and little differences in diversity due to extinction. We conclude that our analyses on the Caesar's mushrooms give further evidence of a temperate‐peaking LDG in EM fungi, highlighting the importance and the implications of macroevolutionary processes in explaining diversity gradients in microorganisms.  相似文献   

3.
Biologists have long sought to understand the processes underlying disparities in clade size across the tree of life and the extent to which such clade size differences can be attributed to the evolution of particular traits. The association of certain character states with species‐rich clades suggests that trait evolution can lead to increased diversification, but such a pattern could also arise due other processes, such as directional trait evolution. Recent advances in phylogenetic comparative methods have provided new statistical approaches for distinguishing between these intertwined and potentially confounded macroevolutionary processes. Here, we review the historical development of methods for detecting state‐dependent diversification and explore what new methods have revealed about classic examples of traits that affect diversification, including evolutionary dead ends, key innovations and geographic traits. Applications of these methods thus far collectively suggest that trait diversity commonly arises through the complex interplay between transition, speciation and extinction rates and that long hypothesized evolutionary dead ends and key innovations are instead often cases of directional trends in trait evolution.  相似文献   

4.
It is widely assumed that phenotypic traits can influence rates of speciation and extinction, and several statistical approaches have been used to test for correlations between character states and lineage diversification. Recent work suggests that model‐based tests of state‐dependent speciation and extinction are sensitive to model inadequacy and phylogenetic pseudoreplication. We describe a simple nonparametric statistical test (“FiSSE”) to assess the effects of a binary character on lineage diversification rates. The method involves computing a test statistic that compares the distributions of branch lengths for lineages with and without a character state of interest. The value of the test statistic is compared to a null distribution generated by simulating character histories on the observed phylogeny. Our tests show that FiSSE can reliably infer trait‐dependent speciation on phylogenies of several hundred tips. The method has low power to detect trait‐dependent extinction but can infer state‐dependent differences in speciation even when net diversification rates are constant. We assemble a range of macroevolutionary scenarios that are problematic for likelihood‐based methods, and we find that FiSSE does not show similarly elevated false positive rates. We suggest that nonparametric statistical approaches, such as FiSSE, provide an important complement to formal process‐based models for trait‐dependent diversification.  相似文献   

5.
Species selection resulting from trait‐dependent speciation and extinction is increasingly recognized as an important mechanism of phenotypic macroevolution. However, the recent bloom in statistical methods quantifying this process faces a scarcity of dynamical theory for their interpretation, notably regarding the relative contributions of deterministic versus stochastic evolutionary forces. I use simple diffusion approximations of birth‐death processes to investigate how the expected and random components of macroevolutionary change depend on phenotype‐dependent speciation and extinction rates, as can be estimated empirically. I show that the species selection coefficient for a binary trait, and selection differential for a quantitative trait, depend not only on differences in net diversification rates (speciation minus extinction), but also on differences in species turnover rates (speciation plus extinction), especially in small clades. The randomness in speciation and extinction events also produces a species‐level equivalent to random genetic drift, which is stronger for higher turnover rates. I then show how microevolutionary processes including mutation, organismic selection, and random genetic drift cause state transitions at the species level, allowing comparison of evolutionary forces across levels. A key parameter that would be needed to apply this theory is the distribution and rate of origination of new optimum phenotypes along a phylogeny.  相似文献   

6.
A common pattern in time-calibrated molecular phylogenies is a signal of rapid diversification early in the history of a radiation. Because the net rate of diversification is the difference between speciation and extinction rates, such "explosive-early" diversification could result either from temporally declining speciation rates or from increasing extinction rates through time. Distinguishing between these alternatives is challenging but important, because these processes likely result from different ecological drivers of diversification. Here we develop a method for estimating speciation and extinction rates that vary continuously through time. By applying this approach to real phylogenies with explosive-early diversification and by modeling features of lineage-accumulation curves under both declining speciation and increasing extinction scenarios, we show that a signal of explosive-early diversification in phylogenies of extant taxa cannot result from increasing extinction and can only be explained by temporally declining speciation rates. Moreover, whenever extinction rates are high, "explosive early" patterns become unobservable, because high extinction quickly erases the signature of even large declines in speciation rates. Although extinction may obscure patterns of evolutionary diversification, these results show that decreasing speciation is often distinguishable from increasing extinction in the numerous molecular phylogenies of radiations that retain a preponderance of early lineages.  相似文献   

7.
Estimating a binary character's effect on speciation and extinction   总被引:4,自引:0,他引:4  
Determining whether speciation and extinction rates depend on the state of a particular character has been of long-standing interest to evolutionary biologists. To assess the effect of a character on diversification rates using likelihood methods requires that we be able to calculate the probability that a group of extant species would have evolved as observed, given a particular model of the character's effect. Here we describe how to calculate this probability for a phylogenetic tree and a two-state (binary) character under a simple model of evolution (the "BiSSE" model, binary-state speciation and extinction). The model involves six parameters, specifying two speciation rates (rate when the lineage is in state 0; rate when in state 1), two extinction rates (when in state 0; when in state 1), and two rates of character state change (from 0 to 1, and from 1 to 0). Using these probability calculations, we can do maximum likelihood inference to estimate the model's parameters and perform hypothesis tests (e.g., is the rate of speciation elevated for one character state over the other?). We demonstrate the application of the method using simulated data with known parameter values.  相似文献   

8.
Evolutionary lineages differ greatly in their net diversification rates, implying differences in rates of extinction and speciation. Lineages with a large average range size are commonly thought to have reduced extinction risk (although linking low extinction to high diversification has proved elusive). However, climate change cycles can dramatically reduce the geographic range size of even widespread species, and so most species may be periodically reduced to a few populations in small, isolated remnants of their range. This implies a high and synchronous extinction risk for the remaining populations, and so for the species as a whole. Species will only survive through these periods if their individual populations are “threat tolerant,” somehow able to persist in spite of the high extinction risk. Threat tolerance is conceptually different from classic extinction resistance, and could theoretically have a stronger relationship with diversification rates than classic resistance. I demonstrate that relationship using primates as a model. I also show that narrowly distributed species have higher threat tolerance than widespread ones, confirming that tolerance is an unusual form of resistance. Extinction resistance may therefore operate by different rules during periods of adverse global environmental change than in more benign periods.  相似文献   

9.
Evidence is accumulating that species traits can spur their evolutionary diversification by influencing niche shifts, range expansions, and extinction risk. Previous work has shown that larger brains (relative to body size) facilitate niche shifts and range expansions by enhancing behavioral plasticity but whether larger brains also promote evolutionary diversification is currently backed by insufficient evidence. We addressed this gap by combining a brain size dataset for >1900 avian species worldwide with estimates of diversification rates based on two conceptually different phylogenetic‐based approaches. We found consistent evidence that lineages with larger brains (relative to body size) have diversified faster than lineages with relatively smaller brains. The best supported trait‐dependent model suggests that brain size primarily affects diversification rates by increasing speciation rather than decreasing extinction rates. In addition, we found that the effect of relatively brain size on species‐level diversification rate is additive to the effect of other intrinsic and extrinsic factors. Altogether, our results highlight the importance of brain size as an important factor in evolution and reinforce the view that intrinsic features of species have the potential to influence the pace of evolution.  相似文献   

10.
Species diversity patterns are governed by complex interactions among biotic and abiotic factors over time and space, but are essentially the result of the diversification dynamics (differential speciation and extinction rates) over the long-term evolutionary history of a clade. Previous studies have suggested that temporal variation in global temperature drove long-term diversity changes in Crocodylia, a monophyletic group of large ectothermic organisms. We use a large database of crocodylian fossil occurrences (192 spp.) and body mass estimations, under a taxic approach, to characterize the global diversification dynamics of crocodylians since the Cretaceous, and their correlation with multiple biotic and abiotic factors in a Bayesian framework. The diversification dynamic of crocodylians, which appears to have originated in the Turonian (c. 92.5 Ma), is characterized by several phases with high extinction and speciation rates within a predominantly low long-term mean rate. Our results reveal long-term diversification dynamics of Crocodylia to be a highly complex process driven by a combination of biotic and abiotic factors which influenced the speciation and extinction rates in dissimilar ways. Higher crocodylian extinction rates are related to low body mass disparity, indicating selective extinctions of taxa at both ends of the body mass spectrum. Speciation rate slowdowns are noted when the diversity of the clade is high and the warm temperate climatic belt is reduced. Our finding supports the idea that temporal variations of body mass disparity, self-diversity, and the warm climate belt size provided more direct mechanistic explanations for crocodylian diversification than do proxies of global temperature.  相似文献   

11.
Genome Size and Species Diversification   总被引:1,自引:0,他引:1  
Theoretically, there are reasons to believe that large genome size should favour speciation. Several major factors contributing to genome size, such as duplications and transposable element activity have been proposed to facilitate the formation of new species. However, it is also possible that small genome size promotes speciation. For example, selection for genome reduction may be resolved in different ways in incipient species, leading to incompatibilities. Mutations and chromosomal rearrangements may also be more stably inherited in smaller genomes. Here I review the following lines of empirical evidence bearing on this question: (i) Correlations between genome size and species richness of taxa are often negative. (ii) Fossil evidence in lungfish shows that the accumulation of DNA in the genomes of this group coincided with a reduction in species diversity. (iii) Estimates of speciation interval in mammals correlate positively with genome size. (iv) Genome reductions are inferred at the base of particular species radiations and genome expansions at the base of others. (v) Insect clades that have been increasing in diversity up to the present have smaller genomes than clades that have remained stable or have decreased in diversity. The general pattern emerging from these observations is that higher diversification rates are generally found in small-genome taxa. Since diversification rates are the net effect of speciation and extinction, large genomes may thus either constrain speciation rate, increase extinction rate, or both. I argue that some of the cited examples are unlikely to be explained by extinction alone.  相似文献   

12.
We describe a simple comparative method for determining whether rates of diversification are correlated with continuous traits in species-level phylogenies. This involves comparing traits of species with net speciation rate (number of nodes linking extant species with the root divided by the root to tip evolutionary distance), using a phylogenetically corrected correlation. We use simulations to examine the power of this test. We find that the approach has acceptable power to uncover relationships between speciation and a continuous trait and is robust to background random extinction; however, the power of the approach is reduced when the rate of trait evolution is decreased. The test has low power to relate diversification to traits when extinction rate is correlated with the trait. Clearly, there are inherent limitations in using only data on extant species to infer correlates of extinction; however, this approach is potentially a powerful tool in analyzing correlates of speciation.  相似文献   

13.
Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ~600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ~34 Ma, but also elevated extinction ~10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses.  相似文献   

14.
Terrestrialization, the evolution of non-aquatic oviposition, and miniaturization, the evolution of tiny adult body size, are recurring trends in amphibian evolution, but the relationships among the traits that characterize these phenomena are not well understood. Furthermore, these traits have been identified as possible "key innovations" that are predicted to increase rates of speciation in those lineages in which they evolve. We examine terrestrialization and miniaturization in sub-Saharan puddle frogs (Phrynobatrachidae) in a phylogenetic context to investigate the relationship between adaptation and diversification through time. We use relative dating techniques to ascertain if character trait shifts are associated with increased diversification rates, and we evaluate the likelihood that a single temporal event can explain the evolution of those traits. Results indicate alternate reproductive modes evolved independently in Phrynobatrachus at least seven times, including terrestrial deposition of eggs and terrestrial, non-feeding larvae. These shifts towards alternate reproductive modes are not linked to a common temporal event. Contrary to the "key innovations" hypothesis, clades that exhibit alternate reproductive modes have lower diversification rates than those that deposit eggs aquatically. Adult habitat, pedal webbing and body size have no effect on diversification rates. Though these traits putatively identified as key innovations for Phrynobatrachus do not seem to be associated with increased speciation rates, they may still provide opportunities to extend into new niches, thus increasing overall diversity.  相似文献   

15.
Testing whether a certain biological trait significantly affects clade diversification is central to macroevolutionary research. To this end, many scientists use constant-rate estimators (CR estimators) of diversification. However, it has never been examined whether these estimators report meaningful relationships between traits and diversification even when the diversification itself decelerates over time. In this study, I simulate trait-driven diversification concurrently with diversification slowdowns. Then, I test whether CR estimators manage to uncover the simulated relationships. Results suggest that CR estimators are robust against violation of rate constancy and successfully detect trait-dependent diversification in spite of diversification declines. Interestingly, correct results were recovered whether clade age correlated with clade diversity or not. Further comparison of CR estimators with QuaSSE suggested that QuaSSE performs better under constant diversification, but tends to report spuriously significant outcomes when diversification decelerates (=elevated Type I error). Given that diversification slowdowns have been recently reported for a wide range of taxa, these findings may be of particular relevance for future diversification studies.  相似文献   

16.
Why do some avian families contain so many more species than other families? We use comparisons between sister taxa to test predictions arising from six explanations to this puzzle: that differences between families are due to chance, body size, life history, sexual selection, intrinsic ecological factors or extrinsic abiotic factors, respectively. In agreement with previous analyses, we find no support for the idea that differences in species richness are simply due to chance. However, contrary to most previous work, we also find no support for the hypotheses that high species richness is correlated with small body size and fast life history. Rather, high species diversity is strongly associated with pronounced plumage dichromatism, generalist feeding habits and good dispersal capabilities as well as large and fragmented geographical ranges. In addition, all of these relationships are robust to the removal of the two most speciose avian lineages, the Ciconiiformes and the Passeriformes. The supposed relationships between species richness and both body size and life history are, however, due to phylogenetic non-independence. Together with previous work showing that differences between avian lineages in extinction risk are associated with variation in body size and life history, these results indicate that extinction rates and speciation rates are not necessarily determined by the same factors. Hence, high extinction rates are not inevitably associated with low speciation rates. Extinction-prone lineages may, in fact, have a high rate of speciation. In such lineages a high proportion of ''vulnerable'' species would be a natural, ongoing phenomenon.  相似文献   

17.
Statistical analysis of diversification with species traits   总被引:1,自引:0,他引:1  
Testing whether some species traits have a significant effect on diversification rates is central in the assessment of macroevolutionary theories. However, we still lack a powerful method to tackle this objective. I present a new method for the statistical analysis of diversification with species traits. The required data are observations of the traits on recent species, the phylogenetic tree of these species, and reconstructions of ancestral values of the traits. Several traits, either continuous or discrete, and in some cases their interactions, can be analyzed simultaneously. The parameters are estimated by the method of maximum likelihood. The statistical significance of the effects in a model can be tested with likelihood ratio tests. A simulation study showed that past random extinction events do not affect the Type I error rate of the tests, whereas statistical power is decreased, though some power is still kept if the effect of the simulated trait on speciation is strong. The use of the method is illustrated by the analysis of published data on primates. The analysis of these data showed that the apparent overall positive relationship between body mass and species diversity is actually an artifact due to a clade-specific effect. Within each clade the effect of body mass on speciation rate was in fact negative. The present method allows to take both effects (clade and body mass) into account simultaneously.  相似文献   

18.
Abstract What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister‐clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.  相似文献   

19.
Ecological adaptive radiation theory predicts an increase in both morphological and specific diversification when organisms colonize new environments. Accordingly, bursts of morphological diversification, characterized by low within‐subclade morphological disparity, may be associated with these increases in speciation rates. Conversely, increasing species density, reduction in available habitat, or increasing extinction rates are expected to cause rates of diversification to decline. We test these hypotheses by examining the tempo and mode of speciation in the lampropeltinine snakes, a morphologically variable group that colonized the New World ~24 million years ago and radiated throughout the Miocene. We show that specific diversification increased early in the history of the group, and that most morphological variation is partitioned among, rather than within subclades. These patterns provide further evidence for the hypothesis that morphological variation tends to be strongly partitioned among lineages when clades undergo early bursts of species diversification. A reduction in speciation rates may be indicative of density dependent effects due to a saturation of available ecological opportunity, rather than increases in extinction rates at the onset of the Pleistocene/Pliocene glacial cycles. This evidence runs counter to the general Pleistocene species pump model.  相似文献   

20.
Many clades that span the marine–freshwater boundary are disproportionately more diverse in the younger, shorter lived, and scarcer freshwater environments than they are in the marine realm. This disparity is thought to be related to differences in diversification rates between marine and freshwater lineages. However, marine and freshwaters are not ecologically homogeneous, so the study of diversification across the salinity divide should also account for other potentially interacting variables. In diatoms, freshwater and substrate‐associated (benthic) lineages are several‐fold more diverse than their marine and suspended (planktonic) counterparts. These imbalances provide an excellent system to understand whether these variables interact with diversification. Using multistate hidden‐state speciation and extinction models, we found that freshwater lineages diversify faster than marine lineages regardless of whether they inhabit the plankton or the benthos. Freshwater lineages also had higher turnover rates (speciation + extinction), suggesting that habitat transitions impact speciation and extinction rates jointly. The plankton–benthos contrast was also consistent with state‐dependent diversification, but with modest differences in diversification and turnover rates. Asymmetric and bidirectional transitions rejected hypotheses about the plankton and freshwaters as absorbing, inescapable habitats. Our results further suggest that the high turnover rate of freshwater diatoms is related to high turnover of freshwater systems themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号