首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Virus‐like particles (VLPs) mimic the whole construct of virus particles devoid of viral genome as used in subunit vaccine design. VLPs can elicit efficient protective immunity as direct immunogens compared to soluble antigens co‐administered with adjuvants in several booster injections. Up to now, several prokaryotic and eukaryotic systems such as insect, yeast, plant, and E. coli were used to express recombinant proteins, especially for VLP production. Recent studies are also generating VLPs in plants using different transient expression vectors for edible vaccines. VLPs and viral particles have been applied for different functions such as gene therapy, vaccination, nanotechnology, and diagnostics. Herein, we describe VLP production in different systems as well as its applications in biology and medicine. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 113–132, 2016.  相似文献   

2.
The production of virus-like particles (VLPs) constitutes a relevant and safe model to study molecular determinants of virion egress. The minimal requirement for the assembly of VLPs for the coronavirus responsible for severe acute respiratory syndrome in humans (SARS-CoV) is still controversial. Recent studies have shown that SARS-CoV VLP formation depends on either M and E proteins or M and N proteins. Here we show that both E and N proteins must be coexpressed with M protein for the efficient production and release of VLPs by transfected Vero E6 cells. This suggests that the mechanism of SARS-CoV assembly differs from that of other studied coronaviruses, which only require M and E proteins for VLP formation. When coexpressed, the native envelope trimeric S glycoprotein is incorporated onto VLPs. Interestingly, when a fluorescent protein tag is added to the C-terminal end of N or S protein, but not M protein, the chimeric viral proteins can be assembled within VLPs and allow visualization of VLP production and trafficking in living cells by state-of-the-art imaging technologies. Fluorescent VLPs will be used further to investigate the role of cellular machineries during SARS-CoV egress.  相似文献   

3.
The development of various types of virus‐like particles (VLPs) has accelerated over the past two decades as the importance of VLPs for generating next‐generation vaccines has been appreciated. Yeast has advantages such as scalable fermentation, low risk of contamination by adventitious agents, low production costs and the ability to produce VLPs with reliable qualities. It is generally recognized that yeast is suitable for producing VLPs that have simple structures and are produced intracellularly. However, recently there has been much effort to extend its applicability, and there is now evidence that it can be used as an expression platform for the productions of VLPs not only of nonenveloped viruses but also of enveloped viruses. Moreover, evidences indicated that yeast allows secretory VLP productions. Meanwhile, it has become evident that the quality and quantity of yeast‐derived VLPs are influenced by the choice of plasmid and promoter, the ratio of the structural proteins produced. Here, we review the characteristics of the yeast expression system in terms of the production of VLP and compare it with other expression systems. We also consider strategies for VLP production in yeast and factors that need to be taken into account.  相似文献   

4.
Understanding and controlling aggregation is an essential aspect in the development of pharmaceutical proteins to improve product yield, potency and quality consistency. Even a minute quantity of aggregates may be reactogenic and can render the final product unusable. Self‐assembly processing of virus‐like particles (VLPs) is an efficient method to quicken the delivery of safe and efficacious vaccines to the market at low cost. VLP production, as with the manufacture of many biotherapeutics, is susceptible to aggregation, which may be minimized through the use of accurate and practical mathematical models. However, existing models for virus assembly are idealized, and do not predict the non‐native aggregation behavior of self‐assembling viral subunits in a tractable nor useful way. Here we present a mechanistic mathematical model describing VLP self‐assembly that accounts for partitioning of reactive subunits between the correct and aggregation pathways. Our results show that unproductive aggregation causes up to 38% product loss by competing favorably with the productive nucleation of self‐assembling subunits, therefore limiting the availability of nuclei for subsequent capsid growth. The protein subunit aggregation reaction exhibits an apparent second‐order concentration dependence, suggesting a dimerization‐controlled agglomeration pathway. Despite the plethora of possible assembly intermediates and aggregation pathways, protein aggregation behavior may be predicted by a relatively simple yet realistic model. More importantly, we have shown that our bioengineering model is amenable to different reactor formats, thus opening the way to rational scale‐up strategies for products that comprise biomolecular assemblies. Biotechnol. Bioeng. 2010;107: 550–560. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
Paramyxoviruses, such as Newcastle disease virus (NDV), assemble in and bud from plasma membranes of infected cells. To explore the role of each of the NDV structural proteins in virion assembly and release, virus-like particles (VLPs) released from avian cells expressing all possible combinations of the nucleoprotein (NP), membrane or matrix protein (M), an uncleaved fusion protein (F-K115Q), and hemagglutinin-neuraminidase (HN) protein were characterized for densities, protein content, and efficiencies of release. Coexpression of all four proteins resulted in the release of VLPs with densities and efficiencies of release (1.18 to 1.16 g/cm(3) and 83.8% +/- 1.1%, respectively) similar to those of authentic virions. Expression of M protein alone, but not NP, F-K115Q, or HN protein individually, resulted in efficient VLP release, and expression of all different combinations of proteins in the absence of M protein did not result in particle release. Expression of any combination of proteins that included M protein yielded VLPs, although with different densities and efficiencies of release. To address the roles of NP, F, and HN proteins in VLP assembly, the interactions of proteins in VLPs formed with different combinations of viral proteins were characterized by coimmunoprecipitation. The colocalization of M protein with cell surface F and HN proteins in cells expressing all combinations of viral proteins was characterized. Taken together, the results show that M protein is necessary and sufficient for NDV budding. Furthermore, they suggest that M-HN and M-NP interactions are responsible for incorporation of HN and NP proteins into VLPs and that F protein is incorporated indirectly due to interactions with NP and HN protein.  相似文献   

6.
Virus-like particles (VLPs) are empty particles consisting of virus capsid proteins that closely resemble native virus but are devoid of the native viral nucleic acids and therefore have attracted significant attention as noninfectious vaccines. A recombinant baculovirus, vIBD-7, which encodes the structural proteins (VP2, VP3, and VP4) of infectious bursal disease virus (IBDV), produces native IBD VLPs in infected Spodoptera frugiperda insect cells. Another baculovirus, vEDLH-22, encodes VP2 that is fused with a histidine affinity-tag (VP2H) at the C-terminus. By co-infection with these two baculoviruses, hybrid VLPs with histidine tags were formed and purified by immobilized metal affinity chromatography (Hu et al., 1999). Also, we demonstrated that varying the MOI ratio of these infecting viruses altered the extent of VP2H incorporated into the particles. A dynamic mathematical model that described baculovirus infection and VLP synthesis (Hu and Bentley, 2000) was adapted here for co-infection and validated by immunofluorescence labeling. It was shown to predict the VLP composition as a dynamic function of MOI. A constraint in the VP2H content incorporated into the particles was predicted and shown by experiments. Also, the MOI ratio of both infecting viruses was shown to be the major factor influencing the composition of the hybrid particles and an important factor in determining the overall yield. ELISA results confirmed that VP2H was exhibited to a varied extent on the outer surface of the particles. This model provides insight on the use of virus co-infection in virus-mediated recombinant protein expression systems and aids in the optimization of chimeric VLP synthesis.  相似文献   

7.
Influenza virus‐like particles (VLPs) are noninfectious particles resembling the influenza virus representing a promising vaccine alternative to inactivated influenza virions as antigens. Medicago inc. has developed a plant‐based VLP manufacturing platform allowing the large‐scale production of GMP‐grade influenza VLPs. In this article, we report on the biochemical compositions of these plant‐based influenza candidate vaccines, more particularly the characterization of the N‐glycan profiles of the viral haemagglutinins H1 and H5 proteins as well as the tobacco‐derived lipid content and residual impurities. Mass spectrometry analyses showed that all N‐glycosylation sites of the extracellular domain of the recombinant haemagglutinins carry plant‐specific complex‐type N‐glycans having core α(1,3)‐fucose, core β(1,2)‐xylose epitopes and Lewisa extensions. Previous phases I and II clinical studies have demonstrated that no hypersensibility nor induction of IgG or IgE directed against these glycans was observed. In addition, this article showed that the plant‐made influenza vaccines are highly pure VLPs preparations while detecting no protein contaminants coming either from Agrobacterium or from the enzymes used for the enzyme‐assisted extraction process. In contrast, VLPs contain few host cell proteins and glucosylceramides associated with plant lipid rafts. Identification of such raft markers, together with the type of host cell impurity identified, confirmed that the mechanism of VLP formation in planta is similar to the natural process of influenza virus assembly in mammals.  相似文献   

8.
Porcine circovirus type 2 (PCV‐2) is the main causative agent associated with a group of diseases collectively known as porcine circovirus‐associated disease (PCAD). There is a significant economic strain on the global swine industry due to PCAD and the production of commercial PCV‐2 vaccines is expensive. Plant expression systems are increasingly regarded as a viable technology to produce recombinant proteins for use as pharmaceutical agents and vaccines. However, successful production and purification of PCV‐2 capsid protein (CP) from plants is an essential first step towards the goal of a plant‐produced PCV‐2 vaccine candidate. In this study, the PCV‐2 CP was transiently expressed in Nicotiana benthamiana plants via agroinfiltration and PCV‐2 CP was successfully purified using sucrose gradient ultracentrifugation. The CP self‐assembled into virus‐like particles (VLPs) resembling native virions and up to 6.5 mg of VLPs could be purified from 1 kg of leaf wet weight. Mice immunized with the plant‐produced PCV‐2 VLPs elicited specific antibody responses to PCV‐2 CP. This is the first report describing the expression of PCV‐2 CP in plants, the confirmation of its assembly into VLPs and the demonstration of their use to elicit a strong immune response in a mammalian model.  相似文献   

9.
The single-coat protein (CP) of bacteriophage Qβ self-assembles into T = 3 icosahedral virus-like particles (VLPs), of interest for a wide range of applications. These VLPs are very stable, but identification of the specific molecular determinants of this stability is lacking. To investigate these determinants along with manipulations that confer more capabilities to our VLP material, we manipulated the CP primary structure to test the importance of various putative stabilizing interactions. Optimization of a procedure to incorporate fused CP subunits allowed for good control over the average number of covalent dimers in each VLP. We confirmed that the disulfide linkages are the most important stabilizing elements for the capsid and that acidic conditions significantly enhance the resistance of VLPs to thermal degradation. Interdimer interactions were found to be less important for VLP assembly than intradimer interactions. Finally, a single point mutation in the CP resulted in a population of smaller VLPs in three distinct structural forms.  相似文献   

10.
The matrix (M) protein of Nipah virus (NiV) is a peripheral protein that plays a vital role in the envelopment of nucleocapsid protein and acts as a bridge between the viral surface and the nucleocapsid proteins. The M protein is also proven to play an important role in production of virus‐like particles (VLPs) and is essential for assembly and budding of NiV particles. The recombinant M protein produced in Escherichia coli assembled into VLPs in the absence of the viral surface proteins. However, the E. coli produced VLPs are smaller than the native virus particles. Therefore, the aims of this study were to produce NiV M protein in Pichia pastoris, to examine the structure of the VLPs formed, and to assess the potential of the VLPs as a diagnostic reagent. The M protein was successfully expressed in P. pastoris and was detected with anti‐myc antibody using Western blotting. The VLPs formed by the recombinant M protein were purified with sucrose density gradient ultracentrifugation, high‐performance liquid chromatography (HPLC), and Immobilized Metal Affinity Chromatography (IMAC). Immunogold staining and transmission electron microscopy confirmed that the M protein assembled into VLPs as large as 200 nm. ELISA revealed that the NiV M protein produced in P. pastoris reacted strongly with positive NiV sera demonstrating its potential as a diagnostic reagent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1038–1045, 2016  相似文献   

11.
The severe acute respiratory syndrome coronavirus (SARS-CoV) was recently identified as the etiology of SARS. The virus particle consists of four structural proteins: spike (S), small envelope (E), membrane (M), and nucleocapsid (N). Recognition of a specific sequence, termed the packaging signal (PS), by a virus N protein is often the first step in the assembly of viral RNA, but the molecular mechanisms involved in the assembly of SARS-CoV RNA are not clear. In this study, Vero E6 cells were cotransfected with plasmids encoding the four structural proteins of SARS-CoV. This generated virus-like particles (VLPs) of SARS-CoV that can be partially purified on a discontinuous sucrose gradient from the culture medium. The VLPs bearing all four of the structural proteins have a density of about 1.132 g/cm(3). Western blot analysis of the culture medium from transfection experiments revealed that both E and M expressed alone could be released in sedimentable particles and that E and M proteins are likely to form VLPs when they are coexpressed. To examine the assembly of the viral genomic RNA, a plasmid representing the GFP-PS580 cDNA fragment encompassing the viral genomic RNA from nucleotides 19715 to 20294 inserted into the 3' noncoding region of the green fluorescent protein (GFP) gene was constructed and applied to the cotransfection experiments with the four structural proteins. The SARS-CoV VLPs thus produced were designated VLP(GFP-PS580). Expression of GFP was detected in Vero E6 cells infected with the VLP(GFP-PS580), indicating that GFP-PS580 RNA can be assembled into the VLPs. Nevertheless, when Vero E6 cells were infected with VLPs produced in the absence of the viral N protein, no green fluorescence was visualized. These results indicate that N protein has an essential role in the packaging of SARS-CoV RNA. A filter binding assay and competition analysis further demonstrated that the N-terminal and C-terminal regions of the SARS-CoV N protein each contain a binding activity specific to the viral RNA. Deletions that presumably disrupt the structure of the N-terminal domain diminished its RNA-binding activity. The GFP-PS-containing SARS-CoV VLPs are powerful tools for investigating the tissue tropism and pathogenesis of SARS-CoV.  相似文献   

12.
Virus-like particles: passport to immune recognition   总被引:9,自引:0,他引:9  
Virus-like particles (VLPs) are formed by the self-assembly of envelope and/or capsid proteins from many viruses. In many cases such VLPs have structural characteristics and antigenicity similar to the parental virus, and some have already proven successful as vaccines against the cognate virus infection. The structural components of some VLPs have also proven amenable to the insertion or fusion of foreign antigenic sequences, allowing the production of chimeric VLPs exposing the foreign antigen on their surface. Other VLPs have been used as carriers for foreign antigens, including non-protein antigens, via chemical conjugation. This review outlines some of the advantages, disadvantages, and technical considerations for the use of a wide range of VLP systems in vaccine development.  相似文献   

13.
It is now well accepted that the structural protein Pr55(Gag) is sufficient by itself to produce HIV-1 virus-like particles (VLPs). This polyprotein precursor contains different domains including matrix, capsid, SP1, nucleocapsid, SP2 and p6. In the present study, we wanted to determine by mutagenesis which region(s) is essential to the production of VLPs when Pr55(Gag) is inserted in a mammalian expression vector, which allows studying the protein of interest in the absence of other viral proteins. To do so, we first studied a minimal Pr55(Gag) sequence called Gag min that was used previously. We found that Gag min fails to produce VLPs when expressed in an expression vector instead of within a molecular clone. This failure occurs early in the cell at the assembly of viral proteins. We then generated a series of deletion and substitution mutants, and examined their ability to produce VLPs by combining biochemical and microscopic approaches. We demonstrate that the matrix region is not necessary, but that the efficiency of VLP production depends strongly on the presence of its basic region. Moreover, the presence of the N-terminal domain of capsid is required for VLP production when Gag is expressed alone. These findings, combined with previous observations indicating that HIV-1 Pr55(Gag)-derived VLPs act as potent stimulators of innate and acquired immunity, make the use of this strategy worth considering for vaccine development.  相似文献   

14.
Here we characterize virus-like particles (VLPs) by three very distinct, orthogonal, and quantitative techniques: electrospray differential mobility analysis (ES-DMA), asymmetric flow field-flow fractionation with multi-angle light scattering detection (AFFFF-MALS) and transmission electron microscopy (TEM). VLPs are biomolecular particles assembled from viral proteins with applications ranging from synthetic vaccines to vectors for delivery of gene and drug therapies. VLPs may have polydispersed, multimodal size distributions, where the size distribution can be altered by subtle changes in the production process. These three techniques detect subtle size differences in VLPs derived from the non-enveloped murine polyomavirus (MPV) following: (i) functionalization of the surface of VLPs with an influenza viral peptide fragment; (ii) packaging of foreign protein internally within the VLPs; and (iii) packaging of genomic DNA internally within the VLPs. These results demonstrate that ES-DMA and AFFFF-MALS are able to quantitatively determine VLP size distributions with greater rapidity and statistical significance than TEM, providing useful technologies for product development and process analytics.  相似文献   

15.
For influenza virus, we developed an efficient, noncytotoxic, plasmid-based virus-like particle (VLP) system to reflect authentic virus particles. This system was characterized biochemically by analysis of VLP protein composition, morphologically by electron microscopy, and functionally with a VLP infectivity assay. The VLP system was used to address the identity of the minimal set of viral proteins required for budding. Combinations of viral proteins were expressed in cells, and the polypeptide composition of the particles released into the culture media was analyzed. Contrary to previous findings in which matrix (M1) protein was considered to be the driving force of budding because M1 was found to be released copiously into the culture medium when M1 was expressed by using the vaccinia virus T7 RNA polymerase-driven overexpression system, in our noncytotoxic VLP system M1 was not released efficiently into the culture medium. Additionally, hemagglutinin (HA), when treated with exogenous neuraminidase (NA) or coexpressed with viral NA, could be released from cells independently of M1. Incorporation of M1 into VLPs required HA expression, although when M1 was omitted from VLPs, particles with morphologies similar to those of wild-type VLPs or viruses were observed. Furthermore, when HA and NA cytoplasmic tail mutants were included in the VLPs, M1 failed to be efficiently incorporated into VLPs, consistent with a model in which the glycoproteins control virus budding by sorting to lipid raft microdomains and recruiting the internal viral core components. VLP formation also occurred independently of the function of Vps4 in the multivesicular body pathway, as dominant-negative Vps4 proteins failed to inhibit influenza VLP budding.  相似文献   

16.
同时表达蓝舌病毒四个主要结构蛋白可装配成病毒样颗粒   总被引:2,自引:0,他引:2  
为研制蓝舌病毒(bluetongue virus,BTV)基因工程疫苗和进一步研究BTV结构与功能的关系,对BTV病毒样颗粒(VLP)的装配进行了研究。同时在昆虫细胞中表达BTV主要结构蛋白VP7、VP3、VP2与VP5,将细胞裂解液超速离心纯化后,发现主要存在两 形态的颗粒:一种与前文报道的病毒核心颗粒(CLP)相同,直径约为60nm ̄70nm,蛋白壳厚10nm ̄15nm;另一种大小为70nm ̄  相似文献   

17.
We are studying the structural proteins and molecular interactions required for formation and release of influenza virus-like particles (VLPs) from the cell surface. To investigate these events, we generated a quadruple baculovirus recombinant that simultaneously expresses in Sf9 cells the hemagglutinin (HA), neuraminidase (NA), matrix (M1), and M2 proteins of influenza virus A/Udorn/72 (H3N2). Using this quadruple recombinant, we have been able to demonstrate by double-labeling immunofluorescence that matrix protein (M1) localizes in nuclei as well as at discrete areas of the plasma membrane where HA and NA colocalize at the cell surface. Western blot analysis of cell supernatant showed that M1, HA, and NA were secreted into the culture medium. Furthermore, these proteins comigrated in similar fractions when concentrated supernatant was subjected to differential centrifugation. Electron microscopic examination (EM) of these fractions revealed influenza VLPs bearing surface projections that closely resemble those of wild-type influenza virus. Immunogold labeling and EM demonstrated that the HA and NA were present on the surface of the VLPs. We further investigated the minimal number of structural proteins necessary for VLP assembly and release using single-gene baculovirus recombinants. Expression of M1 protein alone led to the release of vesicular particles, which in gradient centrifugation analysis migrated in a similar pattern to that of the VLPs. Immunoprecipitation of M1 protein from purified M1 vesicles, VLPs, or influenza virus showed that the relative amount of M1 protein associated with M1 vesicles or VLPs was higher than that associated with virions, suggesting that particle formation and budding is a very frequent event. Finally, the HA gene within the quadruple recombinant was replaced either by a gene encoding the G protein of vesicular stomatitis virus or by a hybrid gene containing the cytoplasmic tail and transmembrane domain of the HA and the ectodomain of the G protein. Each of these constructs was able to drive the assembly and release of VLPs, although enhanced recruitment of the G glycoprotein onto the surface of the particle was observed with the recombinant carrying a G/HA chimeric gene. The described approach to assembly of wild-type and chimeric influenza VLPs may provide a valuable tool for further investigation of viral morphogenesis and genome packaging as well as for the development of novel vaccines.  相似文献   

18.
Vaccination is the single most effective way to control viral diseases. However, many currently used vaccines have safety concerns, efficacy issues or production problems. For other viral pathogens, classic approaches to vaccine development have, thus far, been unsuccessful. Virus-like particles (VLPs) are increasingly being considered as vaccine candidates because they offer significant advantages over many currently used vaccines or developing vaccine technologies. VLPs formed with structural proteins of Newcastle disease virus, an avian paramyxovirus, are a potential vaccine candidate for Newcastle disease in poultry. More importantly, these VLPs are a novel, uniquely versatile VLP platform for the rapid construction of effective vaccine candidates for many human pathogens, including genetically complex viruses and viruses for which no vaccines currently exist.  相似文献   

19.
Protein nanoparticles such as virus‐like particles (VLPs) can be obtained by recombinant protein production of viral capsid proteins and spontaneous self‐assembling in cell factories. Contrarily to infective viral particles, VLPs lack infective viral genome while retaining important viral properties like cellular tropism and intracellular delivery of internalized molecules. These properties make VLPs promising and fully biocompatible nanovehicles for drug delivery. VLPs of human JC virus (hJCV) VP1 capsid protein produced in Escherichia coli elicit variable hemagglutination properties when incubated at different NaCl concentrations and pH conditions, being optimal at 200 mM NaCl and at pH range between 5.8 and 7.5. In addition, the presence or absence of chaperone DnaK in E. coli cells influence the solubility of recombinant VP1 and the conformational quality of this protein in the VLPs. The hemagglutination ability of hJCV VP1 VLPs contained in E. coli cell extracts can be modulated by buffer composition in the hemagglutination assay. It has been also determined that the production of recombinant hJCV VP1 in E. coli is favored by the absence of chaperone DnaK as observed by Western Blot analysis in different E. coli genetic backgrounds, indicating a proteolysis targeting role for DnaK. However, solubility is highly compromised in a DnaK? E. coli strain suggesting an important role of this chaperone in reduction of protein aggregates. Finally, hemagglutination efficiency of recombinant VP1 is directly related to the presence of DnaK in the producing cells. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:744–748, 2014  相似文献   

20.
Virus-like particles (VLPs) are formed by the self-assembly of envelope and/or capsid proteins from many viruses. Some VLPs have been proven successful as vaccines, and others have recently found applications as carriers for foreign antigens or as scaffolds in nanoparticle biotechnology. However, production of VLP was usually impeded due to low water-solubility of recombinant virus capsid proteins. Previous studies revealed that virus capsid and envelope proteins were often posttranslationally modified by SUMO in vivo, leading into a hypothesis that SUMO modification might be a common mechanism for virus proteins to retain water-solubility or prevent improper self-aggregation before virus assembly. We then propose a simple approach to produce VLPs of viruses, e.g., foot-and-mouth disease virus (FMDV). An improved SUMO fusion protein system we developed recently was applied to the simultaneous expression of three capsid proteins of FMDV in E. coli. The three SUMO fusion proteins formed a stable heterotrimeric complex. Proteolytic removal of SUMO moieties from the ternary complexes resulted in VLPs with size and shape resembling the authentic FMDV. The method described here can also apply to produce capsid/envelope protein complexes or VLPs of other disease-causing viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号