首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The effect of salt concentration (NaCl) on growth, fluorescence, photosynthetic activities and pigment content of the cyanobacterium Arthrospira platensis has been investigated over 15 days. It has been observed that high NaCl concentration induces an increase of the growth, photosynthetic efficiency (α), phycobilin/chlorophyll ratio and a slight decrease of dark respiration and compensation points. Moreover, high NaCl concentration enhances photosystem II (PSII) activity compared to photosystem I (PSI). Results show that the phycobilin-PSII energy transfer compared to the chlorophyll-PSII (F695,600/F695,440) increases. However, data obtained about the maximal efficiency of PSII photochemistry are controversial. Indeed, the Fv/Fm ratio decreases in salt adapted cultures, while at the same time the trapping flux per PSII reaction center (TR0/RC) and the probability of electron transport beyond QA (0) remain unchanged at the level of the donor and the acceptor sites of PSII. This effect can be attributed to the interference of phycobilin fluorescence with Chl a when performing polyphasic transient measurements.  相似文献   

2.
We measured the responses of pigments and chlorophyll a fluorescence parameters of the Antarctic leafy liverwort Cephaloziella varians to snowmelt during austral spring 2005 at Rothera Point on the western Antarctic Peninsula. Although no changes to the concentrations of UV-B photoprotective pigments were detected during snowmelt, chlorophyll and carotenoid concentrations and maximum photosystem (PS)II yield (F v /F m) were respectively 88, 60 and 144% higher in the tissues of the liverwort that had recently emerged from snow than in those under a 10 cm depth of snow. A laboratory experiment similarly showed that effective PSII yield increased rapidly within the first 45 min after plants sampled from under snow were removed to an illuminated growth cabinet. The pigmentation and PSII yields of plants during snowmelt were also compared with those of plants in January, during the middle of the growing season at Rothera Point. During snowmelt, plants had lower F v /F m values, chlorophyll a/b ratios and concentrations of UV-B photoprotective pigments and carotenoids than during mid-season, suggesting that although there is some recovery of PSII activity and increases in concentrations of photosynthetic pigments during snowmelt, the metabolism of C. varians is restricted during this period.  相似文献   

3.
The aim of this study was to determine the effects of the synthetic auxin 3,5,6-trichloro-2-pirydiloxyacetic acid (3,5,6-TPA) on photosynthetic activity, photosynthate transport to the fruit, and fruitlet abscission to further explain the physiological basis of auxin-mediated citrus fruit thinning. Applying 15 mg l−1 3,5,6-TPA to trees during the fruit cell division stage significantly increased fruitlet abscission of Clementine mandarin. On treated trees, abnormal foliar development and photosynthetic damage were observed at the same time as 3,5,6-TPA reduced fruitlet growth rate. Briefly, treatment reduced chlorophyll and carotenoid concentrations and modified chlorophyll a fluorescence parameters, that is, reduced the quantum yield (ФPSII) of the noncyclic electron transport rate, diminished the capacity to reduce the quinone pool (photochemical quenching; qp), and increased nonphotochemical quenching (q N), thereby preventing the dissipation of excess excitation energy. In addition, the net photosynthetic flux (μmol CO2 m−2 s−1) and leaf photosynthate content decreased in treated trees. As a result, the 3,5,6-TPA treatment significantly reduced the photosynthate accumulation in fruit from day 3 to day 8 after treatment, thus reducing fruitlet growth rate. Hence, treated fruitlets significantly increased ethylene production and abscised. Twenty days after treatment, chlorophyll a fluorescence parameters and fruitlet growth rate were reestablished. Accordingly, the thinning effect of 3,5,6-TPA may be due to a temporarily induced photosynthetic disorder that leads to reduction in photosynthate production and fruitlet uptake that temporarily slows its growth, triggering ethylene production and fruitlet abscission. Afterward, the remaining treated fruit overcame this effect, increased growth rate, and reached a larger size than control fruit.  相似文献   

4.
One of the most important diseases of eucalyptus plantations is caused by the rust fungus Puccinia psidii. While the genetic basis of rust resistance has been addressed recently, little is known about the physiological aspects of EucalyptusP. psidii interaction. In order to fill this gap, we undertook a study investigating the effects of P. psidii infection on photosynthetic processes of two E. urophylla clones with contrasting resistance to the pathogen. Our results show that gas exchange and chlorophyll a fluorescence parameters were virtually unaffected in the resistant clone. In the susceptible clone, photosynthetic rates were chiefly constrained by biochemical limitations to carbon fixation. Photosynthesis was impaired only in symptomatic tissues since the reductions in photosynthetic rates were proportional to the diseased leaf area. Rust infection provoked chronic photoinhibition to photosynthesis in the susceptible clone. Overall, differences in the ability for light capture, use and dissipation may play a significant role in explaining the clonal differences in Eucalyptus in response to P. psidii infection. To our knowledge, this is the first report of the effect of rust infection on gas exchange and chlorophyll a fluorescence parameters in Eucalyptus.  相似文献   

5.
6.
Pulse amplitude modulation fluorimetry was used to assess chlorophyll fluorescence parameters in Chlamydomonas reinhardtii cells during sulfur deprivation. A significant (fourfold) increase in the chlorophyll fluorescence yield (parameters F 0 and F m) normalized to the chlorophyll concentration was shown for deprived cells. The chlorophyll content did not change during the deprivation experiments. An analysis of nonphotochemical quenching of chlorophyll fluorescence indicated a considerable modification of the energy deactivation pathways in photosystem II (PSII) of sulfur-deprived cells. For example, starved cells exhibited a less pronounced pH-dependent quenching of excited states and a higher thermal dissipation of excess light energy in the reaction centers of PSII. It was also shown that the photosynthetic apparatus of starved cells is primarily in state 2 and that back transition to state 1 is suppressed. However, these changes cannot cause the discovered elevation of chlorophyll fluorescence intensity (F 0 and F m) in the cells under sulfur limitation. The observed increase in the chlorophyll fluorescence intensity under sulfur deprivation may be due to partial dissociation of peripheral light-harvesting complexes from the reaction centers of PSII or a malfunction of the dissipative cycle in PSII, involving cytochrome b 559.  相似文献   

7.
By generating stress conditions soil flooding can induce alterations in the cell metabolism and thus is detrimental to plant growth. This study was done under the greenhouse conditions to determine the effect of soil flooding on the chlorophyll fluorescence of some hybrids of canola (Brassica napus L.). Fifty five days old plants were subjected to flooding for six days. There was no difference in the parameters modulate chlorophyll fluorescence, in contrast, some the parameters related to the energy flux in photosystem II varied due to flooding stress. At the end of the six days, the performance indexes (PItotal and PIABS) decreased, in all hybrids except in ‘Hyola 420’. The difference kinetics of the chlorophyll a fluorescence transient showed different effects on different sites of the photosynthetic machinery. It could be concluded that compared to the other hybrids, ‘Hyola 420’ was less sensitive to flooding.  相似文献   

8.
Temperature response curves of chlorophyll a fluorescence parameters were used to assess minimum sub-zero temperature assuring functioning of photosynthetic photochemical processes in photosystem II (PS II) of Antarctic lichens. Umbilicaria Antarctica and Xanthoria elegans were measured within the temperature range from −20 to +10°C by a fluorometric imaging system. For potential (F V/F M) and actual (Φ II) quantum yields of photochemical processes the minimum temperature was found to be between −10 and −20°C. Non-photochemical quenching (NPQ) of absorbed excitation energy increased with temperature drop reaching maximum NPQ at −15°C. Image analysis revealed intrathalline heterogeneity of chlorophyll a fluorescence parameters with temperature drop. Temperature response of Φ II exhibited an S-curve with pronounced intrathalline differences in X. elegans. The same relation was linear with only limited intrathalline difference in U. antarctica. The results showed that Antarctic lichen species were well adapted to sub-zero temperatures and capable of performing primary photosynthesis at −15°C.  相似文献   

9.
A gene encoding aminolevulinate synthase (ALA-S) in yeast (Saccharomyces cerevisiae YHem1) was introduced into the genome of tobacco (Nicoliana tabacum) under the control of Arabidopsis thaliana HemA1 gene promoter (AtHemA1 P). All transgenic lines transcribed the YHem1 gene, especially under light condition. The capacity to synthesize ALA and therefore chlorophyll was increased in transformed plants. Determination of gas exchange suggested that transgenic plants had significantly higher level of net photosynthetic rate (P n ), stomatal conductance (G s ) and transpiration rate (T r ), compared to the wild type (WT). Analysis with a modulated chlorophyll fluorometer demonstrated that the genetic transformation also caused a significant increase in photochemical efficiency of PSII (Fv /Fm F^{\prime}_{v} /F^{\prime}_{m} ), actual photochemical efficiency (Ф PSII ), photochemical quenching (qP), electron transfer rate (ETR) and the energy proportion in photochemistry (Pc), but decrease in proportion in heat dissipation (Hd). Chlorophyll-a fast fluorescence measurement and JIP-test indicated that photosynthetic performance index on cross section basis (PI CS ) and electron transport flux (ET o /CS) of transgenic tobacco were increased remarkably. And the probability that a trapped exciton can move a electron into the electron transport chain beyond Q A (Ψ o ) and the density of active reaction centers (RC/CS) were also increased obviously in transgenic tobacco. These results imply that transgenic tobacco plants expressing YHem1 gene had higher photosynthetic capacity and energy conversion efficiency than the WT plants.  相似文献   

10.
Photochemical efficiency of PSII of Ctenanthe setosa was investigated to understand the photosynthetic adaptation mechanism under drought stress causing leaf rolling. Stomatal conductance (g s), the levels of photosynthetic pigments and chlorophyll (Chl) fluorescence parameters were determined in leaves that had four different visual leaf rolling scores from 1 to 4, opened after re-watering and mechanically opened at score 4. g s value gradually decreased in adaxial and abaxial surfaces in relation to scores of leaf rolling. Pigment contents decreased until score 3 but approached score 1 level at score 4. No significant variations in effective quantum yield of PSII (ΦPSII), and photochemical quenching (qp) were found until score 3, while they significantly decreased at score 4. Non-photochemical quenching (NPQ) increased at score 2 but then decreased. After re-watering, the Chl fluorescence and other physiological parameters reached to approximately score 1 value, again. As for mechanically opened leaves, g s decreased during drought period. The decrease in adaxial surface was higher than that of the rolled leaves. NPQ was higher than that of the rolled leaves. ΦPSII and qp significantly declined and the decreases were more than those of the rolled leaves. In conclusion, the results indicate that leaf rolling protects PSII functionality from damage induced by drought stress.  相似文献   

11.
Nitraria retusa and Atriplex halimus (xero-halophytes) plants were grown in the range 0–800 mM NaCl while Medicago arborea (glycophyte) in 0–300 mM NaCl. Salt stress caused a marked decrease in osmotic potential and a significant accumulation of Na+ and Cl in leaves of both species. Moderate salinity had a stimulating effect on growth rate, net CO2 assimilation, transpiration and stomatal conductance for the xero-halophytic species. At higher salinities, these physiological parameters decreased significantly, and their percentages of reduction were higher in A. halimus than in N. retusa whereas, in M. arborea they decreased linearly with salinity. Nitraria retusa PSII photochemistry and carotenoid content were unaffected by salinity, but a reduction in chlorophyll content was observed at 800 mM NaCl. Similar results were found in A. halimus, but with a decrease in the efficiency of PSII (F′v/F′m) occurred at 800 mM. Conversely, in M. arborea plants we observed a significant reduction in pigment concentrations and chlorophyll fluorescence parameters. The marked toxic effect of Na+ and/or Cl observed in M. arborea indicates that salt damage effect could be attributed to ions’ toxicity, and that the reduction in photosynthesis is most probably due to damages in the photosynthetic apparatus rather than factors affecting stomatal closure. For the two halophyte species, it appears that there is occurrence of co-limitation of photosynthesis by stomatal and non-stomatal factors. Our results suggest that both N. retusa and A. halimus show high tolerance to both high salinity and photoinhibition while M. arborea was considered as a slightly salt tolerant species.  相似文献   

12.
Most plants growing in temperate desert zone exhibit brief temperature-induced inhibition of photosynthesis at midday in the summer. Heat stress has been suggested to restrain the photosynthesis of desert plants like Alhagi sparsifolia S. It is therefore possible that high midday temperatures damage photosynthetic tissues, leading to the observed inhibition of photosynthesis. In this study, we investigated the mechanisms underlying heat-induced inhibition of photosynthesis in A. sparsifolia, a dominant species found at the transition zone between oasis and sandy desert on the southern fringe of the Taklamakan desert. The chlorophyll (Chl) a fluorescence induction kinetics and CO2 response curves were used to analyze the thermodynamic characters of both photosystem II (PSII) and Rubisco after leaves were exposed to heat stress. When the leaves were heated to temperatures below 43°C, the initial fluorescence of the dark-adapted state (Fo), and the maximum photochemical efficiency of PSII (Fv/Fm), the number of active reaction centers per cross section (RCs) and the leaf vitality index (PI) increased or declined moderately. These responses were reversed, however, upon cooling. Moreover, the energy allocation in PSII remained stable. The gradual appearance of a K point in the fluorescence curve at 48°C indicated that higher temperatures strongly impaired PSII and caused irreversible damage. As the leaf temperature increased, the activity of Rubisco first increased to a maximum at 34°C and then decreased as the temperature rose higher. Under high-temperature stress, cell began to accumulate oxidative species, including ammoniacal nitrogen, hydrogen peroxide (H2O2), and superoxide (O2 ·−), suggesting that disruption of photosynthesis may result from oxidative damage to photosynthetic proteins and thylakoid membranes. Under heat stress, the biosynthesis of nonenzyme radical scavenging carotenoids (Cars) increased. We suggest that although elevated temperature affects the heat-sensitive components comprising of PSII and Rubisco, under moderately high temperature the decrease in photosynthesis is mostly due to inactivation of dark reactions.  相似文献   

13.
In the condition of prolonged drought stress during the reproductive stage, we addressed the photosynthetic performance in flag leaves of the high-yield hybrid rice (Oryza sativa L.) LYPJ. The chlorophyll a fluorescence transient dynamics analysis indicated a timely and constant responsive pattern involving in both PSI and PSII. For PSII functionality, uncoupling of oxygen evolving complex at the donor side and inhibition of electron transport from QA to QB at the accepter side were both accounted for the decrease of quantum yield of primary photochemistry at early stage (before 21 days after the onset of drought stress). Likewise, increased size of functional antenna may be primarily responsible for early reaction centers inactivation in drought stressed plants, but transformation to non-QA-reducing centers for the later. The consequent redundant excitation energy was predominantly eliminated by the increasing thermal dissipation. Advanced accumulation of drought stress (from 21 to 35 days) showed preferential impact on the donor side of PSII and significant loss of RC/CS0 was induced during this period. In brief, up-regulation of thermal dissipation and possible cyclic electron transport, as well as down-regulation of activated reaction centers and linear electron transport was crucial for rebalance the energy distribution between the two photosystems from deviant stoichiometry resulting from the uncoupling of oxygen evolving complex.  相似文献   

14.
In the yeast Saccharomyces cerevisiae, the molecular chaperone HSP26 has the remarkable ability to sense increases in temperature directly and can switch from an inactive to a chaperone-active state. In this report, we analyzed the effect of expression of HSP26 in Arabidopsis thaliana plants and their response to high temperature stress. The hsp26 transgenic plants exhibited stronger growth than wild type plants at 45 °C for 16 h. The chlorophyll content and chlorophyll fluorescence decreased much more in wild type than in transgenic plants. Moreover, the transgenic plants had higher proline and soluble sugar contents, and lower relative electrical conductivity and malondialdehyde contents after high temperature stress. Furthermore, we found that over-expression of HSP26 in Arabidopsis increased the amount of free proline, elevated the expression of proline biosynthetic pathway genes and therefore enhanced Arabidopsis tolerance to heat stress.  相似文献   

15.
The effect of four different NaCl concentrations (from 0 to 102 mM NaCl) on seedlings leaves of two corn (Zea mays L.) varieties (Aristo and Arper) was investigated through chlorophyll (Chl) a fluorescence parameters, photosynthesis, stomatal conductance, photosynthetic pigments concentration, tissue hydration and ionic accumulation. Salinity treatments showed a decrease in maximal efficiency of PSII photochemistry (Fv/Fm) in dark-adapted leaves. Moreover, the actual PSII efficiency (ϕPSII), photochemical quenching coefficient (qp), proportion of PSII centers effectively reoxidized, and the fraction of light used in PSII photochemistry (%P) were also dropped with increasing salinity in light-adapted leaves. Reductions in these parameters were greater in Aristo than in Arper. The tissue hydration decreased in salt-treated leaves as did the photosynthesis, stomatal conductance (g s) and photosynthetic pigments concentration essentially at 68 and 102 mM NaCl. In both varieties the reduction of photosynthesis was mainly due to stomatal closure and partially to PSII photoinhibition. The differences between the two varieties indicate that Aristo was more susceptible to salt-stress damage than Arper which revealed a moderate regulation of the leaf ionic accumulation.  相似文献   

16.
The functional state of the photosynthetic apparatus of flowering homoiochlorophyllous desiccation tolerant plant Haberlea rhodopensis during dehydration and subsequent rehydration was investigated in order to characterize some of the mechanisms by which resurrection plants survive drought stress. The changes in the CO2 assimilation rate, chlorophyll fluorescence parameters, thermoluminescence, fluorescence imaging and electrophoretic characteristics of the chloroplast proteins were measured in control, moderately dehydrated (50% water content), desiccated (5% water content) and rehydrated plants. During the first phase of desiccation the net CO2 assimilation decline was influenced by stomatal closure. Further lowering of net CO2 assimilation was caused by both the decrease in stomatal conductance and in the photochemical activity of photosystem II. Severe dehydration caused inhibition of quantum yield of PSII electron transport, disappearance of thermoluminescence B band and mainly charge recombination related to S2QA takes place. The blue and green fluorescence emission in desiccated leaves strongly increased. It could be suggested that unchanged chlorophyll content and amounts of chlorophyll–proteins, reversible modifications in PSII electron transport and enhanced probability for non-radiative energy dissipation as well as increased polyphenolic synthesis during desiccation of Haberlea contribute to drought resistance and fast recovery after rehydration.  相似文献   

17.
The chlorophyll (Chl) fluorescence imaging technique was applied to cashew seedlings inoculated with the fungus Lasiodiplodia theobromae to assess any disturbances in the photosynthetic apparatus of the plants before the onset of visual symptoms. Two-month-old cashew plants were inoculated with mycelium of L. theobromae isolate Lt19 or Lt32. Dark-adapted and light-acclimated whole plants or previously labelled, single, mature leaf from each plant were evaluated weekly for Chl fluorescence parameters. From 21 to 28 days, inoculation with both isolates resulted in the significantly lower maximal photochemical quantum yield of PSII (Fv/Fm) than those for control samples, decreasing from values of 0.78 to 0.62. In contrast, the time response of the measured fluorescence transient curve from dark-acclimated plants increased in both whole plants and single mature leaves in inoculated plants compared with controls. The Fv/Fm images clearly exhibited photosynthetic perturbations 14 days after inoculation before any visual symptoms appeared. Additionally, decays in the effective quantum yield of PSII photochemistry and photochemical quenching coefficient were also observed over time. However, nonphotochemical quenching increased during the evaluation period. We conclude that Fv/Fm images are the effective way of detecting early metabolic perturbations in the photosynthetic apparatus of cashew seedlings caused by gummosis in both whole plants and single leaves and could be potentially employed in larger-scale screening systems.  相似文献   

18.
Insect herbivory has variable effects on plant physiology; so greater understanding is needed about how injury alters photosynthesis on individual injured and uninjured leaves. Gas exchange and light-adapted leaf chlorophyll fluorescence measurements were collected from uninjured and mechanical partial leaf defoliation in two experiments with Nerium oleander (Apocynaceae) leaves, and one experiment with Danaus plexippus herbivory on Asclepias curassavica (Asclepiadaceae) leaves. Gas exchange impairment (lower photosynthetic rate (P n ), stomatal conductance (g s)) indicates water stress in a leaf, suggests stomatal limitations causing injury P n impairment. The same pattern of gas exchange impairment also occurred on uninjured leaves opposite from injured leaves in both N. oleander experiments. This is an interesting result because photosynthetic impairment is rarely reported on injured leaves near injured leaves. No photosynthetic changes occurred in uninjured A. curassavica leaves opposite from D. plexippus-fed leaves. Partially defoliated leaves that had P n and g s reductions lacked any significant changes in intercellular leaf [CO2], C i. These results neither support, nor are sufficient to reject, stomatal limitations to photosynthesis. Manually imposed midrib vein severance in N. oleander experiment #1 significantly increased leaf C i, indicating mesophyll limitations to photosynthesis. Maximal light-adapted leaf photochemical efficiency () and also non-photochemical quenching (q N) were reduced by mechanical or insect herbivory to both study species, suggesting leaf trouble handling excess light energy not used for photochemistry. Midrib injury on N. oleander leaves and D. plexippus herbivory on A. curassavica leaves also reduced effective quantum yield (ΦPSII) and photochemical quenching (q P); so reduced plastoquinone pools could lead to additional PSII reaction center closure.  相似文献   

19.
The effects of shade on the growth, leaf photosynthetic characteristics, and chlorophyll (Chl) fluorescence parameters of Lycoris radiata var. radiata were determined under differing irradiances (15, 65, and 100% of full irradiance) within pots. The HI plants exhibited a typical decline in net photosynthetic rate (P N) during midday, which was not observed in MI- and LI plants. This indicated a possible photoinhibition in HI plants as the ratio of variable to maximum fluorescence (Fv/Fm) value was higher and the minimal fluorescence (F0) was lower in the, and LI plants. Diurnal patterns of stomatal conductance (g s) and transpiration rate (E) were remarkably similar to those of P N at each shade treatments, and the intercellular CO2 concentration (C i) had the opposite change trend. Under both shading conditions, the light saturation point, light compensation point and photon-saturated photosynthetic rate (P max) became lower than those under full sunlight, and it was the opposite for the apparent quantum yield (AQY). The higher the level of shade, the lower the integrated daytime carbon gain, stomatal and epidermis cell densities, specific leaf mass (SLM), bulb mass ratio (BMR), leaf thickness, and Chl a/b ratio. In contrast, contents of Chls per dry mass (DM), leaf area ratio (LAR), leaf mass ratio (LMR), leaf length, leaf area and total leaf area per plant increased under the same shade levels to promote photon absorption and to compensate for the lower radiant energy. Therefore, when the integrated daytime carbon gain, leaf area and total leaf area per plant, which are the main factors determining the productivity of L. radiata var. radiata plant, were taken into account together, this species may be cultivated at about 60∼70% of ambient irradiance to promote its growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号