首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Landscape geometry determines community response to disturbance   总被引:1,自引:0,他引:1  
Ecological communities are impacted by anthropogenic changes in both habitat geometry (i.e. amount, shape, fragmentation and connectivity of habitat) and disturbance regime. Although the effect of each of these drivers on diversity is well-documented, few studies have considered how habitat geometry and disturbance interact to affect diversity. We used a miniature landscape of moss patches to experimentally manipulate both habitat geometry and disturbance frequency on microarthropod communities. Species richness and abundance in local patches declined linearly with disturbance rate in all experimental landscapes, but the speed of this decline (a measure of ecological resilience) depended on the size and connectivity of the surrounding region. Reductions in region size had little effect on community resilience to disturbance until habitat loss resulted in complete loss of connectivity between patches, suggesting a threshold in community response to habitat loss. Beyond this threshold, repeated disturbance resulted in rapid declines in patch species richness and abundance and substantial changes in community composition. These effects of habitat geometry and disturbance on diversity were scale-dependent. Gamma (regional-scale) diversity was unaffected by habitat geometry, suggesting experimental reductions in alpha (local-scale) diversity were offset by increases in beta diversity. There was no effect of body size, abundance, or trophic position in determining species response to disturbance. Taxonomic grouping had a weak effect, with oribatids less affected by drought. We conclude that, in this system, dispersal from the surrounding metacommunity is vital in allowing recovery of local communities from disturbance. When habitat loss and fragmentation disrupt this process, extinctions result. Studies that examine separately the effects of habitat alterations and disturbance on diversity may therefore underestimate their combined effects.  相似文献   

2.
Residual patches of forest remaining after natural or anthropogenic disturbance may facilitate regeneration of fragmented forest. However, residual patch function remains unclear, especially after natural wildfire. We investigate the role of residual boreal forest patches as refugia for bryophytes and ask the question, do they house bryophyte communities similar to those encountered in undisturbed forests? Bryophytes were sampled in three habitat types in black spruce boreal forests illustrating a gradient of disturbance severity: undisturbed forests, residual patches and burned matrices. Temporal, disturbance severity, spatial and structural variables of habitats were also recorded. Bryophyte community composition differed among habitat types with residual patches characterized by higher species richness, the loss of forest specialists and the addition of disturbance-prone species. The bryophyte community found in residual patches is at the interface between the communities of undisturbed forests and burned matrices. As residual patches did not conserve all species, particularly forest specialists, they were not refugia. However, we identify temporal, spatial and structural characteristics that can maintain bryophyte communities most similar to undisturbed forests and enhance residual patch “refugia potential”. Residual patches enhance bryophyte diversity of the landscape housing species that cannot survive in the burned matrix. As conclusion we discuss the use of retention patches in harvested stands, together with the preservation of undisturbed stands that house singular bryophyte communities and especially sensitive forest specialists.  相似文献   

3.
Relatively easy measurable patch characteristics (especially habitat diversity measures) have proven to be valuable indicators of forest plant species richness in forest fragments of relatively undisturbed areas. Urban and suburban forest patches, however, are characterized by a specific landscape ecological context implying that specific processes may influence ecosystem functioning and hence that other abiotic indicators for plant diversity are more appropriate. We studied the relation between functional ecological plant species groups and suburban forest patch characteristics such as patch area, habitat diversity and isolation. Some components of species richness were related to the isolation of the patches. In contrast to previous similar large-scale fragmentation studies in more rural areas, further results stressed the overwhelming importance of patch area relative to habitat variables in determining species richness. This suggests (1) the occurrence of density-dependent species extinction processes in small forest patches; or (2) the existence of external deterministic factors which put a major constraint on species richness in small patches. We tend to support the latter hypothesis and propose forest disturbance and associated black cherry (Prunus serotina Ehrh.) invasion as such a possible external factor. Small forest patches may be more sensitive to disturbance and biological invasion due to various reasons. Hence large forest patches are to be preferred for plant conservation in the suburban area.  相似文献   

4.
Most ecosystems are affected by anthropogenic or natural pulse disturbances, which alter the community composition and functioning for a limited period of time. Whether and how quickly communities recover from such pulses is central to our understanding of biodiversity dynamics and ecosystem organisation, but also to nature conservation and management. Here, we present a meta‐analysis of 508 (semi‐)natural field experiments globally distributed across marine, terrestrial and freshwater ecosystems. We found recovery to be significant yet incomplete. At the end of the experiments, disturbed treatments resembled controls again when considering abundance (94%), biomass (82%), and univariate diversity measures (88%). Most disturbed treatments did not further depart from control after the pulse, indicating that few studies showed novel trajectories induced by the pulse. Only multivariate community composition on average showed little recovery: disturbed species composition remained dissimilar to the control throughout most experiments. Still, when experiments revealed a higher compositional stability, they tended to also show higher functional stability. Recovery was more complete when systems had high resistance, whereas resilience and resistance were negatively correlated. The overall results were highly consistent across studies, but significant differences between ecosystems and organism groups appeared. Future research on disturbances should aim to understand these differences, but also fill obvious gaps in the empirical assessments for regions (especially the tropics), ecosystems and organisms. In summary, we provide general evidence that (semi‐)natural communities can recover from pulse disturbances, but compositional aspects are more vulnerable to long‐lasting effects of pulse disturbance than the emergent functions associated to them.  相似文献   

5.
High-latitude, shelf Antarctic benthic communities are highly diversified and structured, dominated by benthic suspension feeders, and are subject to major natural disturbances. This study focuses on spatial patterns of the Antarctic benthos emphasizing the succession process after iceberg disturbance. For this purpose, underwater photographs (1 m2 each) from the southeastern Weddell Sea shelf (<300 m depth) were analyzed using techniques from the field of landscape ecology. Here, we examine measurements of spatial patterns (landscape indices) to describe changes in structural patterns along successional stages on these Antarctic benthic communities. We show a gradual separation from the early to older stages of succession based on sessile benthic cover area, size, shape, diversity, and interspersion and juxtaposition indices. Conceptually, the results describe a gradient from samples belonging to first stages of recovery with low cover area, low complexity of patch shape, small patch size, low diversity and patches poorly interspersed to samples from later stages with higher values of these indices. Cover area was the best predictor of recovery. We conclude that a variety of factors affect the observed successional sequences of Antarctic shelf benthic communities after iceberg disturbance, including the existence and dispersal abilities of propagules, growth rates, and competition between species. Overall, changes in the magnitude, frequency, and duration of disturbance regimes and alterations of ecosystem resilience pose major challenges for conservation of Antarctic benthos. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Disturbance is integral to the organisation of riverine ecosystems. Fluctuating low flows caused by supra-seasonal drought and water management periodically dewater habitat patches, potentially creating heterogeneity in the taxonomic composition and successional dynamics of benthic communities. The frequency of disturbance induced by low flows is contingent upon the topography of the river bed and thus varies among patches. We investigated whether the frequency of patch dewatering influenced the structure and temporal dynamics of benthic algal communities attached to the upper surfaces of stones in stream mesocosms (4 m2). In a 693-day disturbance experiment, we applied short dewatering disturbances (6 days) at high (33-day cycles) and low frequencies (99-day cycles) and compared algal assemblages with undisturbed controls at 21 endpoints. In the absence of disturbance, epilithic space was dominated by the green encrusting alga Gongrosira incrustans. However, drying disturbances consistently reduced the dominance of the green alga, and crust abundance decreased with increasing disturbance frequency, thereby opening space for a diversity of mat-forming diatoms. The response of mat diatoms to disturbance varied markedly during the experiment, from strong reductions in the abundance of loosely attached mats in mid-late 2000 to the exploitation of open space by closely adhering mats in 2001. Contrary responses were attributed to changes in the species composition of mat diatoms, which influenced the physiognomy and hence stress-resistance and resilience of the assemblage. Our results indicate that patchy dewatering of habitat patches during periods of low flow influences the successional dynamics of algae, thereby creating distinctive mosaics on the stream bed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Most grassland communities in agricultural landscapes comprise a mix of exotic and native plants, where grasses and forbs are disposed in low diversity patches conforming a heterogeneous matrix of vegetation. Within these “novel” ecosystems, woody encroachment is one of the principal causes of ecosystem degradation. Here, we examined the resistance to exotic woody establishment (Gleditsia triacanthos) into four different monospecific patches characteristics of old-field grasslands in Inland Pampa: an annual forb (Conium maculatum), an annual grass (Lolium multiflorum), and two perennial grasses (Cynodon dactylon and Festuca arundinacea). We evaluated the filter to tree recruitment by rodent seed removal and survival and growth of Gleditsia seedlings transplanted into undisturbed and disturbed microsites, within each patch. Beneath intact vegetation seed removal was an important biotic filter to woody establishment whereas disturbances facilitated seed survival in patches of perennial grasses. Patch identity affected tree growth, and Cynodon reduced the final biomass compared to forbs. Disturbance enhanced tree performance independently of patch type. After 2 years, tree survival was independent of disturbance and patch identity. As patch identity may regulate granivory and growth of tree saplings, community susceptibility or resistance to woody invasion rather than representing a static community attribute could vary according to the dynamic changes in the proportion of susceptible-resistant patches. Broadly, our work reinforces the concept that mechanisms regulating vegetation heterogeneity add a component of stochasticity to biotic resistance to community plant invasion.  相似文献   

8.
1. The identification of factors determining the patchy distribution of organisms in space and time is a central concern of ecology. Predation and abiotic disturbance are both well-known drivers of this patchiness, but their interplay is still poorly understood, especially for communities dominated by mobile organisms in frequently disturbed ecosystems. 2. We investigated the separate and interactive influences of bed disturbance by floods and predation by fish on the benthic community in a flood-prone stream. Electric fields excluded fish predators from half of 48 stream bed patches (area 0·49 m(2) ) with contrasting disturbance treatments. Three types of bed disturbance were created by either scouring or filling patches to a depth of 15-20 cm or by leaving the patches undisturbed, thus mimicking the mosaic of scour and fill caused by a moderate flood. Benthic invertebrates and algae were sampled repeatedly until 57 days after the disturbance. 3. Disturbance influenced all ten investigated biological response variables, whereas predation affected four variables. Averaged across time, invertebrate taxon richness and total abundance were highest in stable patches. Algal biomass and densities of five of the seven most common invertebrate taxa (most of which were highly mobile) were higher in fill than in scour patches, whereas two taxa were more abundant in scour and stable than in fill patches. Furthermore, two common invertebrate grazers were more abundant and algal biomass tended to be reduced in fish exclusion patches, suggesting a patch-scale trophic cascade from fish to algae. 4. Our results highlight the importance of patchy physical disturbance for the microdistribution of mobile stream organisms and indicate a notable, but less prevalent, influence of fish predation at the patch scale in this frequently disturbed environment. Disturbance and predation treatments interacted only once, suggesting that the observed predation effects were largely independent of local bed disturbance patterns.  相似文献   

9.
In the last two decades, the relationship between diversity and stability/ecosystem functioning has been widely discussed and has become a central issue in ecology. Here, we assessed the relationship between wetland plant diversity and community resilience after a disturbance. Our study area was located in the Upper Paraná River floodplain (Brazil). An experiment was carried out in situ (18 1 m × 1 m plots with richness varying from 1 to 18 species). In each plot, we recorded the number of species, total per cent vegetation cover and per cent age cover of each species. The above‐ground biomass of wetland plants was removed, simulating a disturbance by animal trampling or an extreme flood. The recovery of vegetation was monitored over 3 months. According to a linear regression, the recovery of wetland plants was positively correlated with diversity. Comparisons with plots containing monocultures of one of the dominant species (Polygonum stelligerum) suggested that this species did not overyield in mixed cultures. Thus, our experiments indicate that the higher resilience in richer plots after a disturbance is mainly due to the fact that species have different resource use requirements (complementarity effect) and not due to the presence of a single, more productive species. Our experiment carried out in a more real condition (in situ) showed that biodiversity is important to wetland functioning and stability, paralleling the results obtained in laboratory and mesocosms experiments. These results also suggest that the loss of plant diversity in our study area could compromise community recovery following strong disturbances.  相似文献   

10.
Aims and Methods Disturbance is supposed to play an important role for biodiversity and ecosystem stability as described by the intermediate disturbance hypothesis (IDH), which predicts highest species richness at intermediate levels of disturbances. In this study, we tested the effects of artificial soil disturbances on diversity of annual and perennial vascular plants and bryophytes in a field experiment in 86 agricultural grasslands differing in land use in two regions of Germany. On each grassland, we implemented four treatments: three treatments differing in application time of soil disturbances and one control. One year after experimental disturbance, we recorded vegetation and measured biomass productivity and bare ground. We analysed the disturbance response taking effects of region and land-use-accompanied disturbance regimes into account.Important findings Region and land-use type strongly determined plant species richness. Experimental disturbances had small positive effects on the species richness of annuals, but none on perennials or bryophytes. Bare ground was positively related to species richness of bryophytes. However, exceeding the creation of 12% bare ground further disturbance had a detrimental effect on bryophyte species richness, which corresponds to the IDH. As biomass productivity was unaffected by disturbance our results indicate that the disturbance effect on species richness of annuals was not due to decreased overall productivity, but rather due to short-term lowered inter- and intraspecific competition at the newly created microsites. Generally, our results highlight the importance of soil disturbances for species richness of annual plants and bryophytes in agricultural grasslands. However, most grasslands were disturbed naturally or by land-use practices and our additional experimental soil disturbances only had a small short-term effect. Overall, total plant diversity in grasslands seemed to be more limited by the availability of propagules rather than by suitable microsites for germination. Thus, nature conservation efforts to increase grassland diversity should focus on overcoming propagule limitation, for instance by additional sowing of seeds, while the creation of additional open patches by disturbance might only be appropriate where natural disturbances are scarce.  相似文献   

11.
Metacommunity theory poses that the occurrence and abundance of species is a product of local factors, including disturbance, and regional factors, like dispersal among patches. While metacommunity ideas have been broadly tested there is relatively little work on metacommunities subject to disturbance. We focused on how localized disturbance and dispersal interact to determine species composition in metacommunities. Experiments conducted in simple two-patch habitats containing eight protozoa and rotifer species tested how dispersal altered community composition in both communities that were disturbed and communities that connected to refuge communities not subject to disturbance. While disturbance lowered population densities, in disturbed patches connected to undisturbed patches this was ameliorated by immigration. Furthermore, species with high dispersal abilities or growth rates showed the fastest post-disturbance recovery in presence of immigration. Connectivity helped to counteract the negative effect of disturbances on local populations, allowing mass-effect-driven dispersal of individuals from undisturbed to disturbed patches. In undisturbed patches, however, local population sizes were not significantly reduced by emigration. The absence of a cost of dispersal for undisturbed source populations is consistent with a lack of complex demography in our system, such as age- or sex-specific emigration. Our approach provides an improved way to separate components of population growth from organisms' movement in post-disturbance recovery of (meta)communities. Further studies are required in a variety of ecosystems to investigate the transient dynamics resulting from disturbance and dispersal.  相似文献   

12.
The ability of ecosystems to maintain their functions after disturbance (ecological resilience) depends on heterogeneity in the functional capabilities among species within assemblages. Functional heterogeneity may affect resilience by determining multiplicity between species in the provision of functions (redundancy) and complementarity between species in their ability to respond to disturbances (response diversity), but also by promoting the maintenance of biological information that enables ecosystems to reorganize themselves (ecological memory). Here, we assess the role of the components of the functional heterogeneity of a plant–frugivore assemblage on the resilience of seed dispersal to habitat loss. For three years, we quantified the distributions of fruits, frugivorous thrushes (Turdus spp.) and dispersed seeds, as well as frugivore diet and movement, along a gradient of forest cover in N Spain. The abundances and the spatial distributions of fruits and birds varied between years. The different thrushes showed similar diets but differed in spatial behavior and response to habitat loss, suggesting the occurrence of both functional redundancy and response diversity. Forest cover and fruit availability affected the spatial distribution of the whole frugivore assemblage. Fruit tracking was stronger in years when fruits were scarcer but more widespread across the whole fragmented landscape, entailing larger proportions of seeds dispersed to areas of low forest cover and open microhabitats. Rather than depending on redundancy and/or response diversity, seed dispersal resilience mostly emerged from the ecological memory conferred by the inter‐annual variability in fruit production and the ability of thrushes to track fruit resources across the fragmented landscape. Ecological memory also derived from the interaction of plants and frugivores as source organisms (trees in undisturbed forest), mobile links (birds able to disperse seeds into the disturbed habitat), and biological legacies (remnant trees and small forest patches offering scattered fruit resources across the landscape).  相似文献   

13.
It is proposed that evaluations of disturbance effects upon community diversity will be influenced by two factors currently overlooked in models addressing disturbance-diversity relationships: (1) the spatial scale of inquiry, and (2) the level of the species abundance (dominance) hierarchy at which the search for diversity is done. We analyzed how two disturbance types—cattle grazing and large flooding—affected community diversity at two spatial scales (stand and patch) and three levels of species dominance in a grassland of the Flooding Pampa, Argentina. The effect of disturbance interaction was also examined. Species diversity at the stand scale was reduced by either grazing or flooding. Both disturbances decreased community spatial heterogeneity. At the patch scale, diversity declined with flooding but was enhanced by grazing. Flooding increased diversity under grazing conditions. However, stand diversity was highest in the undisturbed grassland; pattern diversity was the salient feature in this condition. The combination of disturbances yielded the highest patch-scale diversity; grazing increased richness whilst flooding enhanced evenness. Comparisons among grassland conditions appeared scale-dependent. Moreover the extent of disturbance effects varied with the level of dominance hierarchy considered. We point out the relevance of site history and initial conditions, encompassing the possibility of disturbances interaction, to the patters produced by disturbance events. Effects perceived at different spatial scales, or in species positioned at separate dominance levels, may parallel meaningful changes in the relative importance of factors controlling species coexistence and community organization.  相似文献   

14.
Analysing the consequences of the decrease in biodiversity for ecosystem functioning and stability has been a major concern in ecology. However, the impact of decline in soil microbial diversity on ecosystem sustainability remains largely unknown. This has been assessed for decomposition, which is insured by a large proportion of the soil microbial community, but not for more specialized and less diverse microbial groups. We determined the impact of a decrease in soil microbial diversity on the stability (i.e. resistance and resilience following disturbance) of two more specialized bacterial functional groups: denitrifiers and nitrite oxidizers. Soil microbial diversity was reduced using serial dilutions of a suspension obtained from a non-sterile soil that led to loss of species with low cell abundance, inoculation of microcosms of the same sterile soil with these serial dilutions, and subsequent incubation to enable establishment of similar cell abundances between treatments. The structure, cell abundance and activity of denitrifying and nitrite-oxidizing communities were characterized after incubation. Increasing dilution led to a progressive decrease in community diversity as assessed by the number of denaturating gradient gel electrophoresis (DGGE) bands, while community functioning was not impaired when cell abundance recovered after incubation. The microcosms were then subjected to a model disturbance: heating to 42 degrees C for 24 h. Abundance, structure and activity of each community were measured 3 h after completion of the disturbance to assess resistance, and after incubation of microcosms for 1 month to assess resilience. Resistance and resilience to the disturbance differed between the two communities, nitrite oxidizers being more affected. However, reducing the diversity of the two microbial functional groups did not impair either their resistance or their resilience following the disturbance. These results demonstrate the low sensitivity of the resistance and resilience of both microbial groups to diversity decline provided that cell abundance is similar between treatments.  相似文献   

15.
To address how species interactions, dispersal and environmental disturbances interplay to affect the spatial distribution and diversity of species, we present a compartment model in which multiple species undergo competitive interaction of Lotka-Volterra type in a patchy environment arranged in a square lattice. Dispersal of species occurs between adjacent patches. Disturbances are periodically imposed on a central part of the environment in a belt-like block or an island-like block of various sizes where each species is killed for a certain time interval and then allowed to recover for the rest of a disturbance cycle. We deal with a case in which the local population dynamics within each patch is analytically determinable and has multiple locally stable equilibrium states in the absence of environmental disturbance. We further assume a trade-off between the reproductive rate of species and its dispersal ability. With these settings, we numerically examine how the spatio-temporal distributions of species are affected by changes in the pattern, size and duration of disturbances. The results demonstrate that: (1) in the undisturbed area, environmental disturbances could generate spatially segregated distributions of species; (2) in the disturbed area, species with higher dispersal abilities quickly invade and preferentially recover their population during the post-disturbance period, being temporarily relieved of competition from other species. These mechanisms collectively lead to increased species diversity in the whole habitat, functioning best when both the size and duration of disturbances are intermediate. In particular, the belt-like disturbance is more effective than the island-like disturbance in sustaining spatial heterogeneity for a wider range of duration of disturbance.  相似文献   

16.
高原鼢鼠对高寒草甸植被特征及生产力的影响   总被引:6,自引:0,他引:6  
张堰铭  刘季科 《兽类学报》2002,22(3):201-210
本研究结果表明,高原鼢鼠栖息10年的斑块,植物群落的物种数减少,植物物种多样性指数下降,地上、地下总生物量显降低,单子叶和可利用双子叶植物生物量极显减少,但不可利用双子叶植物生物量显增加。高原鼢鼠去除5年后,斑块内植物群落的单子叶植物物种数增加,而双子叶植物下降,植物群落物种多样性指数下降,地上、地下总生物量显增加,单子叶和可利用双子叶植物生物量增加极显,不可利用双子叶植物生物量显降低。高原鼢鼠栖息10年的斑块,净初级生产量较未栖息地区减少68.98%。高原鼢鼠去除5年后,净初级生产量增加,但仅达到未栖息地区的58.69%。  相似文献   

17.
Amazonian forests function as biomass and biodiversity reservoirs, contributing to climate change mitigation. While they continuously experience disturbance, the effect that disturbances have on biomass and biodiversity over time has not yet been assessed at a large scale. Here, we evaluate the degree of recent forest disturbance in Peruvian Amazonia and the effects that disturbance, environmental conditions and human use have on biomass and biodiversity in disturbed forests. We integrate tree-level data on aboveground biomass (AGB) and species richness from 1840 forest plots from Peru's National Forest Inventory with remotely sensed monitoring of forest change dynamics, based on disturbances detected from Landsat-derived Normalized Difference Moisture Index time series. Our results show a clear negative effect of disturbance intensity tree species richness. This effect was also observed on AGB and species richness recovery values towards undisturbed levels, as well as on the recovery of species composition towards undisturbed levels. Time since disturbance had a larger effect on AGB than on species richness. While time since disturbance has a positive effect on AGB, unexpectedly we found a small negative effect of time since disturbance on species richness. We estimate that roughly 15% of Peruvian Amazonian forests have experienced disturbance at least once since 1984, and that, following disturbance, have been increasing in AGB at a rate of 4.7 Mg ha−1 year−1 during the first 20 years. Furthermore, the positive effect of surrounding forest cover was evident for both AGB and its recovery towards undisturbed levels, as well as for species richness. There was a negative effect of forest accessibility on the recovery of species composition towards undisturbed levels. Moving forward, we recommend that forest-based climate change mitigation endeavours consider forest disturbance through the integration of forest inventory data with remote sensing methods.  相似文献   

18.
Understanding the mechanisms producing and maintaining discontinuities between patches in mosaics of habitats is necessary to predict changes in patterns of abundance and distribution of species. On temperate rocky reefs, physical and biological disturbance can result in a mosaic of patches of encrusting coralline, turf- or canopy-forming algae. We experimentally investigated the effects of disturbance within and at the boundary between these patches, in order to identify mechanisms accounting for re-colonisation of space and to assess whether the response of boundaries can alter the relative size of contrasting habitats. Also, we tested whether the resilience of the different types of assemblages depends on species richness (i.e. number of taxa present) of habitats or, alternatively, on other properties of systems like differences in life-history traits of dominating species. Although the nature of the mechanisms generating differences among habitats changed among different stages of the colonisation, local processes (within patches) prevailed over larger scale processes (among patches) in determining early patterns of colonisation of space in mosaics. By the end of the experiment, assemblages in clearings at boundaries had recovered to the undisturbed reference condition, in contrast to clearings within barren patches or algal turfs. Boundaries represent, therefore, relatively more stable components of the mosaic, with greater resilience than adjacent habitats. Although sea urchins are often indicated as the main force regulating the proportion of contrasting habitats on shallow rocky reefs, determining the nature of variation in the interaction between species dominating each type of habitat is crucial to understand dynamics of mosaics. Finally, our study provides evidence that resilience could not be entirely controlled by initial species diversity, suggesting that different proportions of dominant taxa could influence the stability of natural systems.  相似文献   

19.
Climate extremes can ultimately reshape grassland services such as forage production and change plant functional type composition. This 3‐year field research studied resistance to dehydration and recovery after rehydration of plant community and plant functional types in an upland perennial grassland subjected to climate and cutting frequency (Cut+, Cut?) disturbances by measuring green tissue percentage and above‐ground biomass production (ANPP). In year 1, a climate disturbance gradient was applied by co‐manipulating temperature and precipitation. Four treatments were considered: control and warming‐drought climatic treatment, with or without extreme summer event. In year 2, control and warming‐drought treatments were maintained without extreme. In year 3, all treatments received ambient climatic conditions. We found that the grassland community was very sensitive to dehydration during the summer extreme: aerial senescence reached 80% when cumulated climatic water balance fell to ?156 mm and biomass declined by 78% at the end of summer. In autumn, canopy greenness and biomass totally recovered in control but not in the warming‐drought treatment. However ANPP decreased under both climatic treatments, but the effect was stronger on Cut+ (?24%) than Cut? (?15%). This decline was not compensated by the presence of three functional types because they were negatively affected by the climatic treatments, suggesting an absence of buffering effect on grassland production. In the following 2 years, lasting effects of climate disturbance on ANPP were observable. The unexpected stressful conditions of year 3 induced a decline in grassland production in the Cut+ control treatment. The fact that this treatment cumulated higher (45%) N export over the 3 years suggests that N plays a key role in ANPP stability. As ANPP in this mesic perennial grassland did not show engineering resilience, long‐term experimental manipulation is needed. Infrequent mowing appears more appropriate for sustaining grassland ANPP under future climate extremes.  相似文献   

20.
In the extant lemur communities of Madagascar the number of lemur species increases with increasing number of tree species. In forests with few tree species lemurs use patches with higher number of tree species than average. However, in forest plots with high number of tree species, lemurs stay in places with lower number of tree species than average. At low tree species diversity a minimum number of different tree species seems to be required within the animals' home range to assure year-round food availability. At high tree species diversity tree species essential for survival might be diluted by resources which are of no use for lemurs, thus increasing energetic expenses for traveling between suitable patches. According to the present analyses, structural diversity is of subordinate importance to the number of tree species as a correlate of lemur species richness. Within limits of disturbance intensity and on a small geographic scale, disturbances increase forest productivity. Lemurs reach higher species numbers and population densities in slightly disturbed areas compared with undisturbed sites. This peaked curve of the number of lemur species over disturbance, however, may not only be a consequence of “resource dilution” in undisturbed sites and higher food abundance in slightly disturbed areas, but also a consequence of selective extinction of lemur species which were unable to cope with the disturbance regime exaggerated by human interference over the last few hundred or thousand years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号