首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The patchy distribution of benthic invertebrates in streams and rivers is an important and widely researched phenomenon. Previous studies on reasons for this patchiness have neglected the potential role of local disturbance history, probably because most lotic invertebrates are mobile and any effect of disturbance history was thought to be short-lived. Here we demonstrate for a New Zealand gravel-bed stream that local disturbance history can have long-term effects on the distribution of highly mobile stream invertebrates. Buried scour chains (100 at each of three 20-m sites within a 350-m reach) indicated that a spate with a return period of 5 months caused a mosaic of bed patches with different stabilities. More than 2 months after the spate, we took random, quantitative samples at each site from five patches that had experienced 4 cm or more of scour during the spate, from five patches with 4 cm or more of fill, and from five stable patches. Density of the dominant invertebrate taxon, the highly mobile mayfly Deleatidium spp., and densities of another three of the seven most common taxa differed significantly between patch stability categories. Larvae of Deleatidium, the black fly Austrosimulium spp. and the dipteran Eriopterini were most abundant in fill patches, whereas Isopoda were most abundant in scour patches. Total invertebrate densities and densities of six common taxa also differed between sites, although these were only 95–120 m apart. These results show that local disturbance history can have long-term effects on lotic invertebrates and be an important cause of invertebrate patchiness. The observed effects might have been even stronger had we sampled sooner after the spate or after a large flood. Disturbance history may influence invertebrates both directly (through dislodgement or mortality) and indirectly, through effects on the spatial distribution of their resources. Our results suggest that the role of disturbance in structuring animal communities dominated by mobile species may be more important than previously thought. Received: 25 January 2000 / Accepted: 14 April 2000  相似文献   

2.
1. We investigated the effects of local disturbance history and several biotic and abiotic habitat parameters on the microdistribution of benthic invertebrates after an experimental disturbance in a flood‐prone German stream. 2. Bed movement patterns during a moderate flood were simulated by scouring and filling stream bed patches (area 0.49 m2) to a depth of 15–20 cm. Invertebrates were investigated using ceramic tiles as standardized substrata. After 1, 8, 22, 29, 36 and 50 days, we sampled one tile from each of 16 replicates of three bed stability treatments (scour, fill and stable controls). For each tile, we also determined water depth, near‐bed current velocity, the grain size of the substratum beneath the tile, epilithic algal biomass and standing stock of particulate organic matter (POM). 3. Shortly after disturbance, total invertebrate density, taxon richness and density of the common taxa Baetis spp. and Chironomidae were highest in stable patches. Several weeks after disturbance, by contrast, Baetis spp. and Hydropsychidae were most common in fill and Leuctra spp. in scour patches. The black fly Simulium spp. was most abundant in fill patches from the first day onwards. Community evenness was highest in scour patches during the entire study. 4. Local disturbance history also influenced algal biomass and POM standing stock at the beginning of the experiment, and water depth, current velocity and substratum grain size throughout the experiment. Scouring mainly exposed finer substrata and caused local depressions in the stream bed characterized by slower near‐bed current velocity. Algal biomass was higher in stable and scour patches and POM was highest in scour patches. In turn, all five common invertebrate taxa were frequently correlated with one or two of these habitat parameters. 5. Our results suggest that several ‘direct’ initial effects of local disturbance history on the invertebrates were subsequently replaced by ‘indirect’ effects of disturbance history (via disturbance‐induced changes in habitat parameters such as current velocity or food).  相似文献   

3.
Local disturbance history affects patchiness of benthic river algae   总被引:3,自引:0,他引:3  
1. Recent research has shown that high‐flow events in streams leave a small‐scale mosaic of bed patches that have experienced scouring, sediment deposition (fill), or remained stable. Few studies have investigated if this ‘local disturbance history’ contributes to the patchy distribution of benthic organisms in streams and rivers. 2. In the present research, we demonstrate that local disturbance history in a mid‐sized river can have both short‐ and long‐term effects on epilithic algae. Chains buried vertically in the substratum of the river bed (236 in a 800‐m reach) indicated that two floods (return periods ≤1 year) caused a mosaic of bed patches with different disturbance histories. Once after the first and twice after the second flood, we sampled epilithic algae (mainly diatoms) in replicate patches that had been scoured, filled, or remained stable during the respective event. Algal biomass and cell density per substratum area were determined. 3. Three months after the first flood, algal biomass, total diatom density, diatom taxon richness, and densities of six of nine most common taxa were highest in fill patches. Six days after the second flood, biomass was highest in stable patches, indicating a refugium function of these patches. The refugium patches consisted of average‐sized stones, in contrast to previous studies of flood refugia for benthic algae in which these refugia were always large and/or immobile substrata. Four weeks after the second flood, diatoms tended to be most abundant in scour patches. With one exception, these differences between patch types could not be attributed to differences in local near‐bed current velocity or water depth. 4. The effects of disturbance history were more complex than a simple refugium function of stable patches because algal patterns changed with time since the last disturbance, possibly depending on the successional state of the algal mats.  相似文献   

4.
Nyström P  McIntosh AR 《Oecologia》2003,136(2):279-288
Predatory species have been introduced to habitats spanning a wide range of environmental conditions. To better understand the consequences of predation in natural communities we need to examine how variations in abiotic factors modify the influence of predation. The effects of introduced predators may vary amongst habitats if natural disturbance affects the abundance and taxonomic composition of consumers and their resources, or the predator alters recolonisation after disturbance. We tested whether a bed-moving disturbance altered subsequent interactions involving native and introduced predatory fish, invertebrate grazers and algae in experimental channels within a New Zealand stream. Disturbance reduced the abundance of invertebrates by 84%, and induced mortality of Conoesucidae caddisflies. However, the relative abundance of taxa changed little immediately following the disturbance. Invertebrate communities recovered following disturbance in fishless channels and those with native galaxiids (Galaxias vulgaris), and were almost indistinguishable from undisturbed fishless controls after 2 weeks. Invertebrate abundance declined and algal abundance increased in channels with exotic brown trout (Salmo trutta) and their effect was strongest in previously disturbed channels. However, predators and disturbance only had interactive effects on grazer emigration rates. Trout affected grazers through direct consumption (e.g. Conoesucidae caddisflies), and induced higher emigration rates of grazers from channels via drift (e.g. the mayfly Deleatidium). The effects of predatory trout and galaxiids combined differed in disturbed and stable channels. The observed combined effects of predatory trout and galaxiids on invertebrate grazers were lower than expected in stable channels partly due to low emigration rates of Conoesucidae, whereas emigration of grazers was higher than expected in the disturbed channels. The biomass of algae was higher than expected in disturbed channels with both predators. Collectively, our results indicate that predator substitutability and the non-lethal effects of introduced predators varied depending on disturbance history, but their effects on the biomass of grazers and algae did not.  相似文献   

5.
1. The composition and spatiotemporal dynamics of biological communities are influenced by biotic processes, such as predation and competition, but also by physical disturbances, such as floods in running waters. However, the interplay of disturbance with predation is still poorly understood, especially in frequently disturbed streams. Further, different predator species can affect prey communities in different ways depending on their feeding mode and efficiency. 2. We investigated the individual and combined effects of flood‐induced bed disturbance and fish predation on the benthos for 4 weeks in 18 streamside channels fed by a flood‐prone New Zealand river. Bed movements caused by floods were simulated by tumbling the substratum in half the channels. Six channels each were stocked with introduced brown trout (Salmo trutta) or native upland bully (Gobiomorphus breviceps) or had fish excluded. We studied algal biomass and both invertebrate density and daytime activity on surface stones on several dates after the disturbance, invertebrate community composition in the substrata of the entire channels on day 28 and leaf decomposition rates over the 28‐day period. 3. Disturbance affected algal biomass and density, richness and activity of surface stone invertebrates, and overall density and richness of channel invertebrates. Presence or absence of fish, by contrast, did not influence overall invertebrate standing stocks when subsurface substrata were included but did affect invertebrate densities on surface stones in 45% of all analysed cases and invertebrate activity on surface stones in all cases. Leaf decomposition rates were not influenced at all by the experimental manipulations. 4. Native upland bullies featured more often than exotic brown trout in causing invertebrate density changes and equally often in causing changes to grazer behaviour. Overall, our results imply that fish predation can have strong effects on the benthic invertebrate community in frequently disturbed streams, especially via behavioural changes.  相似文献   

6.
1. We investigated the effects of local disturbance history and habitat parameters (abiotic and biotic) on the microdistribution of benthic invertebrates during several floods in two streams, the Schmiedlaine in Germany (four events) and the Kye Burn in New Zealand (two events). 2. Bed movement patterns were quantified using metal‐link scour chains. Before and after each flood, quantitative invertebrate samples were taken from replicate bed patches that had experienced sediment scour, fill or remained stable. 3. Patterns of invertebrate density in the different bed stability types (i.e. scour, fill, stable) varied between floods, sampling dates and streams, but invertebrate density was highest in stable patches in >50% of all the patch type effects detected and lowest in fill patches in 75% of all detected effects. Stable bed patches acted as a refugium for Liponeura spp. and Leuctra spp. in the Schmiedlaine and for Hydracarina and Deleatidium spp. in the Kye Burn. 4. Averaged across both streams, only near‐bed current velocity was correlated with invertebrate distribution on the streambed more often than disturbance history. In the Kye Burn, disturbance history and water depth were the most influential habitat parameters. 5. Our results suggest that a thorough understanding of the microdistribution of benthic invertebrates requires knowledge of disturbance history, as well as more readily measured habitat parameters such as current velocity or water depth.  相似文献   

7.
8.
Seth R. Reice 《Oecologia》1985,67(1):90-97
Summary In order to test the role of disturbance and the effects of disturbance frequency on stream communities, an experiment was conducted in New Hope Creek, North Carolina, USA. Patches of cobbles were tumbled 0, 1 or 2 times in a 6 week span. These tumbling disturbances lasted only 30 seconds. The recovery of the macroinvertebrates was monitored.Most taxa showed major reductions in population density immediately following the disturbance. The percent reduction of a given taxon in disturbed vs. control patches ranged from 21.4–95%. Recovery to near normal population levels was achieved in about four weeks. A second disturbance caused similar population reductions as the first one, and delayed the recovery.The macroinvertebrate community in cobbles was demonstrated to be resilient in that populations quickly regained their predisturbance densities. Rare taxa did not selectively colonize disturbed patches. The implications of these findings for the intermediate disturbance hypothesis and the structure of stream communities is discussed. Disturbance is a major determinant of lotic community structure and species diversity.  相似文献   

9.
Patch based predation in a southern Appalachian stream   总被引:1,自引:0,他引:1  
Streams are characterized by high degrees of patchiness that could influence the role of predators in these systems. Here we assess the impact of predatory benthic fishes on benthic macroinvertebrate density, biomass, and community structure at the patch scale in a fourth order stream in the southern Appalachians. We tested the role of predation in two different patch types: patches inhabited by adult mottled sculpin ( Cottus bairdi ) and random patches. We placed 30 basket pairs (one open to fish predation, and one from which fish predators were excluded) in the streambed at each patch type. We also tested for potential basket effects by setting up a basket control area. Although there was some evidence of basket artifacts on macroinvertebrate density in sculpin patches, these artifacts were not consistent and we do not feel that they affected our results because predators did not affect macroinvertebrate density. In random patches, predation did not significantly affect macroinvertebrate density or biomass. Predators significantly reduced macroinvertebrate biomass in sculpin patches but did not affect prey density. When the data-set was size-limited to exclude macroinvertebrates too large for consumption by sculpin, macroinvertebrate biomass did not differ significantly between exclusion and open baskets. This suggests that sculpin can reduce macroinvertebrate biomass through a combination of consumption and by predator-induced emigration of large macroinvertebrates into areas that are protected from sculpin. In addition, invertebrate predator biomass was higher in predator exclusion baskets in sculpin patches indicating that predation pressure remained high in the exclusion baskets despite fish exclusion. These results illustrate the heterogeneity of streams and the effect of small-scale differences (e.g. location of predators' territories) on local processes. Experiments that utilize these differences can provide insights into these stream processes.  相似文献   

10.
Twenty-five patches (1 m2) of natural stream substratum in the Acheron River, Victoria, were physically disturbed by kicking and raking during winter 1986 and summer 1987. The macroinvertebrate composition of these disturbed patches was examined at various times over the following 71 days, and compared with adjacent undisturbed control patches sampled concurrently. The disturbance did not alter the particle-size distribution (> 150 μm) of the disturbed patches. Organic material was reduced in the disturbed patches by about 70% in each season, but returned to control levels within 21 days in winter and 8 days in summer. The total number of species, and the density of species and individuals were all significantly reduced by the disturbance. Recovery of species density was complete after 21 days during winter and 8 days during summer, and the density of individuals recovered after 71 days during winter and 8 days during summer. The differences were due to the slower colonization rate of Chironomidae in winter, either because of a lower drift rate, or a slower recovery of detritus in winter. Individual species showed variations in colonization patterns, most increasing steadily at various rates, with some declining after an initial rapid increase (e.g. Baetis pp.). In the latter case, the density changes were mirrored in the control patches, emphasizing the need to take control samples concurrently with experimental samples. In each season, the species remaining immediately following the disturbance, and those subsequently colonizing the disturbed patches were in the same rank order (Spearman Rank correlation) as their occurrence in the control patches, suggesting that no taxa were differentially affected by the treatment. No evidence was found to allow the application of the Intermediate Disturbance Hypothesis to explain species diversity at the scale of this study. It appears that current hypotheses developed to explain the relationship between diversity and disturbance in sessile communities do not apply to highly mobile communities in streams.  相似文献   

11.
1. The hyporheic zone has long been regarded as a potential refugium for lotic invertebrates during disturbance. However, there have been few attempts to quantify the stability of this habitat during high flow events. In a New Zealand stream with an unstable bed, the present authors monitored spatial patterns of scour and fill in a riffle in a wide flood plain and at two sites in a constrained reach: a pool-riffle with bedrock outcrops and a plane-bed (a bedform characterized by long stretches of planar stream bed). 2. At each 20-m site, 100 scour chains were installed in a systematic grid with about 1 m between chains. Scour was measured by comparing the length of chain exposed before and after a high flow event, whereas filling depth was equivalent to the thickness of the sediment deposited on top of the chains during the event. For each chain, the present authors noted dominant particle size and degree of packing of the surrounding bed, water depth and presence or absence of large stones upstream. Chains were re-located after four smaller spates, one intermediate event and one large flood. 3. Most events caused a complex mosaic of bed patches which experienced scour, fill or remained undisturbed. These patterns, which were mostly site- and event-specific, were often significantly influenced by the longitudinal or lateral position of the chains in the spatial grids. 4. The cumulative effect of the six high flow events differed substantially between sites. The first site experienced predominantly scour, the second both scour and fill, and the third almost exclusively fill. These differences were partly explained by channel geomorphology. The bedrock outcrops at the constrained pool-riffle site forced the flow at high discharge, causing deep scour in these areas, whereas a backwater effect at the third site reduced near-bottom shear stress during larger events and led to sediment deposition. 5. Except for a single event at the second site, scour affected mainly the uppermost 10–15 cm of the stream bed. Therefore, almost the entire hyporheic zone below this depth would have been available as refugium for invertebrates, in addition to the often consider-able number of bed patches which remained undisturbed during the six high flow events. 6. Fill without earlier scour during the same high flow event was common at all sites. Most previous studies have assumed that lotic invertebrates are mainly affected by scour during high flow events, but the consequences of sediment deposition may be just as far reaching.  相似文献   

12.
Disturbance is integral to the organisation of riverine ecosystems. Fluctuating low flows caused by supra-seasonal drought and water management periodically dewater habitat patches, potentially creating heterogeneity in the taxonomic composition and successional dynamics of benthic communities. The frequency of disturbance induced by low flows is contingent upon the topography of the river bed and thus varies among patches. We investigated whether the frequency of patch dewatering influenced the structure and temporal dynamics of benthic algal communities attached to the upper surfaces of stones in stream mesocosms (4 m2). In a 693-day disturbance experiment, we applied short dewatering disturbances (6 days) at high (33-day cycles) and low frequencies (99-day cycles) and compared algal assemblages with undisturbed controls at 21 endpoints. In the absence of disturbance, epilithic space was dominated by the green encrusting alga Gongrosira incrustans. However, drying disturbances consistently reduced the dominance of the green alga, and crust abundance decreased with increasing disturbance frequency, thereby opening space for a diversity of mat-forming diatoms. The response of mat diatoms to disturbance varied markedly during the experiment, from strong reductions in the abundance of loosely attached mats in mid-late 2000 to the exploitation of open space by closely adhering mats in 2001. Contrary responses were attributed to changes in the species composition of mat diatoms, which influenced the physiognomy and hence stress-resistance and resilience of the assemblage. Our results indicate that patchy dewatering of habitat patches during periods of low flow influences the successional dynamics of algae, thereby creating distinctive mosaics on the stream bed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
  • 1 The physical characteristics of two contrasting streams, and habitat types within these streams, are described in terms of a two-dimensional physical habitat templet in which disturbance frequency and the availability of spatial refugia are the temporal and spatial axes.
  • 2 It is predicted that habitats experiencing a high disturbance frequency and low refuge availability will be characterized by a low invertebrate species diversity, a low biomass of epilithic algae and particulate organic matter and a community made up of mobile, weedy species. Habitats having a low disturbance frequency and high refuge availability will be characterized by a diverse community containing sedentary and specialist species, with high algal and particulate organic matter levels.
  • 3 A lower median substrate particle size and higher shear stress regime in Timber Creek were indicative of a higher disturbance frequency than in the Kyeburn. Substrate diversity was lower in Timber Creek than in the Kyeburn and indicated that the availability of refugia was lower in Timber Creek. In both streams, pools were found to have a higher disturbance frequency and lower availability of refugia than riffles.
  • 4 Invertebrate species diversity, the biomass of epilithic algae and particulate organic matter and the representation of sedentary species, filter feeders and shredders were higher in the more temporally stable and spatially heterogeneous Kyeburn. The community of Timber Creek, frequently disturbed and having low refuge availability, had a high proportion of mobile and weedy species, with the highly mobile, generalist-feeding Deleatidium spp. (Ephemeroptera; Leptophlebiidae) being the most dominant organisms.
  • 5 The predictions made about stream community structure and species characteristics in relation to disturbance frequency and the availability of spatial refugia are generally supported. Now a larger scale investigation is required to test the generality of the predictions. We conclude that the habitat templet approach offers a sound framework within which to pose questions in stream ecology.
  相似文献   

14.
1. Although the crucial point of disturbance experiments in streams is the extent to which they can simulate an actual spate, this aspect has been widely neglected in the design of such studies. Similarly, the influence of the specific hydrological disturbance regime of a stream on its benthic community has received much theoretical attention in recent years, but hypotheses have rarely been tested in the field. 2. Our field experiment compared the structure of the benthic invertebrate community in the prealpine River Necker in north-eastern Switzerland with predictions of the patch dynamics concept about the faunal composition of frequently disturbed streams. We also compared the resistance and resilience of the invertebrates between two sites in the River Necker. A similar substratum composition at both sites, but higher shear stress values both at baseflow and bankfull discharge at site 2, implied a higher disturbance frequency at the latter site. Five patches of stream bed of ≈ 9 m2 were disturbed by kicking and raking at each site, while five similar areas served as controls. From each plot, six Surber samples were taken: the first immediately after the disturbance, and the following five 1, 3, 6, 10 and 30 days later. 3. Resilience of the total benthic invertebrate fauna was high. The total number of individuals recovered to undisturbed densities within 30 days at site 1 and 6 days at site 2. Taxon richness recovered within 3 days. In accordance with theory, taxa with high recolonization rates made up a major percentage of the total number of individuals, especially in disturbed plots. However, this percentage was lower at site 2 in spite of the higher disturbance frequency at this site. Rhithrogena spp., Leuctra spp. and the Simuliidae recovered faster to undisturbed densities at site 2. In contrast, absolute recolonization rates of these taxa were higher at site 1, where total invertebrate densities were more than twice as high as at site 2. 4. Our results suggest that the time since the last disturbance should be considered as an important factor in studies of benthic invertebrate communities in prealpine rivers, because disturbances can alter the community structure. In frequently disturbed streams, very short sampling intervals may be needed to detect differences in taxon-specific colonization rates. The specific hydrological disturbance regime of such streams is also important, because even within-stream differences in the resilience of the benthic invertebrate community are possible.  相似文献   

15.
Nematomorph parasites manipulate crickets to enter streams where the parasites reproduce. These manipulated crickets become a substantial food subsidy for stream fishes. We used a field experiment to investigate how this subsidy affects the stream community and ecosystem function. When crickets were available, predatory fish ate fewer benthic invertebrates. The resulting release of the benthic invertebrate community from fish predation indirectly decreased the biomass of benthic algae and slightly increased leaf break-down rate. This is the first experimental demonstration that host manipulation by a parasite can reorganise a community and alter ecosystem function. Nematomorphs are common, and many other parasites have dramatic effects on host phenotypes, suggesting that similar effects of parasites on ecosystems might be widespread.  相似文献   

16.
1. Small cages (294cm2) containing unglazed clay quarry tiles were used to investigate the influence of periphytic algae on macroinvertebrate abundance in a Hong Kong stream. Algal biomass was manipulated by shading cages with plastic sheets. Individual cages were assigned to one of three treatment groups: unshaded, shaded and deeply shaded. Invertebrate densities and algal biomass within cages were monitored after 23, 37 and 65 days. 2. Multiple-regression analysis revealed that algal biomass, invertebrate morphospecies richness and total abundance declined with greater shading intensity. The responses of individual invertebrate taxa varied: some (especially Trichoptera) were unaffected by shading, whereas grazers (Baetidae, Psephenidae and Elmidae) declined as shading increased. 3. Significant regressions of the densities of individual taxa upon algal and detrital standing stocks in cages had positive slopes, but algal biomass increased during the study while detrital standing stocks declined. Abundance of invertebrates declined or remained rather stable over time. Density increases resulting from a positive association with algae were apparently offset by declines in abundance correlated with reductions in detritus. 4. Declines in algal biomass were associated with greater shading to which animals may respond directly. To uncouple the link between scarcity of algae and reduction of light intensity, the plastic covers on two groups of cages (deeply shaded and unshaded) which had been placed in the stream for 28 days were reversed so that cages which had been shaded became unshaded and vice versa. The cages were recovered on day 33, Only Coleoptera demonstrated a positive association with atgae inside cages; no relationship between population densities and algal biomass or light intensity was apparent for other taxa. However, the design may have been confounded by deposition of sediment in the cages (due to declining stream discharge) which reduced population densities of colonizers. 5. This study documents changes in invertebrate abundance and morphospecies richness in response periphyton and detritus standing stocks within patches. Summation of such responses may account for observed variations in benthic communities among Hong Kong streams which differ in the extent of shading by riparian vegetation.  相似文献   

17.
 The objective of this study was to determine if pond permanence and vertebrate predation (by fish and waterfowl) affect invertebrate community structure in the mudflat habitat of floodplain ponds. Invertebrate communities were studied for 1 year in four Mississippi River floodplain ponds with different hydroperiods. Pond 1 experienced five dry periods, pond 2 experienced four, pond 3 dried once, and standing water remained in pond 4 for the entire year. Vertebrate predator exclusion treatments (all access, no access, small-fish access and cage controls) were placed in all ponds. As pond duration increased, predatory invertebrate richness and abundance increased while overall invertebrate richness and abundance decreased. With the exception of the cladoceran Diaphanosoma, all commonly encountered taxa were strongly affected by pond permanence in terms of abundance, biomass and, generally, individual biomass. Taxa were nearly early divided between those that were more abundant in less permanent ponds and those that were more abundant in longer-duration ponds. Invertebrate taxa richness, abundance, and total biomass were lower in the all-access treatment than in the treatments that restricted predator access, and these effects were stronger in the more permanent ponds. In general, there were no significant differences in responses to the treatments with small-fish access and no access. These results support models that predict relatively weak effects of predation in frequently disturbed habitats. Received: 30 May 1995 / Accepted: 21 June 1996  相似文献   

18.
1. Disturbance is an important source of variability in species composition and diversity, but application of disturbance models is contingent upon a very good understanding of the spatial scales and frequencies of disturbance. Such information is particularly lacking from streams. In this study, we measured the disturbance levels of rocks (defined here as the proportion of the original sample disturbed after 6 months) of differing sizes and positions within the stream bed and looked at the variation between and within three upland streams. 2. Rocks were blazed with distinctive marks in situ and mapped using simple trigonometry and permanently marked points on the banks. Forty rocks were selected and marked completely at random, and a further sixty marked from random selections within three size classes (small, medium and large) crossed with two bed-packing classes (on top of the bed or packed into the bed). This sampling design was used at each of two sites (an upper, order 3 location and a lower, order 4 location separated by ≈ 8–16 km) on each of three rivers and in two periods during the year (a dry summer period and a wetter winter period) for a sample size of 1200 rocks in all. During summer, on-top rocks were removed from below the study sites and placed at random locations through the riffle after marking, to test whether human-placed rocks can provide estimates of natural disturbance levels. 3. Rocks were relocated and classified as disturbed (moved or buried) or not disturbed (found at the same location) after ≈ 6 months. Log-linear modelling revealed that human-placed rocks moved half as often as on-top rocks marked in situ. Overall, small rocks disappeared more frequently than medium ones, which disappeared more often than large ones, and rocks lying loosely on top of the bed were disturbed more often than those packed into the bed. There was no interaction between rock size and bed packing in their effects on disturbance and each of these factors affected disturbance levels in the same way at all six sites and in both seasons. During the summer, there were no differences between upper and lower sites, but disturbance was still relatively frequent and patchy in occurrence, with five of six sites showing significant spatial clumping of disturbed rocks. Disturbance levels were higher in the wetter, winter season than during the drier, summer season, but this was caused by a doubling of disturbance rates at all three lower sites, which also showed reduced (but, in two cases, still significant) levels of spatial aggregation. Disturbance levels at upper sites in winter were similar to summer rates, and the level of aggregation of disturbed rocks differed between sites. 4. The results obtained by this study suggest that disturbance levels should not be assessed using methods where rocks are placed in riffles. Disturbance models applied to rocky upland streams may need to heed differences seen at small scales (i.e. between individual rocks), as differences seen at these scales were a crucial source of variability and potentially as significant as variation between sites. However, small-scale differences in disturbance were expressed similarly in different locations. Potentially, the same disturbance model could be applied to all sites, with each of them sitting in different locations along common disturbance continua.  相似文献   

19.
1. We experimentally reduced densities of predatory fish in replicated 2 m2 areas of the littoral zone in two ponds to test whether density and biomass of invertebrates would respond to release from fish predation. The ponds are of similar size and in close proximity, but support different fish assemblages: bluegills ( Lepomis macrochirus Rafinesque) and largemouth bass ( Micropterus salmoides (Lacepede)) in one pond, and bluespotted sunfish ( Enneacanthus gloriosus (Holbrook)) and chain pickerel ( Esox niger Lesueur) in the other. Fish densities were reduced to less than 15% of ambient levels in both experiments.
2. In the bluegill–bass pond, density and biomass of most invertebrate taxa and size classes were unaffected by the fish manipulation. Total invertebrate densities did not differ significantly between fish treatments, but total invertebrate biomass was significantly greater where fish density was reduced, averaging 30% higher over the course of the study. Likewise, manipulation of fish in the bluespotted sunfish–pickerel pond had few significant effects on individual taxa and size classes. There were no significant effects on total invertebrate abundance in the bluespotted sunfish–pickerel pond.
3. Our results provide direct experimental evidence consistent with the collective evidence from previous work, suggesting that the impact of fish predation on density and biomass of invertebrate prey in littoral habitats is variable, but generally weak. Invertebrates that coexist successfully with fish in littoral systems probably are adept at taking advantage of refugia offered by the structurally complex physical environment.  相似文献   

20.
1. We experimentally reduced densities of predatory fish in replicated 2 m2 areas of the littoral zone in two ponds to test whether density and biomass of invertebrates would respond to release from fish predation. The ponds are of similar size and in close proximity, but support different fish assemblages: bluegills ( Lepomis macrochirus Rafinesque) and largemouth bass ( Micropterus salmoides (Lacepede)) in one pond, and bluespotted sunfish ( Enneacanthus gloriosus (Holbrook)) and chain pickerel ( Esox niger Lesueur) in the other. Fish densities were reduced to less than 15% of ambient levels in both experiments.
2. In the bluegill–bass pond, density and biomass of most invertebrate taxa and size classes were unaffected by the fish manipulation. Total invertebrate densities did not differ significantly between fish treatments, but total invertebrate biomass was significantly greater where fish density was reduced, averaging 30% higher over the course of the study. Likewise, manipulation of fish in the bluespotted sunfish–pickerel pond had few significant effects on individual taxa and size classes. There were no significant effects on total invertebrate abundance in the bluespotted sunfish–pickerel pond.
3. Our results provide direct experimental evidence consistent with the collective evidence from previous work, suggesting that the impact of fish predation on density and biomass of invertebrate prey in littoral habitats is variable, but generally weak. Invertebrates that coexist successfully with fish in littoral systems probably are adept at taking advantage of refugia offered by the structurally complex physical environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号