首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We examined genetic diversity and relationships among 24 cultivated and wild Amaranthus accessions using the total low-Cot DNA and five individual repetitive sequences as probes. These low-Cot DNA probes were obtained by the isolation of various classes of repetitive-DNA sequences, including satellites, minisatellites, microsatellites, rDNA, retrotransposon-like sequences, and other unidentified novel repetitive sequences. DNA fingerprints generated by different types of repetitive-DNA probes revealed different levels of polymorphism in the Amaranthus genomes. A repetitive sequence containing microsatellites was found to be a suitable probe for characterizing intraspecific accessions, whereas more conservative sequences (e.g. rDNA) were informative for resolving phylogenetic relationships among distantly related species.Genetic diversity, measured as restriction fragment length polymorphism (RFLP) and the similarity index at the low-Cot DNA level, was equally high among intraspecific accessions between the two species groups: grain amaranths (A. caudatus, A. cruentus, and A. hypochondriacus) and their putative wild progenitors (A. hybridus, A. powellii, and A. quitensis). At the interspecific level, however, the grain amaranth species are less divergent from each other than their wild progenitors. With the rare exceptions of certain A. caudatus accessions, grain amaranths were found to be closely related to A. hybridus. The results based on low-Cot DNA were comparable with previous RAPD and isozyme studies of the same set of species/accessions of Amaranthus, indicating that low-Cot DNA sequences are suitable probes for a fingerprinting analysis of plant germplasm diversity and for determining phylogenetic relationships. Received: 19 October 1998 / Accepted: 8 January 1999  相似文献   

2.
The most economically important group of species in the genus Amaranthus is the A. hybridus species complex, including three cultivated grain amaranths, A. cruentus, A. caudatus, and A. hypochondriacus, and their putative wild progenitors, A. hybridus, A. quitensis, and A. powellii. Taxonomic confusion exists among these closely related taxa. Internal transcribed spacer (ITS) of nuclear ribosomal DNA, amplified fragment length polymorphism (AFLP), and double-primer fluorescent intersimple sequence repeat (ISSR) were employed to reexamine the taxonomic status and phylogenetic relationships of grain amaranths and their wild relatives. Low ITS divergence in these taxa resulted in poorly resolved phylogeny. However, extensive polymorphisms exist at AFLP and ISSR loci both within and among species. In phylogenetic trees based on either AFLP or ISSR or the combined data sets, nearly all intraspecific accessions can be placed in their corresponding species clades, indicating that these taxa are well-separated species. The AFLP trees share many features in common with the ISSR trees, both showing a close relationship between A. caudatus and A. quitensis, placing A. hybridus in the same clade as all grain amaranths, and indicating that A. powellii is the most divergent taxon in the A. hybridus species complex. This study has demonstrated that both AFLP and double-primer fluorescent ISSR have a great potential for generating a large number of informative characters for phylogenetic analysis of closely related species, especially when ITS diversity is insufficient.  相似文献   

3.
Amaranths are an important group of plants and include grain, vegetable and ornamental types. Despite the economic importance of the amaranths, there is very little information available about the extent and nature of genetic diversity present in the genus Amaranthus at molecular level. We now report the randomly amplified polymorphic DNA (RAPD) profiles of different species of Amaranthus as well as different accessions of the species. These RAPD analyses have been carried out using 65 arbitrary sequence decamer primers. From the RAPD data, an UPGMA dendrogram illustrating the inter-as well as intra-species relationships has been computed. The putative hybrid origin of A.dubious from A. hybridus and A. spinosus is also ruled out by the RAPD data. The trends of species relationships amongst the amaranths determined by RAPDs is consistent with their cytogenetic and evolutionary relationships that have already been determined. NBRI Communication No:464 (N.S.).  相似文献   

4.
The present study reports isolation and characterization of 12 polymorphic microsatellite markers for Amaranthus hypochondriacus. A total of 92 alleles were detected across the 20 accessions, with an average of 7.7 alleles per locus. The observed (H O ) and expected (H E ) heterozygosity values ranged from 0 to 0.95 and from 0.49 to 0.92, respectively. At significance threshold (P < 0.05), nine loci deviated from Hardy-Weinberg equilibrium (HWE), whereas significant linkage disequilibria (LD) were observed between five pairs of loci. The 12 loci were successfully amplified in 18 other amaranth species representing cultivated grain and vegetable species, their putative progenitors and wild species. These results demonstrate wide potential applicability of these markers for the study of intra- and inter-specific genetic diversity as well as evolutionary relationships among cultivated and wild amaranths.  相似文献   

5.
The most economically important group of species in the genus Amaranthus is the A. hybridus species complex, including three cultivated grain amaranths, A. cruentus, A. caudatus, and A. hypochondriacus, and their putative wild progenitors, A. hybridus, A. quitensis, and A. powellii. Taxonomic confusion exists among these closely related taxa. Internal transcribed spacer (ITS) of nuclear ribosomal DNA, amplified fragment length polymorphism (AFLP), and double-primer fluorescent intersimple sequence repeat (ISSR) were employed to reexamine the taxonomic status and phylogenetic relationships of grain amaranths and their wild relatives. Low ITS divergence in these taxa resulted in poorly resolved phylogeny. However, extensive polymorphisms exist at AFLP and ISSR loci both within and among species. In phylogenetic trees based on either AFLP or ISSR or the combined data sets, nearly all intraspecific accessions can be placed in their corresponding species clades, indicating that these taxa are well-separated species. The AFLP trees share many features in common with the ISSR trees, both showing a close relationship between A. caudatus and A. quitensis, placing A. hybridus in the same clade as all grain amaranths, and indicating that A. powellii is the most divergent taxon in the A. hybridus species complex. This study has demonstrated that both AFLP and double-primer fluorescent ISSR have a great potential for generating a large number of informative characters for phylogenetic analysis of closely related species, especially when ITS diversity is insufficient.  相似文献   

6.
The domestication syndrome comprises phenotypic changes that differentiate crops from their wild ancestors. We compared the genomic variation and phenotypic differentiation of the two putative domestication traits seed size and seed colour of the grain amaranth Amaranthus caudatus, which is an ancient crop of South America, and its two close wild relatives and putative ancestors A. hybridus and A. quitensis. Genotyping 119 accessions of the three species from the Andean region using genotyping by sequencing (GBS) resulted in 9485 SNPs that revealed a strong genetic differentiation of cultivated A. caudatus from its two relatives. A. quitensis and A. hybridus accessions did not cluster by their species assignment but formed mixed groups according to their geographic origin in Ecuador and Peru, respectively. A. caudatus had a higher genetic diversity than its close relatives and shared a high proportion of polymorphisms with their wild relatives consistent with the absence of a strong bottleneck or a high level of recent gene flow. Genome sizes and seed sizes were not significantly different between A. caudatus and its relatives, although a genetically distinct group of A. caudatus from Bolivia had significantly larger seeds. We conclude that despite a long history of human cultivation and selection for white grain colour, A. caudatus shows a weak genomic and phenotypic domestication syndrome and proposes that it is an incompletely domesticated crop species either because of weak selection or high levels of gene flow from its sympatric close undomesticated relatives that counteracted the fixation of key domestication traits.  相似文献   

7.
Many neglected, underutilized species are extremely important for food production especially in Low Income Food Deficient Countries (LIFDCs). Grain amaranth is one of such crops originated and domesticated in different parts of American continent. Lack of knowledge on taxonomy and phylogenetic relationship with other related crops, analysis of the extent and distribution of genetic diversity together with work on local and traditional knowledge, are the main constrains for genetic improvement of neglected, underutilized and crop related wild species. The phylogenetic relationship and taxonomic delimitation in genus Amaranthus are still not resolved with extreme clarity. But classification of the genus Amaranthus into three subgenera viz., Acnida, Amaranthus and Albersia, based on morphological parameters is quite acceptable. Phylogenetic analysis revealed clear separation of vegetable and grain amaranths. The derivation of grain and vegetable amaranths represent two lines of descent from weed progenitor. Amaranthus hybridus L. along with grain amaranths supposed to have formed a complex in which taxonomic problems are far from being clarified, especially because of apparent common hybridization and misapplication of nomenclature. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In order to determine the pattern of genetic diversity within and among the species of Cicer and to estimate interspecific genetic relationships, allelic variation was assayed for 23 isozyme loci in 63 accessions of 11 species of Cicer using starch gel electrophoresis. The total allozymic variation observed in the genus (H t )was equal to 0.60. When partitioned (G st), 96% of this allelic diversity was found among rather than within species. The allelic diversity among species (D st)and allelic diversity within species (H s)were equal to 0.58 and 0.02, respectively. Cicer reticulatum and C. pinnatifidum had the highest proportion of polymorphic loci (17.39%) and the highest mean number of alleles per locus (1.22 and 1.17, respectively). UPGMA cluster analysis of Nei's unbiased genetic distance revealed four genetic groups. One includes C. reticulatum, C. arietinum and C. echino spermum where the first 2 species represent a putative derivative-progenitor pair. A second cluster contains C. bijugum, C. pinnatifidum and C. judaicum. Cicer yamashitae, C. chorassanicum, C. anatolicum and C. songoricum form a third group. Finally, C. cuneatum, which has a very distinct isozyme profile and peculiar morphological features, is the only member of a fourth species group. This species grouping agrees partially with those obtained from crossability and cytogenetic studies. The results suggest that the annual habit arose from perennial progenitors at least twice in the genus Cicer.  相似文献   

9.
Isozyme polymorphism and phylogenetic interpretations in the genus Cicer L.   总被引:2,自引:0,他引:2  
Summary Allozyme variation among 50 accessions representing the cultivated chickpea (Cicer arietinum L.) and eight wild annual Cicer species was scored and used to assess genetic diversity and phylogeny. Sixteen enzyme systems revealed 22 putative and scorable loci of which 21 showed polymorphism. Variation was prevalent between species (Dst = 0.510) but not within species (Hs = 0.050). No variation for isozyme loci was detected in the cultivated chickpea accessions. Cicer reticulatum had the highest proportion of polymorphic loci (0.59) while the loci Adh-2 and Lap were the most polymorphic over all the species accessions. The phylogeny of annual Cicer species, as determined by allozyme data, generally corroborated those based on other characters in previous studies. Cicer arietinum, C. reticulatum and C. echinospermum formed one cluster, while C. pinnatifidum, C. bijugum and C. judaicum formed another cluster. Cicer chorassanicum was grouped with C. yamashitae, whereas C. cuneatum formed an independent group and showed the largest genetic distance from C. arietinum.  相似文献   

10.
Twenty-six accessions of wildArachis species and domesticated peanuts,A. hypogaea, introduced from South America were analyzed for random amplified polymorphic DNA (RAPD). The objective of the study was to investigate inter- and intraspecific variation and affinities among species of sect.Arachis which have been proposed as possible progenitors for the domesticated peanut. Ten primers resolved 132 DNA bands which were useful for separating species and accessions. The most variation was observed among accessions ofA. cardenasii andA. glandulifera whereas the least amount of variation was observed inA. hypogaea andA. monticola. The two tetraploid species could not be separated by using RAPDs.Arachis duranensis was most closely related to the domesticated peanut and is believed to be the donor of the A genome. The data indicated thatA. batizocoi, a species previously hypothesized to contribute the B genome toA. hypogaea, was not involved in its evolution. The investigation showed that RAPDs can be used to analyze both inter- and intraspecific variation in peanut species. Southern hybridization of RAPD probes to blots containing RAPD of theArachis species provided information on genomic relationships and revealed the repetitive nature of the amplified DNA.  相似文献   

11.
In order to estimate genetic relationships of the AA-genome Oryza species, RAPD and SSR analyses were performed with 45 accessions, including 13 cultivated varieties (eight Oryza sativa and five Oryza glaberrima) and 32 wild accessions (nine Oryza rufipogon, seven Oryza nivara, three Oryza glumaepatula, four Oryza longistaminata, six Oryza barthii, and three Oryza meridionalis). A total of 181 clear and repeatable bands were amplified from 27 selected RAPD primers, and 101 alleles were detected from 29 SSR primer pairs. The dendrogram constructed using UPGMA from a genetic-similarity matrix based on the RAPD data supported the clustering of distinct five groups with a few exceptions: O. rufipogon/O. nivara/O. meridionalis, O. barthii/O. glaberrima, O. glumaepatula, O. sativa and O. longistaminata. The dendrogram based on the SSR analysis showed a more-complicated genetic variation pattern, but the O. longistaminata and O. barthii/O. glaberrima accessions were consistently separated from all other accessions, indicating significant differentiation of the African AA-genome Oryza species. For accessions in the O. rufipogon/O. nivara/O. sativa complex, it is apparent that geographical isolation has played an important role in differentiation of the Asian AA-genome Oryza taxa. It is also demonstrated from this study that both RAPD and SSR analyses are powerful methods for detecting polymorphisms among the different AA-genome Oryza accessions. However, the RAPD analysis provides a more-informative result in terms of the overall genetic relationships at the species level compared to the SSR analysis. The SSR analysis effectively reveals diminutive variation among accessions or individuals within the same species, given approximately the same number of primers or primer-pairs used in the studies.Communicated by Q. Zhang  相似文献   

12.
Genetic diversity amongst 91 upland cotton accessions (50 maintainer, ‘B’ and 41 restorer ‘R’ lines) and three wild species viz., G. aridum, G. thurberi and G. anomalum was analyzed using SSR and RAPD markers. A total of 53 primers (30 SSR and 23 RAPD) were sampled for screening 94 accessions, of which 26 SSR and 17 RAPD primers were polymorphic. Average polymorphism detected by SSR, RAPD and SSR + RAPD markers was 72.5, 62 and 66.66 per cent, respectively. A unique marker CIR-200260 that distinguishes G. thurberi from all upland accessions has been identified. Similarity coefficient values within and between B and R lines ranged from 0.65–0.95, 0.61–0.98 and 0.53–0.93 for SSR and 0.72–0.98, 0.73–0.97 and 0.69–0.98 for RAPD markers. UPGMA cluster analysis was consistent with the pedigree and genotypic background of the accessions. RAPD and SSR matrices showed significant positive product moment correlation (r?=?0.93 and 0.92) with the RAPD + SSR combined data matrix, respectively. The result indicates a moderate level of genetic diversity in B and R accessions of upland cotton. Genetically diverse combinations were identified to further evaluate heterotic performance. The maintainer, AKH-108, AKH-118 and AKH-2173; and restorer AKH-31 and AKH 4943 accession were identified as most distinct and divergent, could be used as candidate parental genotypes in hybrid and varietal development programme and also development of mapping population for trait mapping in cotton.  相似文献   

13.
Genetic variability among 26 accessions of Porteresia coarctata, a salt tolerant wild rice, was estimated by morphological, isozyme and RAPD marker analyses, and the data sets compared. Variations in six morphological traits and six isozymes revealed diversity among accessions. A total number of 99 bands were generated by 18 RAPD primers of which 46 were polymorphic. Maximum diversity was observed in accessions collected from Orissa followed by that of Goa, Maharashtra and Pichavaram. Genetic similarities generated using Jaccard’s index was used for comparisons. The diversity estimated by RAPD was higher at intra-site level. The information on the extent of genetic diversity and ecotypic differentiation will guide efficient utilisation of this important wild species.  相似文献   

14.
AFLP analysis of relationships among cassava and other Manihot species   总被引:4,自引:0,他引:4  
 Despite the worldwide importance of cultivated cassava (M. esculenta Crantz) its origin and taxonomic relationships with other species in the genus have not been clearly established. We evaluated a representative sample of the crop’s diversity and six wild taxa with AFLPs to estimate genetic relationships within the genus. Groupings of accessions of each species by data analysis corresponded largely with their previous taxonomic classifications. A mixed group, consisting of Manihot esculenta subsp. flabellifolia and M. esculenta subsp. peruviana, was most similar to cassava, while M. aesculifolia, M. brachyloba, and M. carthaginensis were more distant. Species-specific markers, which may be useful in germ-plasm classification or introgression studies, were suggested by the unique presence of AFLP products in samples of each of the three wild species. Heterogeneity of similarities among individuals of certain species suggested the existence of intraspecific gene pools, a hypothesis that was supported by morphological or ecogeographic evidence with varying degrees of success. Quantitative assessment of genetic diversity revealed greater homogeneity among cassava accessions than among itsclosest wild relatives. The demonstration of unique genetic diversity in the two M. esculenta subspecies and their genetic similarity to the crop supports the hypothesis that these materials may be the ancestors of cassava. Received: 4 November 1996 / Accepted: 20 December 1996  相似文献   

15.
In this study, inter-simple sequence repeats (ISSR) ans simple sequence repeat (SSR) markers were used to investigate genetic diversity of 27 mulberry accessions including 19 cultivated accessions (six M. multicaulis, three M. alba, two M. atropurpurea, two M. bombycis, one M. australis, two M. rotundiloba, one M. alba var. pendula, one M. alba var. macrophylla, and one M. alba var. venose) and 8 wild accessions (two M. cathayana, two M. laevigata, two M. wittiorum, one M. nigra and one M. mongolica). ISSRs and SSRs were compared in terms of their informativeness and efficiency in a study of genetic diversity and relationships among 27 mulberry genotypes. SSRs presented a higher level of polymorphism and greater information content. All index values of genetic diversity both markers analyzed using Popgene 32 software indicated that within wild species had higher genetic diversity than within cultivated species. Cultivation may caused the lose of genetic diversity of mulberry compared with wild species revealed by ISSR and SSR markers. The mean genetic similarity coefficients among all mulberry genotypes ascribed by ISSR and SSR matrices were 0.7677 and 0.6131, respectively. For all markers a high similarity in dendrogram topologies was obtained although some differences were observed. Cluster analysis of ISSR and SSR using UPGMA method revealed that the wild species are genetically distant from the domesticated species studied here. The correlation coefficients of similarity were statistically significant for both marker systems used. Principal coordinates analysis (PCA) for ISSR and SSR data also supports their UPGMA clustering. These results have an important implication for mulberry germplasm characterization, improvement, molecular systematics and conservation.  相似文献   

16.
Relationships among cultivated and wild lentils revealed by RAPD analysis   总被引:5,自引:0,他引:5  
RAPD markers were used to distinguish between six different Lens taxa, representing cultivated lentil and its wild relatives. Twenty-four arbitrary sequence 10-mer primers were identified which revealed robust and easily interpretable amplification-product profiles. These generated a total of 88 polymorphic bands in 54 accessions and were used to partition variation within and among Lens taxa. The data showed that, of the taxa examined, ssp. orientalis is most similar to cultivated lentil. L. ervoides was the most divergent wild taxon followed by L. nigricans. The genetic similarity between the latter two species was of the same magnitude as between ssp. orientalis and cultivated lentil. In addition, species-diagnostic amplification products specific to L. odemensis, L. ervoides and L. nigricans were identified. These results correspond well with previous isozyme and RFLP studies. RAPDs, however, appear to provide a greater degree of resolution at a sub-species level. The level of variation detected within cultivated lentils suggests that RAPD markers may be an appropriate technology for the construction of genetic linkage maps between closely related Lens accessions.On sabbatical leave from HP Agricultural University, Palampur 176 062, India  相似文献   

17.
 Effects of gene bank seed-increases on the genetic integrity of potato germ plasm is a major concern of gene bank managers. Thus the Association of Potato Inter-gene-bank Collaborators (APIC), a consortium of world potato gene bank leaders, initiated this joint research project using RAPD markers to determine genetic relationships between increased generations within accessions. Solanum jamesii (2n=2x=24) and S. fendleri (2n=4x=48), two wild potato species native to North America, were used as plant material. These species represented two major breeding systems found among Solanum species: outcrossing diploids and inbreeding disomic tetraploids, respectively. Comparisons were made between populations one generation apart and between sister populations generated from a common source. Fourteen such comparisons within S. jamesii accessions had an average similarity of 96.3%, and 21 such comparisons within S. fendleri accessions had an average similarity of 96.0%. No pairs of populations were significantly different, despite the fact that RAPD markers easily separated all of these very similar accessions within their respective species. Only one of six S. jamesii accessions analyzed showed a significant change in gene frequencies among generations. These findings indicate that there has been minimal loss or change of genetic diversity in ex situ germplasm using the gene bank techniques standard at NRSP-6 and other world potato gene banks. Received: 28 October 1996 / Accepted: 7 March 1997  相似文献   

18.
AFLP markers were used to assess genetic relationships among Cicer species with distribution in Turkey. Genetic distances were computed among 47 Cicer accessions representing four perennial and six annual species including chickpea, using 306 positions on AFLP gels. AFLP-based grouping of species revealed two clusters, one of which includes three perennial species, Cicer montbretii, Cicer isauricum and Cicer anatolicum, while the other cluster consists of two subclusters, one including one perennial, Cicer incisum, along with three annuals from the second crossability group (Cicer pinnatifidum, Cicer judaicum and Cicer bijugum) and the other one comprising three annuals from the first crossability group (Cicer echinospermum, Cicer reticulatum and Cicer arietinum). Consistent with previous relationship studies in the same accession set using allozyme and RAPD markers, in AFLP-based relationships, C. incisum was the closest perennial to nearly all annuals, and C. reticulatum was the closest wild species to C. arietinum. Cluster analysis revealed the grouping of all accessions into their distinct species-clusters except for C. reticulatum accessions, ILWC247, ILWC242 and TR54961; the former was found to be closer to the C. arietinum accessions while the latter two clustered with the C. echinospermum group. Small genetic distance values were detected among C. reticulatum accessions (0.282) and between C. reticulatum and C. arietinum (0.301) indicating a close genetic similarity between these two species. Overall, the AFLP-based genetic relationships among accessions and species were congruous with our previous study of genetic relationships using allozymes. The computed level of AFLP variation and its distribution into within and between Cicer species paralleled the previous report based on RAPD analyses. AFLP analysis also confirmed the presence of the closest wild relatives and previous projections of the origin of chickpea in southern Turkey. Results presented in this report indicate that AFLP analysis is an efficient and reliable marker technology in determination of genetic variation and relationships in the genus Cicer. Obviously, the use of AFLP fingerprinting in constructing a detailed genetic map of chickpea and cloning, and characterizing economically important traits would be promising as well.Communicated by P. Langridge  相似文献   

19.
Summary Fifty-six accessions of cultivated and wild sorghum were surveyed for genetic diversity using 50 low-copy-number nuclear DNA sequence probes to detect restriction fragment length polymorphisms (RFLPs). These probes revealed greater genetic diversity in wild sorghum than in cultivated sorghum, including a larger number of alleles per locus and a greater portion of polymorphic loci in wild sorghum. In comparison to previously published isozyme analyses of the same accessions, RFLP analysis reveals a greater number of alleles per locus. Furthermore, many RFLP alleles have frequencies between 0.25–0.75, while the vast majority of isozyme alleles are either rare (< 0.25) or near fixation (> 0.75). Correlations between genetic and geographic distances among the accessions were stronger when calculated with RFLP than with isozyme data. Systematic relationships revealed by nuclear and chloroplast restriction site analysis indicate that cultivated sorghum is derived from the wild ssp. arundinaceum. The portion of the wild gene pool most genetically similar to the cultivars is from central-northeastern Africa. Previous published data also suggested that this is most likely the principal area of domestication of sorghum. Introgression between wild and cultivated sorghum was inferred from disconcordant relationships shown by nuclear and chloroplast DNA markers. Introgression apparently occurs infrequently enough that the crop and its wild relatives maintain distinct genetic constitutions.  相似文献   

20.
Three species ofAmaranthusare cultivated for their edible seeds:A. hypochondriacus L.,A. cruentusL., andA. caudatusL. The first two are native to Mexico and Guatemala, while the third originated in the Andes. Some authors recognize a fourth species,A. MantegazzianusPass. (A. edulisSpeg.), also from South America. Recent interest in amaranths as crops for improving Third World nutrition makes studies of relationships among amaranth species and intraspecific variation important. The weedy speciesA. hybridus L. (A. quitensisHBK) has been suggested as the progenitor ofA. caudatus, and it appears to be the closest wild relative of the crop. However, discovery of semidomesticated, darkseeded amaranths in Ecuador that are referable toA. caudatusraises some questions. The dark-seeded plants might represent a transitional form between the crop and its weedy progenitor, the product of independent selection of special forms ofA. hybridus, the result of introgressive hybridization between the crop and related weed, established escapes from cultivation, or remnants of the ancestor of the crop which may have been simply wildA. caudatusand notA. hybridus. Detailed morphological comparisons have been made among cultivated forms ofA. caudatus, the semidomesticate, andA. hybridus. Genetic data have been considered, and 2 mixed populations includingA. hybridusand the semidomesticate have been examined. Although all the other hypotheses cannot be eliminated, the dark-seededA. caudatusplants seem most likely to represent escapes from cultivation. Separate recognition ofA. Mantegazzianusdoes not seem warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号