首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
We have observed that levels of the antioxidant glutathione (GSH) and protein levels of the catalytic and modifier subunits of the rate-limiting enzyme in GSH synthesis, GCLc and GCLm, increase in immature rat ovaries after treatment with gonadotropin. The goals of the present studies were to delineate the time course and intraovarian localization of changes in GSH and GCL after pregnant mare's serum gonadotropin (PMSG) and after an ovulatory gonadotropin stimulus. Twenty-four hours after PMSG, there was a shift from predominantly granulosa cell expression of gclm mRNA, and to a lesser extent gclc, to predominantly theca cell expression. GCLc immunostaining increased in granulosa and theca cells and in interstitial cells. Next, prepubertal female rats were primed with PMSG, followed 48 h later by 10 IU of hCG. GCLm protein and mRNA levels increased dramatically from 0 to 4 h after hCG and then declined rapidly. There was minimal change in GCLc. The increase in gclm mRNA expression was localized mainly to granulosa and theca cells of preovulatory follicles. To verify that GCL responds similarly to an endogenous preovulatory gonadotropin surge, we quantified ovarian GCL mRNA levels during the periovulatory period in adult rats. gclm mRNA levels increased after the gonadotropin surge on proestrus and then declined rapidly. Finally, we assessed the effects of gonadotropin on ovarian GCL enzymatic activity. GCL enzymatic activity increased significantly at 48 h after PMSG injection and did not increase further after hCG. These results demonstrate that gonadotropins regulate follicular GCL expression in a follicle stage-dependent manner and in a GCL subunit-dependent manner.  相似文献   

6.
Proteinases and their inhibitors control follicular connective tissue remodeling associated with follicular rupture. We examined the regulation and cellular localization of plasminogen activator inhibitor type-1 (PAI-1) and tissue inhibitor of metalloproteinase type-1 (TIMP-1) mRNAs by in situ hybridization. [35S]UTP-labeled RNA probes were hybridized to ovarian sections of eCG-primed immature rats treated with hCG. Before hCG stimulation of ovulation, very low expression of PAI-1 mRNA was observed in theca cells. After hCG administration, expression of PAI-1 mRNA was increased in theca cells of most antral follicles, whereas expression in granulosa cells was limited to preovulatory follicles and only to areas where the basal membrane was dissociated. Before hCG treatment, low expression of TIMP-1 mRNA was observed in theca cells, but not in granulosa cells. After hCG treatment, TIMP-1 mRNA was greatly stimulated in theca cells irrespective of follicle size, while the expression in granulosa cells was limited to large antral follicles. The present study demonstrates cell-specific expression of PAI-1 and TIMP-1 mRNAs in the LH/hCG-stimulated ovary, thus confirming the localized control of preovulatory proteolysis by coexpression of both enzymes and their respective inhibitors.  相似文献   

7.
Cyclic GMP (cGMP)-dependent protein kinase II (Prkg2, cGK II) was identified as a potential target of the progesterone receptor (Nr3c3) in the mouse ovary based on microarray analyses. To document this further, the expression patterns of cGK II and other components of the cGMP signaling pathway were analyzed during follicular development and ovulation using the pregnant mare serum gonadotropin (PMSG)-human chorionic gonadotropin (hCG)-primed immature mice. Levels of cGK II mRNA were low in ovaries of immature mice, increased 4-fold in response to pregnant mare serum gonadotropin and 5-fold more within 12 h after hCG, the time of ovulation. In situ hybridization localized cGK II mRNA to granulosa cells and cumulus oocyte complexes of periovulatory follicles. In progesterone receptor (PR) null mice, cGK II mRNA was reduced significantly at 12 h after hCG in contrast to heterozygous littermates. In primary granulosa cell cultures, cGK II mRNA was induced by phorbol 12-myristate 13-acetate enhanced by adenoviral expression of PR-A and blocked by RU486 and trilostane. PR-A in the absence of phorbol 12-myristate 13-acetate was insufficient to induce cGK II. Expression of cGK I (Prkg1) was restricted to the residual tissue and not regulated by hormones. Guanylate cyclase-A (Npr1; GC-A) mRNA expression increased 6-fold by 4 h after hCG treatment in contrast to pregnant mare serum gonadotropin alone and was localized to granulosa cells of preovulatory follicles. Collectively, these data show for the first time that cGK II (not cGK I) and GC-A are selectively induced in granulosa cells of preovulatory follicles by LH- and PR-dependent mechanisms, thereby providing a pathway for cGMP function during ovulation.  相似文献   

8.
Almost all ovarian follicles undergo atresia during follicular development. However, the number of corpora lutea roughly equals the number of preovulatory follicles in the ovary. Because apoptosis is the cellular mechanism behind follicle and luteal cell demise, this suggests a change in apoptosis susceptibility during the periovulatory period. Sex steroids are important regulators of follicular cell survival and apoptosis. The aim of the present work was to study the role of progesterone receptor-mediated effects in the regulation of granulosa cell apoptosis. The levels of internucleosomal DNA fragmentation were evaluated in rat granulosa cells before and after induction of the nuclear progesterone receptor, using hCG treatment to eCG-primed rats to mimic the naturally occurring LH surge. Granulosa cells isolated from hCG-treated rats showed a several-fold increase in the expression of progesterone receptor mRNA and a 47% decrease (P < 0.01) in DNA fragmentation after 24 h incubation in serum-free medium compared to granulosa cells isolated from rats treated with eCG only. The effect of hCG treatment in vivo was dose-dependently reversed in vitro by addition of antiprogestins (Org 31710 or RU 486) to the culture medium, demonstrated by increased DNA fragmentation as well as increased caspase-3 activity. Addition of antiprogestins to granulosa cells isolated from immature or eCG-treated rats did not result in increased DNA fragmentation. The results suggest that progesterone receptor-mediated effects are involved in regulating the susceptibility to apoptosis in LH receptor-stimulated preovulatory rat granulosa cells.  相似文献   

9.
In addition to its role in blood coagulation, thrombin directly stimulates protease-activated receptors (PAR) or interacts with thrombomodulin (THBD) to activate membrane-bound protein C which stimulates PAR1 and PAR4 receptors to promote downstream pleiotropic effects. Our DNA microarray, RT-PCR, and immunostaining analyses demonstrated ovarian expression of THBD, activated protein C (APC) receptor [endothelial protein C receptor (EPCR)], as well as PAR1 and PAR4 receptors in mice. After treatment of gonadotropin-primed immature mice with an ovulatory dose of human chorionic gonadotropin (hCG) (a LH surrogate), major increases in the expression of THBD, EPCR, PAR1, and PAR4 were detected in granulosa and cumulus cells of preovulatory follicles. Immunoassay analyses demonstrated sustained increases in ovarian prothrombin and APC levels after hCG stimulation. We obtained luteinizing granulosa cells from mice treated sequentially with equine CG and hCG. Treatment of these cells with thrombin or agonists for PAR1 or PAR4 decreased basal and forskolin-induced cAMP biosynthesis and suppressed hCG-stimulated progesterone production. In cultured preovulatory follicles, treatment with hirudin (a thrombin antagonist) and SCH79797 (a PAR1 antagonist) augmented hCG-stimulated progesterone biosynthesis, suggesting a suppressive role of endogenous thrombin in steroidogenesis. Furthermore, intrabursal injection with hirudin or SCH79797 led to ipsilateral increases in ovarian progesterone content. Our findings demonstrated increased ovarian expression of key components of the thrombin-APC-PAR1/4 signaling system after LH/hCG stimulation, and this signaling pathway may allow optimal luteinization of preovulatory follicles. In addition to assessing the role of thrombin and associated genes in progesterone production by the periovulatory ovary, these findings provide a model with which to study molecular mechanisms underlying thrombin-APC-PAR1/4 signaling.  相似文献   

10.
Summary The observation that tissue-type plasminogen activator (tPA) activity increased dramatically in preovulatory follicles has led to the hypothesis that plasminogen activation is causally related to follicle rupture. With immunohistochemistry, we have studied the appearance of tPA in ovaries of immature rats induced to ovulate and in adult cycling rats. Treatment of immature female rats with a single dose of pregnant mare serum gonadotropin (PMSG) induced follicular maturation. A subsequent human chorionic gonadotropin (hCG) injection resulted in follicle rupture 12–14 h later. PMSG treatment alone did not induce appearance of tPA-immunoreactive cells in any ovarian compartment. After hCG stimulation, however, theca cells, granulosa cells, and oocytes of pre- and postovulatory follicles displayed distinct tPA immunoreactivity. Fibroblastlike cells in the theca layers and tunica albuginea of the follicle apex also demonstrated localized cytoplasmic tPA reactivity. In addition to tPA synthesis in preovulatory follicles, hCG also induced tPA staining in the theca (but not granulosa) layers of non-ovulatory follicles. At 24 h after hCG treatment, there was a marked tPA staining in developing corpora lutea, ovulated ova, and oviductal epithelium. Ovaries from regularly cycling adult rats displayed a similar ovulation-related pattern of tPA immunostaining. The appearance of tPA in different cell types of the preovulatory follicle and in the fibroblast-like cells at the follicle apex, strengthens the hypothesis of a direct involvement of tPA in follicle rupture. Presence of tPA in postovulatory oocytes, cumulus cells, and surrounding oviductal epithelium may also indicate a role for tPA in the transfer of eggs in the oviduct.This work was supported by NIH Research Grants HD-14084; 12303  相似文献   

11.
Expression of mRNAs for IGF-I, IGF-binding protein-2 (IGFBP-2), and LH receptor (LHR) as well as their regulations during induced follicular atresia was determined. 26-day-old female rats received 15 IU pregnant mare serum gonadotropins (PMSG). Through detection, it was demonstrated that apoptosis occurred in some small antral follicles after 48 h of PMSG treatment. At 96 h, apoptosis occurred in preovulatory follicles. At 120 h, numerous apoptotic cells appeared in preovulatory follicles. IGF-I was mainly expressed in preantral and small antral follicles from 48 to 120 h. At 48 and 96 h, the theca cells of preantral and antral follicles expressed high level of IGFBP-2 mRNA. At 48 h, there were strong signals of LHR mRNA in granulosa cells, but the LHR signals in granulosa cells significantly decreased at 96 and 120 h (p<0.001). Both epidermal growth factor (EGF) and IGF-I inhibited apoptosis in preantral and antral follicles. Meanwhile, it was observed that EGF promoted IGF-I mRNA expression, and in preovulatory follicles, IGF-I stimulated LHR mRNA expression. These results show that the interaction between ECF and IGF-I may be involved in the regulation of atresia of follicles at different stages of development.  相似文献   

12.
Expression of mRNAs for IGF-I, IGF-binding protein-2 (IGFBP-2), and LH receptor (LHR) as well as their regulations during induced follicular atresia was determined. 26-day-old female rats received 15 IU pregnant mare serum gonadotropins (PMSG). Through detection, it was demonstrated that apoptosis occurred in some small antral follicles after 48 h of PMSG treatment. At 96 h, apoptosis occurred in preovulatory follicles. At 120 h, numerous apoptotic cells appeared in preovulatory follicles. IGF-I was mainly expressed in preantral and small antral follicles from 48 to 120 h. At 48 and 96 h, the theca cells of preantral and antral follicles expressed high level of IGFBP-2 mRNA. At 48 h, there were strong signals of LHR mRNA in granulosa cells, but the LHR signals in granulosa cells significantly decreased at 96 and 120 h (p<0.001). Both epidermal growth factor (EGF) and IGF-I inhibited apoptosis in preantral and antral follicles. Meanwhile, it was observed that EGF promoted IGF-I mRNA expression, and in pr  相似文献   

13.
To investigate the regulation of the LH/hCG receptor gene by gonadotropins, we examined the effect of PMSG and hCG on the expression of LH/hCG receptor in immature rat ovary. Northern blot analysis of ovarian RNA revealed a major mRNA of 5400 nucleotides and minor species of 7500, 3600, 2300, and 1200 nucleotides, and PMSG treatment slightly increased the intensity of all LH/hCG receptor messengers. Subsequently, hCG treatment decreased the number of LH/hCG receptor by day 2 and mRNA levels by 12h after injection. The level of mRNA recovered and increased 5-fold of control by day 6, then returned to control levels by day 10, followed by slower decline in LH/hCG receptor in plasma membrane. These studies demonstrate that the effects of PMSG and hCG on the number of LH/hCG receptor are closely related to the actions of these hormones on LH/hCG receptor messenger levels.  相似文献   

14.
Matrix metalloproteinases (MMPs) are instrumental in the constant tissue remodeling in the ovary. An induction of MMP-19 mRNA in periovulatory follicles has been reported in mouse ovaries. However, little is known about MMP-19 expression during the follicular and luteal periods or about the ovarian regulation of MMP-19 mRNA expression. We examined the expression pattern of MMP-19 mRNA during various reproductive phases and the periovulatory regulation of MMP-19 mRNA in the rat ovary. In gonadotropin-primed, immature rat ovaries, levels of MMP-19 mRNA transiently increased during both follicular growth and ovulation. The MMP-19 mRNA was localized to the theca-interstitial layer of growing follicles and to the granulosa and theca-interstitial layers of periovulatory follicles. A similar expression pattern of MMP-19 mRNA in periovulatory follicles was observed in ovaries from naturally cycling adult rats. Accumulation of MMP-19 mRNA was detected in regressing corpus luteum. The regulation of MMP-19 mRNA expression during the periovulatory period was investigated via in vivo studies and through in vitro culture studies on follicular cells. The hCG-induction of MMP-19 mRNA was mimicked by treating granulosa cells, but not theca-interstitial cells, from preovulatory follicles with LH or activators of the protein kinase (PK) A or PKC pathways. Cycloheximide blocked the LH- or forskolin-induced MMP-19 mRNA expression, demonstrating the requirement for new protein synthesis. In contrast, blocking activation of the progesterone receptor or prostaglandin synthesis had no effect on the increase in MMP-19 mRNA expression. In conclusion, the induction of MMP-19 mRNA suggests an important role of this proteinase during follicular growth, ovulation, and luteal regression.  相似文献   

15.
It has been suggested that locally produced insulin-like growth factor binding protein 4 (IGFBP4) inhibits ovarian follicular growth and ovulation by interfering with IGF action. According to this hypothesis, IGFBP4-expressing follicles should demonstrate atresia, whereas healthy dominant follicles should be devoid of IGFBP4. Alternatively, according to this view, there could be constitutive expression of the inhibitory IGFBP4 but selective expression of an IGFBP4 protease in dominant follicles, allowing the follicle to mature and ovulate because of degradation of the binding protein. To examine these views concerning the role of IGFBP4 in primate follicular selection, we analyzed cellular patterns of IGFs 1 and 2, IGFBP4, and the IGFBP4 protease (pregnancy-associated plasma protein A [PAPP-A]) mRNA expression in ovaries from late follicular phase rhesus monkeys using in situ hybridization. The IGF1 mRNA was not detected, but the IGF2 mRNA was abundant in theca interna and externa of all antral follicles and was present in the granulosa of large preovulatory and ovulatory follicles. The IGFBP4 mRNA was selectively expressed by LH receptor (LHR) mRNA-positive theca interna cells of healthy antral follicles (defined by aromatase and gonadotropin receptor expression) and by LHR-expressing granulosa cells found only in large preovulatory and ovulatory follicles (defined by size and aromatase expression). The PAPP-A mRNA was abundant in granulosa cells of most follicles without obvious relation to IGFBP4 expression. Ovarian IGFBP4 mRNA levels were markedly increased after treatment with the LH analog, hCG, whereas IGF2 and PAPP-A mRNAs were not significantly altered. In summary, IGFBP4 expression appears to be associated with follicular selection, not with atresia, in the monkey ovary. The IGFBP4 is consistently expressed in healthy theca interna and in luteinized granulosa cells, likely under LH regulation. The IGFBP4 protease, PAPP-A, is widely expressed without apparent selectivity for IGFBP4-expressing follicles or for dominant follicles. These observations suggest that IGFBP4 or an IGFBP4 proteolytic product may be involved with LH-induced steroidogenesis and/or luteinization rather than with inhibition of follicular growth.  相似文献   

16.
17.
To assess the role of inhibitors of proteolytic enzymes, such as plasminogen activator (PA) and collagenase in the ovulatory process, inhibitor activity and mRNA levels were examined in periovulatory rat and human ovaries. In the rat, immature animals received 20 IU of pregnant mare serum gonadotropin (PMSG) followed 52 h later by 10 IU of hCG. Ovaries were removed at intervals from 0 to 20 h after human chorionic gonadotropin (hCG) administration. Inhibitor activity for metalloproteinases, such as collagenase, increased from 60.5 +/- 4.1 inhibitor units/ovary at 0 h (i.e., time of hCG treatment) to a maximum of 218.2 +/- 11.4 units/ovary at 8 h after hCG before decreasing at 12 h (time of ovulation) and 20 h (122.2 +/- 7.9 and 71.6 +/- 8.1 units/ovary, respectively). Human follicular fluid and granulosa cells were obtained from preovulatory follicles of patients in our in vitro fertilization program. Metalloproteinase inhibitor activity was evaluated in follicular fluid as well as the levels of PA and PA inhibitor (PAI) mRNA by Northern analysis. Increasing metalloproteinase inhibitor activity was positively correlated with follicular levels of estradiol (p less than 0.001) and progesterone (p less than 0.02, N = 26). Chromatographic separation of follicular fluid resulted in two peaks of metalloproteinase inhibitor activity. The large molecular weight (MW) inhibitor had an approximate size of 700 kilodaltons (kDa) and may represent alpha 2-macroglobulin, a serum-derived inhibitor. The small MW inhibitor shared many of the characteristics of tissue-derived inhibitors of metalloproteinases. Partial purification of the small MW inhibitor by Concanavalin A-Sepharose and Heparin-Sepharose chromatography demonstrated the inhibitor to be a glycoprotein with an approximate MW = 28-29 K. Northern analysis of human granulosa cell total RNA from preovulatory follicles showed little or no detectable tissue-type PA or urokinase-type PA mRNA. In contrast, two species of PA inhibitor type-1 mRNA were detected in relative abundance. The present findings demonstrate the presence of proteolytic inhibitors in periovulatory ovaries of the rat and human. These ovarian inhibitors may play a role in regulating connective tissue remodeling during follicular rupture.  相似文献   

18.
The preovulatory LH surge induces a remarkable increase in ovarian prostaglandins (PGs) which help to mediate the ovulatory process. We investigated whether cytosolic phospholipase A2 (cPLA2) has a role in this PG production in PMSG/hCG-primed immature rats. The immunoreactive signal for cPLA2 was localized in both thecal and granulosa layers of mature follicles and became evident in response to gonadotropins. The PLA2 activity in the whole ovarian cytosol rose slightly after PMSG stimulation, persisted relatively constant until 24 h after hCG injection and thereafter increased gradually. Intra-ovarian bursal injection of arachidonyl trifluoromethyl ketone, a specific inhibitor for cPLA2 ( 1.0-3.0 mg/ovary), significantly reduced ovarian PGE2 content and the ovulation rate. These results suggest that cPLA2 exists in periovulatory follicles and functions in PG production related to the ovulation process.  相似文献   

19.
The effect of a gonadotropin-releasing hormone (GnRH) agonist on luteinizing hormone (LH) receptor mRNA expression was examined histologically in the ovaries of immature hypophysectomized (HPX) rats by in situ hybridization. In the ovaries of HPX rats treated with diethylstilbestrol (DES) and pregnant mare serum gonadotropin (PMSG), LH receptor mRNA was expressed in the granulosa cells of mature follicles as well as the theca-interstitial cells. In DES-primed ovaries of rats treated with both GnRH agonist plus PMSG, many follicles were luteinized without ovulation, and the signal of LH receptor mRNA disappeared completely in the theca-interstitial cells as well as the luteinized cells, but remained in the granulosa cells of unaffected mature follicles. The complete suppression of the theca-interstitial LH receptor expression by GnRH agonist was also observed in HPX rats that received no other treatment. On the other hand, the coadministration of a GnRH antagonist with PMSG resulted in the hyperstimulation of follicular growth, accompanied by very strong expression of LH receptor mRNA in the granulosa cells as well as the thecainterstitial cells. In addition, morphological changes in the ovarian interstitial cells were also induced by the administration of GnRH agonist in HPX rats: loose connective tissue decreased and the interstitial cell mass markedly increased. The increase of the interstitial cells became more prominent when rats were treated with GnRH agonist and testosterone simultaneously. These results suggest that GnRH may be an important factor for modulating the interstitial cell function and differentiation in the rat ovary.  相似文献   

20.
Calcitonin (CALCA), a hormone primarily known for its role in calcium homeostasis, has recently been linked to reproduction, specifically as a marker for embryo implantation in the uterus. Although CALCA expression has been documented in several tissues, there has been no report of production of CALCA in the ovary of any vertebrate species. We hypothesized that the Calca gene is expressed in the chicken ovary, and its expression will be altered by follicular maturation or gonadal steroid administration. Using RT-PCR, we detected Calca mRNA and the calcitonin receptor (Calcr) mRNA in the granulosa and theca layers of preovulatory and prehierarchial follicles. Both CALCA and Calca mRNA were localized in granulosa and thecal cells by confocal microscopy. Using quantitative PCR analysis, F1 follicle granulosa layer was found to contain significantly greater Calca mRNA and Calcr mRNA levels compared with those of any other preovulatory or prehierarchial follicle. The granulosa layer contained relatively greater Calca and Calcr mRNA levels compared with the thecal layer in both prehierarchial and preovulatory follicles. Progesterone (P(4)) treatment of sexually immature chickens resulted in a significantly greater abundance of ovarian Calca mRNA, whereas estradiol (E(2)) or P(4) + E(2) treatment significantly reduced ovarian Calca mRNA quantity. Treatment of prehierarchial follicular granulosa cells in vitro with CALCA significantly decreased FSH-stimulated cellular viability. Collectively, our results indicate that follicular maturation and gonadal steroids influence Calca and Calcr gene expression in the chicken ovary. We conclude that ovarian CALCA is possibly involved in regulating follicular maturation in the chicken ovary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号