首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 780 毫秒
1.
In microaerobic and anaerobic environments the principal glycolytic end-product of A. avenae and Caenorhabditis sp. was lactic acid during the first 12-16 hr, after which it was ethanol. Upon return to aerobiosis, ¹⁴C-labeled ethanol in the medium was utilized by the nematodes; ¹⁴CO₂ and some ¹⁴C-labeled glycogen was detected. Total dry weight loss of non-feeding nematodes was 25% greater in the absence of alcohol than in the presence of ethanol or n-propanol. Physical movement and respiration increased and reproduction was extended by alcohol in the bathing solution.  相似文献   

2.
Respiration of selected nematode species was measured relative to CO₂ level, temperature, osmotic pressure, humidity, glucose utilization and high ionic concentrations of sodium and potassium.In general, respiration was stimulated most by the dominant environmental factors at levels near those expected in the nematode''s "natural" habitat. Soil-inhabiting nematodes utilized O₂, most rapidly with high (1-2%) CO₂ whereas a foliar nematode (Aphelenchoides ritzemabosi) did so with 0.03% CO₂, the concentration typically found in air. Temperature optima for respiration corresponded closely to those for other activities. Ditylenchus dipsaci and Pratylenchus penetrans adults and Anguina tritici and A. agrostis second-stage larvae respired within the range of osmotic pressures from 0 to 44.8 arm and respiration of their drought-resistant stages was stimulated by increasing osmotic pressure which accompanies the onset of drought. Rehydration of A. tritici and A. agrostis larvae with RH as low as 5% stimulated measurable respiration. Glucose utilization from liquid medium by A. tritici larvae or A. ritzembosi was not detectable. Supplemental Na⁺ stimulated respiration of Anguina tritici, K⁺ did not.  相似文献   

3.
The respiration rate of third stage larvae of Caenorhabditis sp. exposed to 0.53 × 10⁻² M EDB was 120% greater than in untreated checks and was highest shortly after the exposure began. Similarly-treated third- and fourth-stage Aphelenchus avenae exhibited no marked respiratory response. Different responses of these animals to EDB probably reflect basic physiological differences between the nematodes.  相似文献   

4.
The effects of oxygen and temperature on the activity and survival of infective forth-stage juveniles of Nothanguina phyllobia Thorne were examined in aqueous suspension. Rate of movement was not affected by a wide range of O₂ concentration (0.8-8.6 ppm). Activity decreased below 0.8 ppm 0 2, and at 0.15 ppm O₂ nematodes became motionless. Activity increased as a linear function of temperature up to a thermal optimum of 24 C; beyond 24 C activity decreased. Survival was greatly prolonged at low temperature. At 23 C, 50% mortality occurred within 7 d, whereas at 4 C, 70% survived after 98 d.  相似文献   

5.
Respiration was measured in dauer stages of the insect-parasitic nematode Steinernema feltiae (= Neoaplectana carpocapsae) at 7, 17, and 27 C. Respiration, Q₁₀, and nematode viability were temperature dependent. Mean O₂ consumption for 5 × 10⁵ nematodes the first 24 hours was 0.27 ml at 7 C, 0.83 ml at 17 C, and 2.68 ml at 27 C. The Q₁₀ was 3.10 for 7-17 C and 3.24 for 17-27 C. Some nematodes died during 2, 14, and 21 days at 27, 17, and 7 C, respectively. The respiratory quotient was below 1 at all temperatures tested. A standard asymptotic model is expressed as oxygen consumed = 2.77 * {1 - exponent[-time * exponent(-B + C * temperature)]}; where 2.77 is the maximum response at 27 C. This model estimates nematode O₂ consumption and viability at storage temperatures between 7 and 27 C. The nematodes died when the O₂ concentration reached 0.5 ml/5 × 10⁵ nematodes. This model may be used to predict O₂ requirements of S. feltiae infective juveniles when stored as a waterless concentrate.  相似文献   

6.
The effects of a North Carolina population of Meloidogyne incognita on N₂ fixation on root-knot-susceptible ''Lee 68'' and moderately resistant ''Forrest'' soybean were evaluated 50, 75, I00, and 135 days after inoculation with nematodes. Nematodes stimulated N₂ fixation in Lee 68 by 50 days and in Forrest by 75 days. At all other intervals, N₂ fixation was either depressed or unaffected by nematodes. Additional observations indicate that the susceptibility of Lee 68 is associated with greater rates of penetration by larvae and more favorable responses of host tissues to nematodes than occur in Forrest. With time, however, the histological reactions of both hosts became less favorable for nematode development. Resistant or hypersensitive responses became common in Forrest by 75 days but not in Lee 68 until 90 days after inoculation. This population of M. incognita may stimulate N₂ fixation at a specific time interval and depress it at others; therefore, disease of susceptible soybeans caused by this nematode is probably not primarily due to a net loss of fixed nitrogen but to pathogenicity similar to that which occurs on nonlegume hosts.  相似文献   

7.
Reproduction of Aphelenchus avenae, reared on Rhizoctonia solani growing on steamed wheat seeds and Caenorhabditis sp., reared on a mixed bacterial culture grown on oatmeal, was significantly reduced at 5% oxygen and inhibited at 4% oxygen and below. Aeration ranging from atmospheric air (21%) to 10% oxygen had no effect on reproduction. Close interval (5 days or less) fluctuations, between high and low oxygen concentrations, inhibited population buildup of Hemicycliophora arenaria on tomato in soil, and of A. avenae and Caenorhabditis sp. in vitro. In soil tests with H. arenaria exposed to 12 hr of nitrogen every three days (in air) inhibited the rate of buildup compared to controls maintained in continuous air. With the in vitro studies, as little as 4 hr nitrogen every 3 days (stored in air) significantly influenced the population numbers.  相似文献   

8.
Movement of vermiform stages of Meloidogyne incognita, Rotylenchulus reniformis, Ditylenchus phyllobius, Steinernema glaseri, and Caenorhabditis elegans in response to carbon dioxide was studied in 40- and 72-mm-long cylinders of moist sand inside 38-mm-d acrylic tubes. Meloidogyne incognita, R. reniformis, and S. glaseri were attracted to CO₂ when placed on a linear gradient of 0.2%/cm at a mean CO₂ concentration of 1.2%. When CO₂ was delivered into the sand through a syringe needle at flow rates between 2 and 130 μl/minute, the optimal flow rate for attracting M. incognita and R. reniformis was 15 μl/minute, and maximal attraction of the two species from a distance of 52 mm was achieved after 29 and 40 hours, respectively. After 24 hours, a total CO₂ volume of 20 cm³ was sufficient to induce 96% of all M. incognita introduced to move into the half of the cylinder into which CO₂ was delivered and more than 75 % to accumulate in the 9 cm³ of sand volume nearest the source. Results indicate it may be possible to use a chemical or biological source of CO₂ to attract nematodes to nematicide granules or biocontrol agents.  相似文献   

9.
Seven-day-old seedlings of two cultivars (Cristalina and UFV ITM1) of Glycine max were inoculated with 0, 3,000, 9,000, or 27,000 eggs of Meloidogyne incognita race 3 or M. javanica and maintained in a greenhouse. Thirty days later, plants were exposed to ¹⁴CO₂ for 4 hours. Twenty hours after ¹⁴CO₂ exposure, the root fresh weight, leaf dry weight, nematode eggs per gram of root, total and specific radioactivity of carbohydrates in roots, and root carbohydrate content were evaluated. Meloidogyne javanica produced more eggs than M. incognita on both varieties. A general increase in root weight and a decrease in leaf weight with increased inoculum levels were observed. Gall tissue appeared to account for most of the root mass increase in seedlings infected with M. javanica. For both nematodes there was an increase of total radioactivity in the root system with increased levels of nematodes, and this was positively related to the number of eggs per gram fresh weight and to the root fresh weight, but negatively related to leaf dry weight. In most cases, specific radioactivities of sucrose and reducing sugars were also increased with increased inoculum levels. Highest specific radioactivities were observed with reducing sugars. Although significant changes were not observed in endogenous levels of carbohydrates, sucrose content was higher than reducing sugars. The data show that nematodes are strong metabolic sinks and significantly change the carbon distribution pattern in infected soybean plants. Carbon partitioning in plants infected with nematodes may vary with the nematode genotype.  相似文献   

10.
Species with broad ecological amplitudes with respect to a key focal resource, niche generalists, should maintain larger and more connected populations than niche specialists, leading to the prediction that nucleotide diversity will be lower and more subdivided in specialists relative to their generalist relatives. This logic describes the specialist-generalist variation hypothesis (SGVH). Some outbreeding species of Caenorhabditis nematodes use a variety of invertebrate dispersal vectors and have high molecular diversity. By contrast, Caenorhabditis japonica lives in a strict association and synchronized life cycle with its dispersal host, the shield bug Parastrachia japonensis, itself a diet specialist. Here, we characterize sequence variation for 20 nuclear loci to investigate how C. japonica''s life history shapes nucleotide diversity. We find that C. japonica has more than threefold lower polymorphism than other outbreeding Caenorhabditis species, but that local populations are not genetically disconnected. Coupled with its restricted range, we propose that its specialist host association contributes to a smaller effective population size and lower genetic variation than host generalist Caenorhabditis species with outbreeding reproductive modes. A literature survey of diverse organisms provides broader support for the SGVH. These findings encourage further testing of ecological and evolutionary hypotheses with comparative population genetics in Caenorhabditis and other taxa.  相似文献   

11.
To identify the chromosome carrying the factor for resistance to Meloidogyne incognita in tobacco, crosses were made between resistant tobacco ''NC95'' as pollen parent and each of the 12 tobacco monosomics (A-L) representative of the Tomentosae half of the Nicotiana tabacum chromosome complement. Of the F₁ seedlings, 927 plants were grown for observation. From these, 223 plants were selected as possible monosomics on the basis of morphological characteristics. These plants were self-pollinated, and the resulting F₂ plants were inoculated with both M. incognita acrita and M. incognita incognita. Sixteen F₂ populations, derived from the haplo-G monosome, were completely resistant. All of the F₂ populations derived from the other 11 monosomic crosses segregated into a 3:1 (resistant:susceptible) ratio. These results indicate that the factor for resistance to M. incognita is located on the G chromosome of N. tabacum. This is the first report establishing the N. tabacum chromosome that carries the factor for root-knot resistance. The results are consistant with our earlier evidence that M. incognita resistance in tobacco is derived from N. tomentosa, a species in the section Tomentosae of the subgenus Tabacum, genus Nicotiana. The other 12 chromosomes of N. tabacum have affinities with N. sylvestris, section Alatae, subgenus Petunoides, genus Nicotiana.  相似文献   

12.
Radopholus spp. were reared in carrot tissue culture via established procedures, with slight modification. Several plant tissue maceration enzymes and flotation media (salts and sucrose) were evaluated with regard to nematode toxicity and extraction efficiency. Best extraction of viable nematodes and eggs was attained when carrot tissue infested with Radopholus citrophilus or R. similis was macerated with a mixture of 0.50% driselase and 0.50% cellulysin, w/v each, with 2.5 ml of enzyme solution based for each gram of carrot tissue. Maceration slurries containing carrot tissue and nematodes were maintained in open flasks on a rotary shaker (175 rpm) at 26 C for 24 hours. Nematodes and eggs were extracted from resultant culture slurries by flotation with MgSO₄-7H₂0 (sp gr 1.1). A protocol is presented to extract large quantities of viable burrowing nematodes and their eggs from carrot disk cultures.  相似文献   

13.
Vermiform Rotylenchulus reniformis were anesthetized in water by 10-40% CO₂ but were fully motile for 24 hours in water below 5% CO₂. When air containing 2.5% CO₂ was blown onto agar, nematodes accumulated at the point of highest CO₂ concentration. Nematodes also accumulated when chilling (0.2-1 C) of agar by the gas flow at the accumulation point was offset with heat from a fiber optic. In Baermann funnels containing R. reniformis in silt loam and sandy clay loam soils, CO₂ in funnel water increased during 24 hours from 0 to ca. 1%; more CO₂ accumulated below the soil layer than above. Bubbling air with 2.5% CO₂ into water below soil in covered funnels increased the CO₂ gradient and increased nematode extraction, whereas bubbling air without CO₂ below soil purged CO₂ from the water and decreased nematode extraction. Manipulation of CO₂ within funnels usually increased extraction by only 30% and never by more than 3-fold. Controlling temperature gradients consistently increased extraction by 2-30-fold.  相似文献   

14.
Exposure to carbofuran and fenamiphos for 72 hours reduced the numbers of active Aphelenchus avenae in aqueous suspension by > 75%. When nematicides were removed, many A. avenae exposed to carbofuran resumed normal movement but A. avenae treated with fenamiphos did not recover. Acetylcholinesterase (AChE) activity was suppressed by > 95% in nematodes treated with carbofuran or fenamiphos. However, 48 hours after treated nematodes had been placed in water, AChE activity in carbofuran treated populations was 98% of the levels in control nematodes. Nematodes that had been treated with fenamiphos showed only slight AChE recovery. The antidotes, atropine sulfate and 2-PAM, were largely ineffective in counteracting the toxic effects of the nematicides.  相似文献   

15.
The development of postparasitic stages of Romanomermis culicivorax was studied under various concentrations of oxygen and carhon dioxide. The nematode developed poorly if only nitrogen was supplied; only one-third molted and all died eventually. In the presence of 5% CO₂ - 95% N₂, development was normal; most nematodes molted and oviposited with respective mean developmental times of 32 and 50 d. Addition of 0.2% O₂ stimulated development; molting and oviposition commenced at days 18 and 41, respectively. There was an additional stimulation of development by increasing amounts of O₂ up to 1%, but concentrations greater than 1% produced no additional stimulation. Carbon dioxide was required for development after exsheathment under anaerobic conditions or O₂ concentrations less than 1%. Oxygen or CO₂ were not required for embryological development or egg hatch. It is suggested that post-parasitic stages function as facultative anaerobes,  相似文献   

16.
In greenhouse experiments, massive application of the fungivorous nematode, Aphelenchus avenae, in summer at 26-33 C (1 x l0⁵ nematodes/500 cm³ autoclaved soil) or in autumn at 18-23 C (5 x 10⁴ nematodes/500 cm³ autoclaved soil) suppressed pre-emergence damping-off of cucumber seedlings due to Rhizoctonia solani AG-4 by 67% or 87%, respectively. Application of 2 x l0⁵ A. avenae to sterilized soil infested with R. solani caused leafminer-like symptom on the cotyledons, which did not occur in mixed inoculations with the entomopathogenic nematode, Steinernema carpocapsae. When 1 x 10⁶ A. avenae were applied 3 days before inoculation with 100 Meloidogyne incognita juveniles, gall numbers on tomato roots were reduced to 50% of controls. Gall numbers also were suppressed by S. carpocapsae (str. All). Reduction in gall numbers was no greater with mixed application of A. avenae and S. carpocapsae than with application of single species, even though twice the number of nematodes were added in the former case. These nematodes were positively attracted to tomato root tips. Aphelenchus avenae suppressed infection of the turnip moth, Agrotis segetum, but not the common cutworm, Spodoptera litura, by S. carpocapsae.  相似文献   

17.
The sensitivities of acetylcholinesterases (ACHE) from the fungus-feeder Aphelenchus avenae and the plant-parasitic species Helicotylenchus dihystera and Pratylenchus penetrans and the housefly, Musca domestica, were compared using a radiometric assay which utilized H³ acetylcholine as a substrate. Nematode ACHE were generally less sensitive to inhibition by organophosphorns and carbamate pesticides than were ACHE from the housefly. ACHE from the plant-parasitic species and A. avenae were generally similar in sensitivity. In soil, carbamates were more toxic than the organophosphorus pesticides to A. avenae. All pesticides tested affected nematode movement, but fenamiphos was more inhibitory than others. The effects on dispersal of nematodes may be an important mechanism in control by some nematicides.  相似文献   

18.
''Amsoy'' soybeans were grown for 2 months in nonsterilized Jackson silt loam amended to pH 4.0, 6.0, and 8.0. Nematodes were extracted biweekly from soil and roots. The greatest numbers of Pratylenchus alleni colonized soybean roots at pH 6.0. Hoplolaimus galeatus and members of the Tylenchinae-Psilenchinae survived best at pH 6.0, while numbers o f the Dorylaimoidea were greatest at both pH 6.0 and 8.0. The non-stylet nematodes were recovered in greater numbers from pH 8.0 soil. Potassium, manganese, and phenols were highest in soybean plants grown in pH 4.0 soil, the pH at which there were the fewest nematodes. A thicker suberized outer layer o f root tissue occurred in plants grown at pH 4.0.  相似文献   

19.
Living Xiphinema americanum (Xa) and X. rivesi (Xr) extracted from soil samples and stored for 1-5 days at 4 or 20 C contained aseptate fungal hyphae. The fungi directly penetrated the nematode''s cuticle from spores encysted near the head. Penetration through the stoma, vulva, or anus was rare. Catenaria anguillulae (Cat), Lagenidium caudatura (Lag), Aphanomyces sp. (Aph), and Leptolegnia sp. (Lep) were isolated into pure culture from infected nematodes. The pathogenicity of these zoosporic fungi was determined by incubating mixed freshly extracted Xa and Xr in 2% soil extract (pH = 6.7, conductivity = 48 μmhos, 20 ± 2 C) containing zoospores obtained from single-spore isolates. After 4 days, Cat, Lag, Aph, and Lep had infected 78, 18, 13, and 22%, respectively, of the nematodes. Both Xa and Xr were infected by every fungus; however, the relative susceptibility of Xa and Xr to these fungi was not determined. All noninoculated control nematodes remained uninfected and alive. In a second experiment, parasitism of Xa and Xr by Aph and Lep was increased when nematodes were incubated in 2% soil extract for 4 days before exposure to zoospores. In a third experiment, parasitism of Xa and Xr by Cat was greater in diluted saturation soil extract (conductivity = 100-400 μmhos) than in undiluted saturation extract (conductivity = 780 μmhos). Cat produced small zoospores (4-μm-d), bulbous infection hyphae, and assimilative hyphae of varying diameters in nematodes, whereas Lag, Aph, and Lep produced large zoospores (8-μm-d) and tubular, uniform infection and assimilative hyphae in nematodes.  相似文献   

20.
The effect of methyl bromide (MB) was tested on active and anhydrobiotic Aphelenchus avenae. A. avenae was induced into anhydrobiosis by three different techniques. Both active and anhydrobiotic nematodes were subjected to 3,000 μ1 MB/liter air for 14 periods from 0 to 82 h. Anhydrobiotic nematodes were more resistant to fumigation than active nematodes, regardless of the technique used to induce anhydrobiosis. The percent survival decreased with increasing MB exposures (μ1 MB × h). For an LD₉₅ of 45,000-54,000 μ1/1 × h were required for active nematodes and >279,000 μ1/1 × h for anhydrobiotic nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号