首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A drip irrigation delivery system was used to infest field sites with the plant-parasitic root-knot nematodes, Meloidogyne incognita. Juvenile or egg inocula passed through the system without blockage of emitters or harm to the nematodes. Field sites so infested were available for experimentation. Delivery of approximately 5 x 10⁴ to 10⁵ juveniles or 10⁵ to 3 x 10⁵ eggs per emitter through the drip system resulted in heavy root galling of tomatoes planted next to the drip emitters. Nematodes feeding on bacteria (Acrobeloides sp.) and on fungi (Deladenus durus) also were successfully applied through the drip system. This method has potential for uniformly infesting experimental sites with plant-parasitic or entomogenous nematodes and for manipulation of nematode community structure for soil ecological studies.  相似文献   

2.
Experiments were conducted to assess the effects of the entomopathogenic nematode Steinernema carpocapsae and Spodoptera exigua multinucleocapsid nuclear polyhedrosis virus (SeMNPV), alone and in combinations, on mortality of the beet armyworm, S. exigua, larvae on soybean. In 1991 tests, field-grown soybean plants were treated with S. carpocapsae at 0.3 and 0.6 nematodes/cm² of leaflet, SeMNPV at 20 and 40 polyhedral inclusion bodies (PIB)/cm², and all possible combinations. Treated leaflets were collected from plants and bioassayed with 5-day-old larvae. The combination of S. carpocapsae at 0.6 nematodes/cm² + SeMNPV at 40 PIB/cm² produced significantly higher larval mortality (61.7%) compared with either S. carpocapsae (24.8-35.1%) or SeMNPV (26.5-33.7%) alone. In 1992, similar tests were repeated using S. carpocapsae at 0.2 and 0.5 nematodes/cm², and SeMNPV at 14 and 35 PIB/cm². The combination of 0.5 nematodes/cm² + 35 PIB/cm² resulted in significantly higher larval mortality (64.0%) than either pathogen alone (41.5-49.0%). Steinernema carpocapsae and SeMNPV produced additive effects on beet arlnyworm mortality. Persistence of S. carpocapsae was 12-24 hours and SeMNPV was 96-120 hours on soybean.  相似文献   

3.
In laboratory tests, larvae of the Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), and the sugarbeet wireworm (SBW), Limonius californicus (Mannerheim), were exposed to the nematodes Steinernema feltiae Filipjev (Mexican strain) (= Neoaplectana carpocapsae) and S. glaseri Steiner in soil. S. feltiae caused significantly higher mortality in SBW larvae than did S. glaseri, but both nematode species were equally effective against CPB larvae. The minimum concentration of S. feltiae for 100% mortality of CPB larvae after 13 days was 157 nematodes/cm² of soil, and the LC₅₀ based on 6-day mortality was 47.5 nematodes/cm²; in contrast, 100% mortality of SBW larvae was not achieved with even the highest concentration tested, 393 nematodes/cm². CPB adults emerging from nematode-contaminated soil were not infected. In field cage tests, S. feltiae applied to the soil surface at the rates of 155 and 310 nematodes/cm² soil caused 59% and 71% mortality, respectively, of late-fourth-instar spring-generation CPB, and 28% and 29% mortality, respectively, of SBW. No infection was obtained when larvae of summer generation CPB and SBW were placed in the same cages approximately 6 weeks after nematodes were applied to the soil. Inundative soil applications of S. feltiae, though cost prohibitive at present, were effective in reducing caged CPB and SBW field populations.  相似文献   

4.
Steinernema carpocapsae Weiser All strain was compared to Steinernema riobravis Cabanillas, Poinar, and Raulston for control of the root weevil, Diaprepes abbreviatus (L.), in the laboratory and in potted citrus. In the laboratory bioassay, D. abbreviatus larvae were exposed to 30, 60, and 120 nematodes/cm³ in sand. Insect mortality 1 week after application was greater (P ≤ 0.05) for S. riobravis than for S. carpocapsae in the laboratory bioassay. In the greenhouse bioassay, D. abbreviatus larvae were exposed to 3 and 9 nematodes per cm³ of soil in potted citrus. Again, at each rate, mortality was greater (P ≤ 0.05) in pots treated with S. riobravis than in pots treated with S. carpocapsae. The results of this study suggest that S. riobravis is a better biological control agent against D. abbreviatus larvae in potted plants than S. carpocapsae.  相似文献   

5.
Respiration was measured in dauer stages of the insect-parasitic nematode Steinernema feltiae (= Neoaplectana carpocapsae) at 7, 17, and 27 C. Respiration, Q₁₀, and nematode viability were temperature dependent. Mean O₂ consumption for 5 × 10⁵ nematodes the first 24 hours was 0.27 ml at 7 C, 0.83 ml at 17 C, and 2.68 ml at 27 C. The Q₁₀ was 3.10 for 7-17 C and 3.24 for 17-27 C. Some nematodes died during 2, 14, and 21 days at 27, 17, and 7 C, respectively. The respiratory quotient was below 1 at all temperatures tested. A standard asymptotic model is expressed as oxygen consumed = 2.77 * {1 - exponent[-time * exponent(-B + C * temperature)]}; where 2.77 is the maximum response at 27 C. This model estimates nematode O₂ consumption and viability at storage temperatures between 7 and 27 C. The nematodes died when the O₂ concentration reached 0.5 ml/5 × 10⁵ nematodes. This model may be used to predict O₂ requirements of S. feltiae infective juveniles when stored as a waterless concentrate.  相似文献   

6.
The sensitivities of acetylcholinesterases (ACHE) from the fungus-feeder Aphelenchus avenae and the plant-parasitic species Helicotylenchus dihystera and Pratylenchus penetrans and the housefly, Musca domestica, were compared using a radiometric assay which utilized H³ acetylcholine as a substrate. Nematode ACHE were generally less sensitive to inhibition by organophosphorns and carbamate pesticides than were ACHE from the housefly. ACHE from the plant-parasitic species and A. avenae were generally similar in sensitivity. In soil, carbamates were more toxic than the organophosphorus pesticides to A. avenae. All pesticides tested affected nematode movement, but fenamiphos was more inhibitory than others. The effects on dispersal of nematodes may be an important mechanism in control by some nematicides.  相似文献   

7.
Exposure to carbofuran and fenamiphos for 72 hours reduced the numbers of active Aphelenchus avenae in aqueous suspension by > 75%. When nematicides were removed, many A. avenae exposed to carbofuran resumed normal movement but A. avenae treated with fenamiphos did not recover. Acetylcholinesterase (AChE) activity was suppressed by > 95% in nematodes treated with carbofuran or fenamiphos. However, 48 hours after treated nematodes had been placed in water, AChE activity in carbofuran treated populations was 98% of the levels in control nematodes. Nematodes that had been treated with fenamiphos showed only slight AChE recovery. The antidotes, atropine sulfate and 2-PAM, were largely ineffective in counteracting the toxic effects of the nematicides.  相似文献   

8.
Four populations of Pratylenchus penetrans did not differ (P > 0.05) in their virulence or reproductive capability on Lahontan alfalfa. There was a negative relationship (r = -0 .7 9 ) between plant survival and nematode inocula densities at 26 ± 3 C in the greenhouse. All plants survived at an inoculum level (Pi) of 1 nematode/cm³ soil, whereas survival rates were 50 to 55% at 20 nematodes/cm³ soil. Alfalfa shoot and root weights were negatively correlated (r = - 0.87; P < 0.05) with nematode inoculum densities. Plant shoot weight reductions ranged from 13 % at Pi 1 nematode/cm³ soil to 69% for Pi 20 nematodes/cm³ soil, whereas root weight reductions ranged from 17% for Pi 1 nematode/cm³ soil to 75% for Pi 20 nematodes/cm³ soil. Maximum and minimum nematode reproduction (Pf/Pi) for the P. penetrans populations were 26.7 and 6.2 for Pi 1 and 20 nematodes/cm³ soil, respectively. There were negative correlations between nematode inoculum densities and plant survival (r = 0.84), and soil temperature and plant survival (r = -0 .7 8 ). Nematode reproduction was positively correlated to root weight (r = 0.89).  相似文献   

9.
We determined the effects of crop residue on the persistence of an entomopathogenic nematode, Steinernema carpocapsae. During 2 consecutive years, nematodes were applied at rates of 2.5 × 10₄ and 1.0 × 10⁵ infective juveniles/m² to small field plots planted with corn. Nematode persistence was monitored by exposing Galleria mellonella larvae to soil samples from plots with and without crop residue (approximately 75% coverage of soybean stubble). Persistence of S. carpocapsae was significantly greater in crop residue plots than in plots without residue. In crop residue plots that received the higher rate of nematode application, larval mortality did not significantly decrease during the study period (3 to 5 days) and remained above 85%. In nematode-treated plots without crop residue, however, larval mortality fell from over 96% to below 11% and 35% in the first and second trials, respectively. The increased crop residue may have benefited nematode persistence through protection from desiccation or ultraviolet light. We conclude that increased ground cover in cropping systems (e.g., due to reduced tillage) may lead to increased insect pest suppression with entomopathogenic nematodes.  相似文献   

10.
The effect of Steinernema riobrave and Heterorhabditis bacteriophora on population density of Mesocriconema xenoplax in peach was studied in the greenhouse. Twenty-one days after adding 112 M. xenoplax adults and juveniles/1,500 cm³ soil to the soil surface of each pot, 50 infective juveniles/cm² soil surface of either S. riobrave or H. bacteriophora were applied. Another entomopathogenic nematode application of the same density was administered 3 months later. The experiment was repeated once. Mesocriconema xenoplax populations were not suppressed (P ≤ 0.05) in the presence of either S. riobrave or H. bacteriophora 180 days following ring nematode inoculation. On pecan, 200 S. riobrave infective-stage juveniles/cm² were applied to the soil surface of 2-year-old established M. xenoplax populations in field microplots. Additional applications of S. riobrave were administered 2 and 4 months later. This study was terminated 150 days following the initial application of S. riobrave. Populations of M. xenoplax were not suppressed in the presence of S. riobrave.  相似文献   

11.
Reproduction of Aphelenchus avenae, reared on Rhizoctonia solani growing on steamed wheat seeds and Caenorhabditis sp., reared on a mixed bacterial culture grown on oatmeal, was significantly reduced at 5% oxygen and inhibited at 4% oxygen and below. Aeration ranging from atmospheric air (21%) to 10% oxygen had no effect on reproduction. Close interval (5 days or less) fluctuations, between high and low oxygen concentrations, inhibited population buildup of Hemicycliophora arenaria on tomato in soil, and of A. avenae and Caenorhabditis sp. in vitro. In soil tests with H. arenaria exposed to 12 hr of nitrogen every three days (in air) inhibited the rate of buildup compared to controls maintained in continuous air. With the in vitro studies, as little as 4 hr nitrogen every 3 days (stored in air) significantly influenced the population numbers.  相似文献   

12.
The relationship between population densities of race 1 of Meloidogyne incognita and yield of eggplant was studied. Microplots were infested with finely chopped nematode-infected pepper roots to give population densities of 0, 0.062, 0.125, 0.25, 0.50, 1, 2, 4, 8, 16, 32, 64, and 128 eggs and juveniles/cm³ soil. Both plant growth and yield were suppressed by the nematode. A tolerance limit of 0.054 eggs and juveniles/cm³ soil and a minimum relative yield of 0.05 at four or more eggs and juveniles/cm³ soil were derived by fitting the data with the equation y = m + (1 - m)zP⁻T. Maximum nematode reproduction rate was 12,300. Hatch of eggs from egg masses in water or from sodium hypochlorite dissolved egg masses was similar (41% and 39%), but egg viability was significantly greater from egg masses in water (58%) than from sodium hypochlorite dissolved egg masses (12%) after 4 weeks. Greater numbers of nematodes were collected from roots of tomatoes from soil infested with entire egg masses than from tomato roots from soil infested with egg masses dissolved by sodium hypochlorite.  相似文献   

13.
Steinernema carpocapsae (Breton strain), S. glaseri, and Heterorhabditis bacteriophora were evaluated for their potential to control immature stages of the Japanese beetle, Popillia japonica, on Terceira Island (the Azores). In bioassays carried out at temperatures higher than 15 C, S. glaseri and H. bacteriophora caused 100% mortality of larvae, whereas S. carpocapsae caused 56% larval mortality. At temperatures slightly below 15 C, only S. glaseri remained effective. In field plots, in September, S. glaseri and S. carpocapsae reduced larval populations by 91% and 44%, respectively, when applied at the rate of 10⁶ nematodes/m². In April, S. glaseri caused 31% reduction in numbers of larvae, but S. carpocapsae was ineffective. In colder months (November-February) neither steinernematids nor H. bacteriophora reduced larval populations. Increasing the application rate from 10⁶ to 5 x 10⁶ infective stage S. glaseri per m² increased efficacy from 63% to 79% mortality.  相似文献   

14.
In controlled greenhouse and growth chamber studies, Pratylenchus neglectus reduced dry shoot and dry root weight of rangeland grasses. Greenar intermediate wheatgrass and Secar Snake River wheatgrass were more susceptible to P. neglectus than Hycrest crested wheatgrass, Fairway crested wheatgrass, and Nordan crested wheatgrass at a greenhouse bench temperature of 26 ± 3 C. Hycrest was the most tolerant to parasitism by P. neglectus. An initial nematode inoculum density of four nematodes/cm³ soil reduced dry shoot weights of Hycrest, Fairway, Nordan, Greenar, and Secar by 22%, 33%, 36%, 47%, and 49%, and reduced dry root weights by 26%, 31%, 32%, 38%, and 42%. There was a positive relationship between dry root weight, the nematode inoculum density, and the nematode reproduction index (final nematode population/initial nematode inoculum). However, there were more nematodes/g root tissue on Secar than on the crested wheatgrasses, and significantly more nematodes/g root tissue on Greenar, Fairway, and Nordan than on Hycrest. Pratylenchus neglectus was most pathogenic at four nematodes/cm³ soil at 30 C and least pathogenic at one nematode/cm³ soil at 15 C. Greenar and Secar were more susceptible to the nematode than Hycrest, Fairway, and Nordan at two and four nematodes/cm³ soil at 20 to 30 C. The nematode reproductive indices were greatest at 30 C and were positively correlated with dry root weight. Secar supported the most and Hycrest had the fewest nematodes/g root.  相似文献   

15.
The impact of 10 Fusarium species in concomitant association with Rotylenchulus reniformis on cotton seedling disease was examined under greenhouse conditions. In experiment 1, fungal treatments consisted of Fusarium chlamydosporum, F. equiseti, F. lateritium, F. moniliforme, F. oxysporum, F. oxysporum f.sp. vasinfectum, F. proliferatum, F. semitectum, F. solani, and F. sporotrichioides; Rhizoctonia solani; and Thielaviopsis basicola. The experimental design was a 2 × 14 factorial consisting of the presence or absence of R. reniformis and the 12 fungal treatments plus two controls in autoclaved field soil. In experiment 2, the same fungal and nematode treatments were examined in autoclaved or non-autoclaved soil. This experimental design was a 2 × 2 × 14 factorial consisting of field or autoclaved soil, presence or absence of R. reniformis, and the 12 fungal treatments plus two controls. In both tests, Fusarium oxysporum f. sp. vasinfectum, F. solani, R. solani, and T. basicola consistently displayed extensive root and hypocotyl necrosis that was more severe (P ≤ 0.05) in the presence of R. reniformis. Soil treatment (autoclaved vs. non-autoclaved) influenced the impact of the Fusarium species on cotton seedling disease, with disease being more severe in the autoclaved soil. Rotylenchulus reniformis reproduction on cotton seedlings was greater in field soil compared to autoclaved soil (P ≤ 0.05). This study suggests the importance of Fusarium species and R. reniformis in cotton seedling disease.  相似文献   

16.
Starving Aphelenchus avenae survived 3-4 weeks in microaerobic and anaerobic environments, but Caenorhabditis sp. survived less than 80 hr. Aerobically, both nematodes metabolize neutral lipid reserves: there was no microaerobic ( <5% O₂) or anaerobic neutral lipid catabolism. Early in anaerobiosis both nematodes utilized endogenous glycogen. Caenorhabditis sp. depleted the glycogen and died. A. avenae under oxygen stress longer than 120 hr entered cryptobiosis, during which there was neither measurable O₂ uptake nor glycogen or neutral lipid utilization, Only when re-aerated, did A. avenae recover and resume "''normal" metabolism.  相似文献   

17.
Three strains of Steinernema feltiae Filipjev (All, Mexican, and Breton strains) and one of Heterorhabditis heliothidis (Khan, Brooks, and Hirschmann) were evaluated for their potential to control Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), larvae and pupae in the soil. In laboratory studies, H. heliothidis and S. feltiae (Mexican strain) produced the highest mortality (6 days posttreatment) of CPB when applied to the surface of a soil column containing mature CPB larvae 5 cm below. Mortality ranged from 80 to 90% at rates of 79-158 nematodes/cm². Similar results were seen in a field microplot study with all four nematodes; S. feltiae (Mexican strain) and H. heliothidis were most effective. Adult CPB emergence was reduced 86.5-100% after application of 31-93 H. heliothidis/cm² and 88.4-100% with 93-155 S. feltiae (Mexican strain)/cm². The All strain of S. feltiae was moderately effective (ca. 80% reduction at 93-155 nematodes/cm²), while the Breton strain was ineffective (< 40% reduction at 155 nematodes/cm²). In small plots of potatoes enclosed in field cages, application of H. heliothidis and S. feltiae (Mexican strain) at rates of 93-155 nematodes/cm² before larval CPB burial in the soil resulted in 66-77% reduction in adult CPB emergence. Soil applications of these nematodes show potential for biological control of CPB.  相似文献   

18.
Laboratory and microplot experiments were conducted to determine the influence of carrier and storage of Paecilomyces lilacinus on its survival and related protection of tomato against Meloidogyne incognita. Spores of P. lilacinus were prepared in five formulations: alginate pellets (pellets), diatomaceous earth granules (granules), wheat grain, soil, and soil plus chitin. Fungal viability was high in wheat and granules, intermediate in pellets, and low in soil and chitin-amended soil stored at 25 ± 2 C. In 1985 P. lilacinus in field microplots resulted in about a 25% increase in tomato yield and 25% gall suppression, compared with nematodes alone. Greatest suppression of egg development occurred in plots treated with P. lilacinus in pellets, wheat grain, and granules. In 1986 carryover protection of tomato against M. incognita resulted in about a threefold increase in tomato fruit yield and 25% suppression of gall development, compared with plants treated with nematodes alone. Higher numbers of fungus-infected egg masses occurred in plots treated with pellets (32%) than in those treated with chitin-amended soil (24%), wheat (16%), granules (12%), or soil (7%). Numbers of fungal colony-forming units per gram of soil in plots treated with pellets were 10-fold greater than initial levels estimated at planting time in 1986.  相似文献   

19.
Injection, contact, and soil assays were used to compare infectivity of Heterorhabditis bacteriophora strain HP88 and Steinernema carpocapsae strain All to final instar Galleria mellonella larvae. Under comparable assay conditions, H. bacteriophora produced less Galleria mortality and showed greater within-assay variability in infectivity than S. carpocapsae. Injection of individual S. carpocapsae or H. bacteriophora infective juveniles into Galleria indicated that a comparatively greater percentage of S. carpocapsae was capable of initiating infection. In addition to nematode species, other major components of variability in assay estimations of nematode infectivity were number of nematodes used in the assay, assay type, date of the assay, and possibly, Galleria age.  相似文献   

20.
The effect of temperature on the infection of larvae of the greater wax moth, Galleria mellonella, by Heterorhabditis megidis H90 and Steinernema carpocapsae strain All, was determined. For both species, infection, reproduction, and development were fastest at 20 to 24 °C. Infection by both H. megidis and S. carpocapsae occurred between 8 and 16 °C; however, neither species reproduced at 8 °C. Among the nematodes used in experiments at 8 °C, no H. megidis and very few S. carpocapsae developed beyond the infective juvenile stage. Compared with H. megidis, S. carpocapsae invaded and killed G. mellonella larvae faster at 8 to 16 °C. By comparing invasion rates, differences in infectivity between the two nematode species were detected that could not be detected in conventional petri dish bioassays where mortality was measured after a specified period. Invasion of G. mellonella larvae by H. megidis was faster at 24 than at 16 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号