首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The T-->G mutation at nucleotide 705 in the second intron of the beta-globin gene creates an aberrant 5' splice site and activates a 3' cryptic splice site upstream from the mutation. As a result, the IVS2-705 pre-mRNA is spliced via the aberrant splice sites leading to a deficiency of beta-globin mRNA and protein and to the genetic blood disorder thalassemia. We have shown previously that in cell culture models of thalassemia, aberrant splicing of beta-thalassemic IVS2-705 pre-mRNA was permanently corrected by a modified murine U7 snRNA that incorporated sequences antisense to the splice sites activated by the mutation. To explore the possibility of using other snRNAs as vectors for antisense sequences, U1 snRNA was modified in a similar manner. Replacement of the U1 9-nucleotide 5' splice site recognition sequence with nucleotides complementary to the aberrant 5' splice site failed to correct splicing of IVS2-705 pre-mRNA. In contrast, U1 snRNA targeted to the cryptic 3' splice site was effective. A hybrid with a modified U7 snRNA gene under the control of the U1 promoter and terminator sequences resulted in the highest levels of correction (up to 70%) in transiently and stably transfected target cells.  相似文献   

2.
A role for U2/U6 helix Ib in 5' splice site selection.   总被引:4,自引:4,他引:0       下载免费PDF全文
Selection of pre-mRNA splice sites is a highly accurate process involving many trans-acting factors. Recently, we described a role for U6 snRNA position G52 in selection of the first intron nucleotide (+1G). Because some U2 alleles suppress U6-G52 mutations, we investigated whether the corresponding U2 snRNA region also influenced 5' splice site selection. Our results demonstrate that U2 snRNAs mutated at position U23, but not adjacent nucleotides, specifically affect 5' splice site cleavage. Furthermore, all U2 position U23 mutations are synthetic lethal with the thermosensitive U6-G52U allele. Interestingly, the U2-U23C substitution has an unprecedented hyperaccurate splicing phenotype in which cleavage of introns with a +1G substitution is reduced, whereas the strain grows with wild-type kinetics. U2 position U23 forms the first base pair with U6 position A59 in U2/U6 helix Ib. Restoration of the helical structure suppresses 5' splice site cleavage defects, showing an important role for the helix Ib structure in 5' splice site selection. U2/U6 helix Ib and helix II have recently been described as being functionally redundant. This report demonstrates a unique role for helix Ib in 5' splice site selection that is not shared with helix II.  相似文献   

3.
J C Rain  P Legrain 《The EMBO journal》1997,16(7):1759-1771
Pre-mRNA splicing is a stepwise nuclear process involving intron recognition and the assembly of the spliceosome followed by intron excision. We previously developed a pre-mRNA export assay that allows the discrimination between early steps of spliceosome formation and splicing per se. Here we present evidence that these two assays detect different biochemical defects for point mutations. Mutations at the 5' splice site lead to pre-mRNA export, whereas 3' splice site mutations do not. A genetic screen applied to mutants in the branch site region shows that all positions in the conserved TACTAAC sequence are important for intron recognition. An exhaustive analysis of pre-mRNA export and splicing defects of these mutants shows that the in vivo recognition of the branch site region does not involve the base pairing of U2 snRNA with the pre-mRNA. In addition, the nucleotide preceding the conserved TACTAAC sequence contributes to the recognition process. We show that a T residue at this position allows for optimal intron recognition and that in natural introns, this nucleotide is also used preferentially. Moreover, the Mud2 protein is involved in the recognition of this nucleotide, thus establishing a role for this factor in the in vivo splicing pathway.  相似文献   

4.
Activation of a cryptic 5' splice site by U1 snRNA   总被引:1,自引:0,他引:1       下载免费PDF全文
In the course of analyzing 5' splice site mutations in the second intron of Schizosaccharomyces pombe cdc2, we identified a cryptic 5' junction containing a nonconsensus nucleotide at position +2. An even more unusual feature of this cryptic 5' junction was its pattern of activation. By analyzing the profile of splicing products for an extensive series of cdc2 mutants in the presence and absence of compensatory U1 alleles, we have obtained evidence that the natural 5' splice site participates in activation of the cryptic 5' splice site, and that it does so via base pairing to U1 snRNA. Furthermore, the results of follow-up experiments strongly suggest that base pairing between U1 snRNA and the cryptic 5' junction itself plays a dominant role in its activation. Most remarkably, a mutant U1 can activate the cryptic 5' splice site even in the presence of a wild-type sequence at the natural 5' junction, providing unambiguous evidence that this snRNA redirects splicing via base pairing. Although previous work has demonstrated that U5 and U6 snRNAs can activate cryptic 5' splice sites through base pairing interactions, this is the first example in which U1 snRNA has been implicated in the final selection of a cryptic 5' junction.  相似文献   

5.
A J Newman  R J Lin  S C Cheng  J Abelson 《Cell》1985,42(1):335-344
We have altered the TACTAAC sequence in the yeast CYH2m gene intron to TACTACC. This mutation changes the nucleotide at the normal position of the branch in intron RNA lariats produced during pre-mRNA splicing, and it prevents splicing in vivo. In a yeast pre-mRNA splicing system, CYH2m pre-mRNA carrying the TACTACC mutation is not specifically cut or rearranged in any way. Substitution of an A for the first G of the CYH2m intron, converting the highly conserved GTATGT 5' splice site sequence to ATATGT, also blocks intron excision in vivo and in vitro: pre-mRNA carrying this mutation was still cut normally at the mutant 5' splice site in vitro, to give authentic exon 1 and an intron-exon 2 lariat RNA with an A-A 2'-5' phosphodiester linkage at the branch point. This lariat RNA is a dead-end product. The subsequent cleavage at the 3' splice site is therefore sensitive to the sequence of the 5' end of the intron attached at the branch point.  相似文献   

6.
Nuclear pre-mRNA splicing necessitates specific recognition of the pre-mRNA splice sites. It is known that 5' splice site selection requires base pairing of U6 snRNA with intron positions 4-6. However, no factor recognizing the highly conserved 5' splice site GU has yet been identified. We have tested if the known U6 snRNA-pre-mRNA interaction could be extended to include the first intron nucleotides and the conserved 50GAG52 sequence of U6 snRNA. We observe that some combinations of 5' splice site and U6 snRNA mutations produce a specific synthetic block to the first splicing step. In addition, the U6-G52U allele can switch between two competing 5' splice sites harboring different nucleotides following the cleavage site. These results indicate that U6 snRNA position 52 interacts with the first nucleotide of the intron before 5' splice site cleavage. Some combinations of U6 snRNA and pre-mRNA mutations also blocked the second splicing step, suggesting a role for the corresponding nucleotides in a proofreading step before exon ligation. From studies in diverse organisms, various functions have been ascribed to the conserved U6 snRNA 47ACAGAG52 sequence. Our results suggest that these discrepancies might reflect variations between different experimental systems and point to an important conserved role of this sequence in the splicing reaction.  相似文献   

7.
Group I self-splicing introns have a 5' splice site duplex (P1) that contains a single conserved base pair (U.G). The U is the last nucleotide of the 5' exon, and the G is part of the internal guide sequence within the intron. Using site-specific mutagenesis and analysis of the rate and accuracy of splicing of the Tetrahymena thermophila group I intron, we found that both the U and the G of the U.G pair are important for the first step of self-splicing (attack of GTP at the 5' splice site). Mutation of the U to a purine activated cryptic 5' splice sites in which a U.G pair was restored; this result emphasizes the preference for a U.G at the splice site. Nevertheless, some splicing persisted at the normal site after introduction of a purine, suggesting that position within the P1 helix is another determinant of 5' splice site choice. When the U was changed to a C, the accuracy of splicing was not affected, but the Km for GTP was increased by a factor of 15 and the catalytic rate constant was decreased by a factor of 7. Substitution of U.A, U.U, G.G, or A.G for the conserved U.G decreased the rate of splicing by an even greater amount. In contrast, mutation of the conserved G enhanced the second step of splicing, as evidenced by a trans-splicing assay. Furthermore, a free 5' exon ending in A or C instead of the conserved U underwent efficient ligation. Thus, unlike the remainder of the P1 helix, which functions in both the first and second steps of self-splicing, the conserved U.G appears to be important only for the first step.  相似文献   

8.
Splice site recognition and catalysis of the transesterification reactions in the spliceosome are accompanied by a dynamic series of interactions involving conserved or invariant sequences in the spliceosomal snRNAs. We have used site-specific photoactivated crosslinking in yeast spliceosomes to monitor interactions between snRNAs and exon sequences near the 5' and 3' splice sites. The last nucleotide of the 5' exon can be crosslinked to an invariant loop sequence in U5 SnRNA before and after 5' splice site cleavage. The first nucleotide of the 3' exon can also be crosslinked to the same U5 loop sequence, but this contact is only detectable after the first transesterification. These results are in close agreement with earlier data from mammalian splicing extracts, and they are consistent with a model in which U5 snRNA aligns the 5' and 3' exons for the second transesterification. After the first catalytic step of splicing, the first nucleotide of the 3' exon can also crosslink to nt U23 in U2 snRNA. This is one of a cluster of residues in U2-U6 helix I implicated by mutational analysis in the second catalytic step of splicing. The crosslinking data suggest that these residues in U2-U6 helix I are in close proximity to the scissile phosphodiester bond at the 3' splice site prior to the second transesterification. These results constitute the first biochemical evidence for a direct interaction between the 3' splice site and U2 snRNA.  相似文献   

9.
The U2 and U6 snRNAs contribute to the catalysis of intron removal while U5 snRNA loop 1 holds the exons for ligation during pre-mRNA splicing. It is unclear how different exons are positioned precisely with U5 loop 1. Here, we investigate the role of U2 and U6 in positioning the exons with U5 loop 1. Reconstitution in vitro of spliceosomes with mutations in U2 allows U5-pre-mRNA interactions before the first step of splicing. However, insertion in U2 helix Ia disrupts U5-exon interactions with the intron lariat-3' exon splicing intermediate. Conversely, U6 helix Ia insertions prevent U5-pre-mRNA interactions before the first step of splicing. In vivo, synthetic lethal interactions have been identified between U2 insertion and U5 loop 1 insertion mutants. Additionally, analysis of U2 insertion mutants in vivo reveals that they influence the efficiency, but not the accuracy of splicing. Our data suggest that U2 aligns the exons with U5 loop 1 for ligation during the second step of pre-mRNA splicing.  相似文献   

10.
In the pre-mRNA processing machinery of eukaryotic cells, U6 snRNA is located at or near the active site for pre-mRNA splicing catalysis, and U6 is involved in catalyzing the first chemical step of splicing. We have further defined the roles of key features of yeast U6 snRNA in the splicing process. By assaying spliceosome assembly and splicing in yeast extracts, we found that mutations of yeast U6 nt 56 and 57 are similar to previously reported deletions of U2 nt 27 or 28, all within yeast U2-U6 helix Ia. These mutations lead to the accumulation of yeast A1 spliceosomes, which form just prior to the Prp2 ATPase step and the first chemical step of splicing. These results strongly suggest that, at a late stage of spliceosome assembly, the presence of U2-U6 helix Ia is important for promoting the first chemical step of splicing, presumably by bringing together the 5' splice site region of pre-mRNA, which is base paired to U6 snRNA, and the branchsite region of the intron, which is base paired to U2 snRNA, for activation of the first chemical step of splicing, as previously proposed by Madhani and Guthrie [Cell, 1992, 71: 803-817]. In the 3' intramolecular stem-loop of U6, mutation G81C causes an allele-specific accumulation of U6 snRNP. Base pairing of the U6 3' stem-loop in yeast spliceosomes does not extend as far as to include the U6 sequence of U2-U6 helix Ib, in contrast to the human U6 3' stem-loop structure.  相似文献   

11.
Recognition of polypyrimidine (Py) tracts typically present between the branch point and the 3' splice site by the large subunit of the essential splicing factor U2AF is a key early step in pre-mRNA splicing. Diverse intronic sequence arrangements exist, however, including 3' splice sites lacking recognizable Py tracts, which raises the question of how general the requirement for U2AF is for various intron architectures. Our analysis of fission yeast introns in vivo has unexpectedly revealed that whereas introns lacking Py tracts altogether remain dependent on both subunits of U2AF, introns with long Py tracts, unconventionally positioned upstream of branch points, are unaffected by U2AF inactivation. Nevertheless, mutation of these Py tracts causes strong dependence on the large subunit U2AF59. We also find that Py tract diversity influences the requirement for the conserved C-terminal domain of U2AF59 (RNA recognition motif 3), which has been implicated in protein-protein interactions with other splicing factors. Together, these results suggest that in addition to Py tract binding by U2AF, supplementary mechanisms of U2AF recruitment and 3' splice site identification exist to accommodate diverse intron architectures, which have gone unappreciated in biochemical studies of model pre-mRNAs.  相似文献   

12.
Peutz-Jeghers syndrome (PJS) is an autosomal dominant disorder associated with gastrointestinal polyposis and an increased cancer risk. PJS is caused by germline mutations in the tumor suppressor gene LKB1. One such mutation, IVS2+1A>G, alters the second intron 5' splice site, which has sequence features of a U12-type AT-AC intron. We report that in patients, LKB1 RNA splicing occurs from the mutated 5' splice site to several cryptic, noncanonical 3' splice sites immediately adjacent to the normal 3' splice site. In vitro splicing analysis demonstrates that this aberrant splicing is mediated by the U12-dependent spliceosome. The results indicate that the minor spliceosome can use a variety of 3' splice site sequences to pair to a given 5' splice site, albeit with tight constraints for maintaining the 3' splice site position. The unusual splicing defect associated with this PJS-causing mutation uncovers differences in splice-site recognition between the major and minor pre-mRNA splicing pathways.  相似文献   

13.
U11 and U12 interact cooperatively with the 5' splice site and branch site of pre-mRNA as a stable preformed di-snRNP complex, thereby bridging the 5' and 3' ends of the intron within the U12-dependent prespliceosome. To identify proteins contributing to di-snRNP formation and intron bridging, we investigated protein-protein and protein-RNA interactions between components of the U11/U12 snRNP. We demonstrate that the U11/U12-65K protein possesses dual binding activity, interacting directly with U12 snRNA via its C-terminal RRM and the U11-associated 59K protein via its N-terminal half. We provide evidence that, in contrast to the previously published U12 snRNA secondary structure model, the 3' half of U12 forms an extended stem-loop with a highly conserved seven-nucleotide loop and that the latter serves as the 65K binding site. Addition of an oligonucleotide comprising the 65K binding site to an in vitro splicing reaction inhibited U12-dependent, but not U2-dependent, pre-mRNA splicing. Taken together, these data suggest that U11/U12-65K and U11-59K contribute to di-snRNP formation and intron bridging in the minor prespliceosome.  相似文献   

14.
The minor U12-dependent class of eukaryotic nuclear pre-mRNA introns is spliced by a distinct spliceosomal mechanism that requires the function of U11, U12, U5, U4atac, and U6atac snRNAs. Previous work has shown that U11 snRNA plays a role similar to U1 snRNA in the major class spliceosome by base pairing to the conserved 5'' splice site sequence. Here we show that U6atac snRNA also base pairs to the 5'' splice site in a manner analogous to that of U6 snRNA in the major class spliceosome. We show that splicing defective mutants of the 5'' splice site can be activated for splicing in vivo by the coexpression of compensatory U6atac snRNA mutants. In some cases, maximal restoration of splicing required the coexpression of compensatory U11 snRNA mutants. The allelic specificity of mutant phenotype suppression is consistent with Watson-Crick base pairing between the pre-mRNA and the snRNAs. These results provide support for a model of the RNA-RNA interactions at the core of the U12-dependent spliceosome that is strikingly similar to that of the major class U2-dependent spliceosome.  相似文献   

15.
During pre-mRNA splicing, the spliceosome must configure the substrate, catalyze 5′ splice site cleavage, reposition the substrate, and catalyze exon ligation. The highly conserved U2/U6 helix I, which adjoins sequences that define the reactive sites, has been proposed to configure the substrate for 5′ splice site cleavage and promote catalysis. However, a role for this helix at either catalytic step has not been tested rigorously and previous observations question its role at the catalytic steps. Through a comprehensive molecular genetic study of U2/U6 helix I, we found that weakening U2/U6 helix I, but not mutually exclusive structures, compromised splicing of a substrate limited at the catalytic step of 5′ splice site cleavage, providing the first compelling evidence that this helix indeed configures the substrate during 5′ splice site cleavage. Further, mutations that we proved weaken only U2/U6 helix I suppressed a mutation in PRP16, a DEAH-box ATPase required after 5′ splice site cleavage, providing persuasive evidence that helix I is destabilized by Prp16p and suggesting that this structure is unwound between the catalytic steps. Lastly, weakening U2/U6 helix I also compromised splicing of a substrate limited at the catalytic step of exon ligation, providing evidence that U2/U6 helix I reforms and functions during exon ligation. Thus, our data provide evidence for a fundamental and apparently dynamic role for U2/U6 helix I during the catalytic stages of splicing.  相似文献   

16.
Combinations of different mutations within the 5' splice region of the rabbit beta-globin large intron were analyzed for their effect on in vitro splicing. Based upon the complementarity of the 5' splice region to the 5' terminal region of the U1 snRNA, the exact location of the 5' cleavage site of different mutants could be predicted and was experimentally confirmed. These findings add further strong support to the hypothesis (1) that the exact location of the 5' cleavage site in pre-mRNA splicing of higher eukaryotes is determined by the overall 5' splice region via the complementarity to the 5' end of the U1 snRNA, and not by the strongly conserved GU dinucleotide.  相似文献   

17.
Serine-arginine (SR) proteins are general metazoan splicing factors that contain an essential arginine/serine-rich (RS) domain. On typical U2-type introns, RS domains contact the branchpoint and 5' splice site to promote base-pairing with U small nuclear RNAs (snRNAs). Here we analyze the role of SR proteins in splicing of U12-type introns and in the second step of U2-type intron splicing. We show that RS domains contact the branchpoint and 5' splice site of a U12-type intron. On a U2-type intron, we find that the RS domain contacts the site of the U6 snRNA-5' splice site interaction during the first step of splicing and shifts to contact the site of the U5 snRNA-exon 1 interaction during the second step. Our results reveal alternative interactions between the RS domain and 5' splice site region that coincide with remodeling of the spliceosome between the two catalytic steps.  相似文献   

18.
Highly conserved sequences at the 5′ splice site and branch site of U12-dependent introns are important determinants for splicing by U12-dependent spliceosomes. This study investigates the in vivo splicing phenotypes of mutations in the branch site consensus sequence of the U12-dependent intron F from a human NOL1 (P120) minigene. Intron F contains a fully consensus branch site sequence (UUCCUUAAC). Mutations at each position were analyzed for their effects on U12-dependent splicing in vivo. Mutations at most positions resulted in a significant reduction of correct U12-dependent splicing. Defects observed included increased unspliced RNA levels, the activation of cryptic U2-dependent 5′ and 3′ splice sites, and the activation of cryptic U12-dependent branch/3′ splice sites. A strong correlation was observed between the predicted thermodynamic stability of the branch site: U12 snRNA interaction and correct U12-dependent splicing. The lack of a polypyrimidine tract between the branch site and 3′ splice site of U12-dependent introns and the observed reliance on base-pairing interactions for correct U12-dependent splicing emphasize the importance of RNA/RNA interactions during U12-dependent intron recognition and proper splice site selection.  相似文献   

19.
Interactions of the yeast U6 RNA with the pre-mRNA branch site.   总被引:6,自引:5,他引:1       下载免费PDF全文
The small nuclear RNA (snRNA) components of the spliceosome have been proposed to catalyze the excision of introns from nuclear pre-mRNAs. If this hypothesis is correct, then the snRNA components of the spliceosome may interact directly with the reactive groups of pre-mRNA substrates. To explore this possibility, a genetic screen has been used to identify potential interactions between the U6 RNA and the pre-mRNA branch site. Notably, the selection yielded mutants in two regions of the yeast U6 RNA implicated previously in the catalytic events of splicing. These mutants significantly increase the splicing of pre-mRNA substrates containing non-adenosine branch sites. U6 mutants in U2/U6 helix Ia show strong allele-specific interactions with the branch site nucleotide and interact with PRP16, a factor implicated previously in branch site utilization. The other mutants cluster in the intramolecular helix of U6 and suppress the effects of branch site mutations in a nonallele-specific fashion. The locations of these mutants may define positions important for binding of the U6 intramolecular helix to the catalytic core of the spliceosome.  相似文献   

20.
U-rich tracts enhance 3' splice site recognition in plant nuclei   总被引:5,自引:1,他引:4  
The process of 5' and 3' splice site definition in plant pre-mRNA splicing differs from that in mammals and yeast. In mammals, splice sites are chosen by their complementarity to U1 snRNA surrounding the /GU at the 5' splice site and by the strength of the pyrimidine tract preceding the AG/ at the 3' splice site; in plants, the 3' intron boundary is defined in a position-dependent manner relative to AU-rich elements within the intron. To determine if uridines are utilized to any extent in plant 3' splice site recognition, uridines in the region preceding the normal (−1) 3' splice site of pea rbcS3A intron 1 were replaced with adenosines. This mutant activates two cryptic 3' splice sites (+62, +95) in the downstream exon, indicating that the uridines in the region immediately preceding the normal (−1) site are essential for recognition. Placement of different length uridine tracts upstream from the cryptic +62 site indicated that a cryptic exonic 3' splice site containing 14 or 10 uridine tracts with a G at −4 can effectively outcompete the normal 3' splice site containing an eight uridine tract with a U at −4. Substitutions at the −4 position demonstrated that the identity of the nucleotide at this position greatly affects 3' splice site selection. It has been concluded that several factors affect competition between these 3' splice sites. These factors include the position of the AU transition point, the strength of the uridine tract immediately preceding the 3' terminal CAG/ and the identity of nucleotide −4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号