首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 603 毫秒
1.
对蛋白质组学的研究有许多不同的切入方法 .从研究的生物学意义和可行性考虑 ,提出从蛋白结构域入手进行蛋白质组学研究 .SH2 (Srchomology 2 )结构域是细胞信号转导中重要的元件之一 ,人SH2结构域共有约 12 0种 ,对其进行研究将深刻揭示细胞信号转导的规律 .为了得到人所有的SH2结构域序列及克隆 ,首先在公共数据库里检索出了人所有的SH2结构域序列 ,利用国际上现有的共享资源IMAGE(IntegratedMolecularAnalysisofGenomesandTheirExpression)克隆为PCR模板 ,解决了从cDNA文库中难以克隆低丰度结构域的问题 .利用有方向性的TOPO克隆技术提高克隆效率 ,从而快速高效地构建了包括 6 0个SH2结构域的克隆库 .克隆库可以方便地转换到GATEWAY系统具有各种用途的载体上 ,为SH2结构域的蛋白质组学研究奠定了坚实的基础  相似文献   

2.
Caveolin-1, a constitutive protein of the caveolae, is implicated in processes of vesicular transport during caveolae-mediated endocytosis. However, the molecular mechanisms of caveolae-mediated endocytosis are not yet clearly defined. Here, we show the physiological role of the Rab5-caveolin-1 interaction during caveolae-mediated endocytosis. Rab5 was found in caveolae-enriched fractions and Rab5 directly bound to caveolin-1. Furthermore, binding sites of Rab5 to caveolin-1 were identified in the scaffold (SD), transmembrane (TM), and C-terminus (CC) domains, and the Rab5 binding domain of caveolin-1 was required for CTXB uptake. Subsequently, we performed a GST-R5BD pull-down assay to determine whether the Rab5 binding domain of caveolin-1 is involved in Rab5 activity or not. The results showed that overexpression of the Rab5 binding domain of caveolin-1 increase the amount of Rab5-GTP in Cos-1 cells. These findings imply that caveolin-1 controls the Rab5 activity during the caveolae-mediated endocytosis.  相似文献   

3.
尹玲  方辉  黄羽  卢江  曲俊杰 《广西植物》2017,37(2):186-190
植物抗病反应是一个多基因调控的复杂过程,在这个过程中R基因发挥了非常重要的作用。根据其氨基酸基序组成以及跨膜结构域的不同,R基因可以分为多种类型,其中NBS-LRR类型是植物基因组中最大的基因家族之一。TIR-NB-LRR类型的抗病基因又是NB-LRR类型中的一大类,也是目前抗病基因研究的热点。该文总结了TIR-NB-LRR类型抗病基因各个结构域的功能和相关的研究进展。相关研究表明,TIR结构域主要通过自身或异源的二聚体化介导抗性信号的转导,但也有部分研究表明,该结构域可能参与病原菌的特异性识别。NBS结构域常被认为具有"分子开关"的功能,它可以通过结合ADP或ATP来调节植物抗病蛋白的构象变化,从而调节下游抗病信号的传导。LRR结构域在植物与病原菌互作的过程中可以通过与病原菌的无毒蛋白直接或间接互作来特异识别病原菌。也有研究发现,LRR结构域具有调节信号传导的功能。这些信息将为研究植物抗病机理提供理论依据,也为将来通过基因编辑技术对作物进行定向抗病育种提供思路。  相似文献   

4.
Protein domains represent the basic evolutionary units that form proteins. Domain duplication and shuffling by recombination are probably the most important forces driving protein evolution and hence the complexity of the proteome. While the duplication of whole genes as well as domain-encoding exons increases the abundance of domains in the proteome, domain shuffling increases versatility, i.e. the number of distinct contexts in which a domain can occur. Here, we describe a comprehensive, genome-wide analysis of the relationship between these two processes. We observe a strong and robust correlation between domain versatility and abundance: domains that occur more often also have many different combination partners. This supports the view that domain recombination occurs in a random way. However, we do not observe all the different combinations that are expected from a simple random recombination scenario, and this is due to frequent duplication of specific domain combinations. When we simulate the evolution of the protein repertoire considering stochastic recombination of domains followed by extensive duplication of the combinations, we approximate the observed data well. Our analyses are consistent with a stochastic process that governs domain recombination and thus protein divergence with respect to domains within a polypeptide chain. At the same time, they support a scenario in which domain combinations are formed only once during the evolution of the protein repertoire, and are then duplicated to various extents. The extent of duplication of different combinations varies widely and, in nature, will depend on selection for the domain combination based on its function. Some of the pair-wise domain combinations that are highly duplicated also recur frequently with other partner domains, and thus represent evolutionary units larger than single protein domains, which we term "supra-domains".  相似文献   

5.
A significant proportion of proteins comprise multiple domains. Domain–domain docking is a tool that predicts multi-domain protein structures when individual domain structures can be accurately predicted but when domain orientations cannot be predicted accurately. GalaxyDomDock predicts an ensemble of domain orientations from given domain structures by docking. Such information would also be beneficial in elucidating the functions of proteins that have multiple states with different domain orientations. GalaxyDomDock is an ab initio domain–domain docking method based on GalaxyTongDock, a previously developed protein–protein docking method. Infeasible domain orientations for the given linker are effectively screened out from the docked conformations by a geometric filter, using the Dijkstra algorithm. In addition, domain linker conformations are predicted by adopting a loop sampling method FALC. The proposed GalaxyDomDock outperformed existing ab initio domain–domain docking methods, such as AIDA and Rosetta, in performance tests on the Rosetta benchmark set of two-domain proteins. GalaxyDomDock also performed better than or comparable to AIDA on the AIDA benchmark set of two-domain proteins and two-domain proteins containing discontinuous domains, including the benchmark set in which each domain of the set was modeled by the recent version of AlphaFold. The GalaxyDomDock web server is freely available as a part of GalaxyWEB at http://galaxy.seoklab.org/domdock.  相似文献   

6.
The delineation of domain boundaries of a given sequence in the absence of known 3D structures or detectable sequence homology to known domains benefits many areas in protein science, such as protein engineering, protein 3D structure determination and protein structure prediction. With the exponential growth of newly determined sequences, our ability to predict domain boundaries rapidly and accurately from sequence information alone is both essential and critical from the viewpoint of gene function annotation. Anyone attempting to predict domain boundaries for a single protein sequence is invariably confronted with a plethora of databases that contain boundary information available from the internet and a variety of methods for domain boundary prediction. How are these derived and how well do they work? What definition of 'domain' do they use? We will first clarify the different definitions of protein domains, and then describe the available public databases with domain boundary information. Finally, we will review existing domain boundary prediction methods and discuss their strengths and weaknesses.  相似文献   

7.
Members of the newly discovered regulator of G protein signaling (RGS) families of proteins have a common RGS domain. This RGS domain is necessary for conferring upon RGS proteins the capacity to regulate negatively a variety of Galpha protein subunits. However, RGS proteins are more than simply negative regulators of signaling. RGS proteins can function as effector antagonists, and recent evidence suggests that RGS proteins can have positive effects on signaling as well. Many RGS proteins possess additional C- and N-terminal modular protein-binding domains and motifs. The presence of these additional modules within the RGS proteins provides for multiple novel regulatory interactions performed by these molecules. These regions are involved in conferring regulatory selectivity to specific Galpha-coupled signaling pathways, enhancing the efficacy of the RGS domain, and the translocation or targeting of RGS proteins to intracellular membranes. In other instances, these domains are involved in cross-talk between different Galpha-coupled signaling pathways and, in some cases, likely serve to integrate small GTPases with these G protein signaling pathways. This review discusses these C- and N-terminal domains and their roles in the biology of the brain-enriched RGS proteins. Methods that can be used to investigate the function of these domains are also discussed.  相似文献   

8.
泛素连接酶E3   总被引:3,自引:0,他引:3  
蛋白质的泛素化修饰具有高度的特异性,它参与调节细胞内许多的生理活动。蛋白质的泛素化修饰涉及一系列的酶参与反应,包括泛素激活酶E1、结合酶E2以及连接酶E3。而其中泛素连接酶E3对靶蛋白的特异性识别起关键作用。泛素连接酶E3主要由HECT结构域家族、RING结构域家族和U-box结构域家族组成。现对泛素连接酶E3的分类、结构及其对靶蛋白的识别机制等进行综述。  相似文献   

9.
Bacterial response regulators (RRs) can regulate the expression of genes that confer antibiotic resistance; they contain a receiver and an effector domain and their ability to bind DNA is based on the dimerization state. This is triggered by phosphorylation of the receiver domain by a kinase. However, even in the absence of phosphorylation RRs can exist in equilibrium between monomers and dimers with phosphorylation shifting the equilibrium toward the dimer form. We have determined the crystal structure of the unphosphorylated dimeric BaeR from Escherichia coli. The dimer interface is formed by a domain swap at the receiver domain. In comparison with the unphosphorylated dimeric PhoP from Mycobacterium tuberculosis, BaeR displays an asymmetry of the effector domains.  相似文献   

10.
The mannitol transporter enzyme IIMtl of the bacterial phosphotransferase system is a multi‐domain protein that catalyzes mannitol uptake and phosphorylation. Here we investigated the domain association between cytosolic A and B domains of enzyme IIMtl, which are natively connected in Escherichia coli, but separated in Thermoanaerobacter tengcongensis. NMR backbone assignment and residual dipolar couplings indicated that backbone folds were well conserved between the homologous domains. The equilibrium binding of separately expressed domains, however, exhibited ~28‐fold higher affinity compared to the natively linked ones. Phosphorylation of the active site loop significantly contributed to the binding by reducing conformational dynamics at the binding interface, and a few key mutations at the interface were critical to further stabilize the complex by hydrogen bonding and hydrophobic interactions. The affinity increase implicated that domain associations in cell could be maintained at an optimal level regardless of the linker.  相似文献   

11.
目的 通过Bio-HBV生物数据库,针对乙型肝炎病毒(HBV)聚合酶蛋白序列进行多态性分析。方法 构建Bio- HBV生物数据库,获得国际基因序列库中所有完整的聚合酶蛋白并进行比对,采用信息熵评价序列位点的保守性,结合BLOSUM 90评分系统和PAML方法,寻找选择压力下的理化性质异常的氨基酸替换模式。结果 rt266-271内频发理化性质异常的氨基酸替换,并且具有高度的统计学意义。此外,还用生物信息学的方法分析了聚合酶蛋白的TP、RT和RH功能域的保守性。结论 用生物信息学验证了功能域内已知生物学特性位点的保守性,还从结构生物学出发,推测潜在的功能位点及其意义。  相似文献   

12.
13.
Domain insertions and deletions lead to variations in the domain architectures of the proteins from their common ancestor. In this work, we investigated four groups of the RhoGEF-containing proteins from different organisms with domain architectures RhoGEF-PH-SH3, SH3-RhoGEF-PH, RhoGEF-PH, and SH3-RhoGEF defined in the Pfam database. The phylogenetic trees were constructed using each individual domain and/or the combinations of all the domains. The phylogenetic analysis suggests that RhoGEF-PH-SH3 and SH3-RhoGEF-PH might have evolved from RhoGEF-PH through the insertion of SH3 independently, while SH3- RhoGEF of proteins in fruit fly might have evolved from SH3-RhoGEF-PH by the degeneration of PH domain.  相似文献   

14.
Pseudomonas sp. strain TXG6-1, a chitinolytic gram-negative bacterium, was isolated from a vegetable field in Taixing city, Jiangsu Province, China. In this study, a Pseudomonas chitinase C gene (PsChiC) was isolated from the chromosomal DNA of this bacterium using a pair of specific primers. The PsChiC gene consisted of an open reading frame of 1443 nucleotides and encoded 480 amino acid residues with a calculated molecular mass of 51.66 kDa. The deduced PsChiC amino acid sequence lacked a signal sequence and consisted of a glycoside hydrolase family 18 catalytic domain responsible for chitinase activity, a fibronectin type III-like domain (FLD) and a C-terminal chitin-binding domain (ChBD). The amino acid sequence of PsChiCshowed high sequence homology (> 95%) with chitinase C from Serratia marcescens. SDS-PAGE showed that the molecular mass of chitinase PsChiC was 52 kDa. Chitinase assays revealed that the chitobiosidase and endochitinase activities of PsChiCwere 51.6- and 84.1-fold higher than those of pET30a, respectively. Although PsChiC showed little insecticidal activity towards Spodoptera litura larvae, an insecticidal assay indicated that PsChiC increased the insecticidal toxicity of SpltNPV by 1.78-fold at 192 h and hastened death. These results suggest that PsChiC from Pseudomonas sp. could be useful in improving the pathogenicity of baculoviruses.  相似文献   

15.
Domains are basic evolutionary units of proteins and most proteins have more than one domain. Advances in domain modeling and collection are making it possible to annotate a large fraction of known protein sequences by a linear ordering of their domains, yielding their architecture. Protein domain architectures link evolutionarily related proteins and underscore their shared functions. Here, we attempt to better understand this association by identifying the evolutionary pathways by which extant architectures may have evolved. We propose a model of evolution in which architectures arise through rearrangements of inferred precursor architectures and acquisition of new domains. These pathways are ranked using a parsimony principle, whereby scenarios requiring the fewest number of independent recombination events, namely fission and fusion operations, are assumed to be more likely. Using a data set of domain architectures present in 159 proteomes that represent all three major branches of the tree of life allows us to estimate the history of over 85% of all architectures in the sequence database. We find that the distribution of rearrangement classes is robust with respect to alternative parsimony rules for inferring the presence of precursor architectures in ancestral species. Analyzing the most parsimonious pathways, we find 87% of architectures to gain complexity over time through simple changes, among which fusion events account for 5.6 times as many architectures as fission. Our results may be used to compute domain architecture similarities, for example, based on the number of historical recombination events separating them. Domain architecture "neighbors" identified in this way may lead to new insights about the evolution of protein function.  相似文献   

16.
Mitochondria form reticular networks comprised of filamentous tubules and continuously move and change shape. Bcl-2 family proteins actively participate in the regulation of mitochondria fragmentation. Here, we show that human Noxa, which belongs to the BH3-only pro-apoptotic Bcl-2 family, causes mitochondrial fragmentation. We found that while the Bcl-2 homology 3 (BH3) domain of Noxa is not associated with mitochondrial fragmentation, the mitochondrial targeting domain (MTD) of Noxa is the region responsible for inducing fragmentation. Two leucine residues in MTD play a key role in the process. Furthermore, the lack of Noxa causes a significant reduction of Velcade-induced mitochondrial fragmentation. Together, these results provide novel insight into the role of Noxa in mitochondrial dynamics and cell death.  相似文献   

17.
18.
Cao L  Wang Z  Yang X  Xie L  Yu L 《FEBS letters》2008,582(27):3817-3822
BIR domain and its containing proteins play critical roles in cell apoptosis and cell division. Here several lines of novelty were revealed based on a comprehensive evolutionary analysis of BIR domains in 11 representative organisms. First, the type II BIR domains in Survivin and Bruce showed more conservation compared with the type I BIR domains in the inhibitors of apoptosis proteins (IAPs). Second, cIAP was derived from a XIAP duplicate and emerged just after the divergence of invertebrates and vertebrates. Third, the three BIR domains of NAIP displayed significantly elevated evolutionary rates compared with the BIR domains in other IAPs.  相似文献   

19.
Wang L  Jil C  Xu Y  Xu J  Dai J  Wu Q  Wu M  Zou X  Sun L  Gu S  Xie Y  Mao Y 《Molecular biology reports》2005,32(1):47-53
Mouse U26 has been defined as a 2-aminoadipic 6-semialdehyde dehydrogenase. It was speculated to be a PQQ-dependent AAS dehydrogenase due to the research of demonstrating PQQ as a new B vitamin. We isolated a novel human cDNA from the human fetal brain cDNA library we constructed. Its deduced protein was most related to mouse U26. Thus, we termed it human U26. This putative protein contains an AMP-binding domain, a Phosphopantetheine-binding domain and six PQQ-binding motifs. Human U26 mRNA is ubiquitously expressed in adult tissues and is highly expressed in colon adenocarcinoma (CX-1) and colon adenocarcinoma (GI-112) cell lines. Further study should be made to clarify the precise function of human U26.The nucleotide sequence reported in this paper has been submitted to GenBank under accession number AY314787.  相似文献   

20.
YtvA is a blue-light-sensing protein from Bacillus subtilis related to plant phototropins. It carries a LOV (light, oxygen and voltage) domain, binding FMN (flavin mononucleotide) as chromophore, and a STAS (sulphate transporters and antisigma-factor antagonists) domain with poorly characterized function. We have recently shown that YtvA binds triphosphate nucleotides (NTP) and highlighted a structural similarity between the STAS domain and small GTP-binding proteins. In this work we further investigated the NTP-binding properties of YtvA, employing a fluorescent derivative of GTP (GTPTR) and mutagenesis experiments. The main results are as follows: (a) competition experiments indicate that the affinity of YtvA for GTP is much higher than that for GDP and GMP. (b) Blue-light-induced structural changes are transmitted from the LOV core to the NTP-binding cavity, establishing a possible intraprotein signal-transduction pathway. (c) A mutation in the central β-scaffold of the LOV core, E105L, impairs the light-driven spectroscopic changes of bound GTPTR. This result is supported by circular dichroism data, in that YtvA-E105L does not show the light-induced conformational change in the turn fraction that characterizes YtvA, implying that E105 is functionally important. (d) In the structural model of the LOV-STAS complex, based on docking algorithms, the interface includes the Iβ–Hβ loop on the LOV core, as well as parts of the central β-scaffold. E105 is predicted to interact with the LOV-STAS linker region, suggested to play a role in phototropin signaling. Proceedings of the XVIII Congress of the Italian Society of Pure and Applied Biophysics (SIBPA), Palermo, Sicily, September 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号