首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
E. A. Irlandi 《Oecologia》1994,98(2):176-183
Landscape ecology, predominantly a terrestrial discipline, considers the effect of large-scale (tens of meters to kilometers) spatial patterns of habitats on ecological processes such as competition, predation, and flow of energy. In this study, a landscape-ecology approach was applied to a marine soft-sediment environment to examine rates of predation and transfer of secondary production in and around vegetated habitats. Seagrass beds naturally occur in a variety of spatial configurations from patches 1–10s of meters across with interspersed unvegetated sediments (i.e., patchy coverage) to more continuous coverage with little or no bare sediment. I designed experiments to address how percent coverage of seagrass in a 100-m2 area of seafloor, and the spatial arrangement (degree of patchiness or fragmentation) of an equal area (100 m2) of vegetation affected predation (lethal) and siphon nipping (sublethal) intensity on an infaunal bivalve, Mercenaria mercenaria (hard clam). Measures of seagrass density and biomass with different percent coverage of seagrass were also made. When clams were placed in both the vegetated and unvegetated portions of the seafloor nearly twice as many clams were recovered live with 99% seagrass cover than with 23% seagrass cover, while survivorship was intermediate with 70% cover. Cropping of clam siphons from both the vegetated and unvegetated sediments was also affected by the amount of seagrass cover in a 100-m2 area of seafloor: mean adjusted siphon weights were approximately 76% heavier from the 99% seagrass cover treatment than from the 70% or 23% cover treatments. Survivorship of clams placed within an equal area of seagrass in very patchy, patchy, and continuous spatial configurations was 40% higher in the continuous seagrass treatment than in either of the two patchy treatments. This study demonstrates that transfer of secondary production in the form of predation and cropping on an infaunal organism is altered as the percent cover of seagrass changes. While large-scale changes in the amount and spatial patterning of vegetation may affect habitat utilization patterns and foraging HGLoopbehavior, increased seagrass density and biomass with increased percent coverage of seagrass limit any conclusions concerning predator foraging behavior and feeding success in response to patch shapes and sizes. Instead, local changes in seagrass characteristics provide the most compelling explanation for the observed results.  相似文献   

2.
The importance of predation by fish in altering abundances of juvenile King George whiting (Sillaginodes punctata) was examined at multiple locations in Port Phillip Bay, Australia, by manipulating the numbers of piscivorous fish in unvegetated sand and seagrass habitats using cages. Additional information regarding the local abundances of, and habitat use by, the most common piscivorous fish, Western Australian salmon (Arripidae: Arripis truttacea, Cuvier), was gathered using netting surveys and underwater video. Regardless of habitat, abundances of S. punctata were similar in partial cages and uncaged areas. In unvegetated sand, S. punctata were more abundant inside cages than partial cages or uncaged areas. In seagrass, there was no difference in the numbers of S. punctata between caging treatments. Patterns in abundances of S. punctata between cage treatments in each habitat were consistent between sites, but the relative difference in the abundances of S. punctata between habitats was site specific. Abundances of A. truttacea varied significantly between sites, and they consumed a variety of epibenthic fishes including atherinids, clupeids, gobiids, syngnathids and pleuronectids. At one site in Port Phillip Bay (Blairgowrie), A. truttacea occurred more commonly in patches of unvegetated sand than seagrass. Over unvegetated sand, abundances of A. truttacea varied little between partial cages and uncaged areas. The numbers of S. punctata varied between caging treatments and habitats in a manner that was consistent with a model whereby seagrass interferes with foraging by predatory fish and provides juvenile fish with a refuge from predation. The almost total absence of A. truttacea in seagrass habitats and the lack of S. punctata in their diets implies, however, that patterns in S. punctata in seagrass/unvegetated sand mosaics are driven by processes other than direct predation.  相似文献   

3.
海草床是近岸海域中生产力极高的生态系统,是许多海洋水生动物的重要育幼场所。从生物幼体的密度、生长率、存活率和生境迁移4个方面阐述海草床育幼功能,并从食源和捕食压力两个方面探讨海草床育幼功能机理。许多生物幼体在海草床都呈现出较高的密度、生长率和存活率,并且在个体发育到一定阶段从海草床向成体栖息环境迁移。丰富的食物来源或较低的捕食压力可能是海草床具有育幼功能的主要原因,但不同的生物幼体对海草床的利用有差异,海草床育幼功能的机理在不同环境条件下也存在差异。提出未来海草床育幼功能的重点研究方向:(1)量化海草床对成体栖息环境贡献量;(2)全球气候变化和人类活动对海草床育幼功能的影响;(3)海草床育幼功能对海草床斑块效应和边缘效应的响应,以期为促进我国海草床育幼研究和海草床生态系统保护提供依据。  相似文献   

4.
 Seagrass meadows are often important habitats for newly recruited juvenile fishes. Although substantial effort has gone into documenting patterns of association of fishes with attributes of seagrass beds, experimental investigations of why fish use seagrass habitats are rare. We performed two short-term manipulative field experiments to test (1) the effects of food supply on growth and densities of fish, and (2) effects of predation on the density and size distribution of fish recruits, and how this varies among habitat types. Experiments were conducted in Galveston Bay, Texas, and we focused on the common estuarine fish, pinfish Lagodon rhomboides. In the first experiment, replicate artifical seagrass and sand plots were either supplemented with food or left as controls. Recruitment of pinfish was significantly greater to seagrass than sand habitats; however, we detected no effect of food supplementation on the abundance of recruits in either habitat. Pinfish recruits in artifical seagrass grew at a significantly faster rate than those in sand habitats, and fish supplemented with food exhibited a greater growth rate than controls in both sand and artifical grass habitats. In our second experiment, we provided artificial seagrass and sand habitats with and without predator access. Predator access was manipulated with cages, and two-sided cages served as controls. Recruitment was significantly greater to the cage versus cage-control treatment, and this effect did not vary between habitats. In addition, the standard length of pinfish recruits was significantly larger in the predator access than in the predator exclusion treatment, suggesting size-selective predation on smaller settlers or density-dependent growth. Our results indicate that the impact of predation on pinfish recruits is equivalent in both sand and vegetated habitats, and thus differential predation does not explain the higher recruitment of pinfish to vegetated than to nonvegetated habitats. Since predators may disproportionately affect smaller fish, and a limited food resource appears to be more effectively utilized by fish in vegetated than in unvegetated habitats, we hypothesize that pinfish recruits may select vegetated habitats because high growth rates allow them to achieve a size that is relatively safe from predation more quickly. Received: 10 October 1996 / Accepted: 5 April 1997  相似文献   

5.
Habitat edges frequently possess distinct ecological conditions that affect interactions such as competition and predation. Within a species' preferred habitat, the structural complexity and resource availability of adjacent habitats may influence the effect of edges on ecological processes. In nearshore waters of New England, American lobsters (Homarus americanus) inhabit fragmented cobble reefs that often are bordered by unvegetated sediment and occasionally by seagrass. We determined whether proximity to cobble patch edges, microhabitat characteristics within cobble habitat, and the type of habitat adjacent to cobble patches (seagrass or unvegetated sediment) influence the density and survival of juvenile and adult American lobsters in Narragansett Bay, Rhode Island, USA. We surveyed naturally occurring cobble patches and artificial cobble reefs to determine how the odds of finding lobsters varied with distance from the edge and habitat type. Additionally, we tethered lobsters at different distances from the edge inside and outside of cobble patches to determine how lobster relative survival varied with edge proximity and habitat type. In cobble habitat, the odds of finding large lobsters (adolescents and adults > 40 mm carapace length (CL)) were highest near patch edges regardless of adjacent habitat type, whereas smaller lobsters (e.g. emergent juveniles 15-25 mm CL) were more abundant in patch interiors when seagrass bordered cobble patches. The odds of finding lobsters also increased with the relative amount of cobble cover within patches. In predation experiments, lobster relative survival after 6 h was lowest outside of cobble and increased toward cobble patch interiors, but after 24 h this trend disappeared or reversed. Seagrass appeared to offer greater refuge for lobsters than did unvegetated sediment. Our results suggest that proximity to patch edges influences lobster distribution and survival, and that edge effects on lobsters vary with life history phase and with the type of habitat adjacent to cobble patches.  相似文献   

6.
In this study we used pinfish (Lagodon rhomboides) in field experiments to examine linkages between intertidal saltmarsh and adjacent subtidal habitats. Pinfish are more than twice as abundant in intertidal marshes adjacent to seagrass beds than in those adjacent to the unvegetated subtidal bottom. Movement of pinfish between the marsh edge and the adjacent subtidal habitat was greater for fish captured in areas with both intertidal and subtidal vegetation than in those with intertidal vegetation and adjacent unvegetated mudflats. This movement provides an important link between habitats, allowing transfer of marsh-derived secondary production to subtidal seagrass beds and vice versa. Pinfish held in enclosures with both intertidal and subtidal vegetation were, on average, approximately 90% heavier than fish held in enclosures with intertidal vegetation and unvegetated subtidal bottom. Because saltmarshes and seagrass beds contribute to the production of living marine resources, active measures are being taken to preserve and restore these habitats. The results from this study have direct application to decisions concerning site selection and optimal spatial proximity of saltmarsh and seagrass habitats in the planning of restoration and mitigation projects. To maximize secondary production and utilization of intertidal marshes, managers may opt to restore and/or preserve marshes adjacent to subtidal seagrass beds. Received: 31 May 1996 / Accepted: 23 October 1996  相似文献   

7.
The role of fish predation in structuring assemblages of fish over unvegetated sand and seagrass was examined using enclosure and exclusion cages to manipulate the abundance of predatory fish from November 1998 to January 1999. In our exclusion experiment, piscivorous fish were excluded from patches of unvegetated sand and seagrass to measure how they altered abundances of small fishes, i.e., fish <10 cm in length. Habitats from which piscivorous fish were excluded contained more small fish than those with partial cages, which in turn contained more fish than uncaged areas. These patterns were consistent between unvegetated sand and seagrass areas, although the relative differences between predator treatments varied with habitat. Overall, small fish were more abundant in unvegetated sand than seagrass. Atherinids and syngnathids were the numerically dominant families of small fish and varied in complex ways amongst habitats and cage treatments. The abundance of atherinids varied inconsistently between cage treatments through time. Only during the final two sampling times did the abundance of atherinids vary significantly across cage treatments. Syngnathids were strongly associated with seagrass and were significantly more abundant in caged than uncaged habitats. In our enclosure experiment, five individuals of a single species of transient piscivorous fish, Western Australian salmon (Arripidae: Arripis truttacea Cuvier), were enclosed in cages to provide an estimate of the potential for this species to impact on small fish. The abundance of small fish varied significantly between cage treatments. Small fish were more abundant in enclosure cages and exclusion cages than uncaged areas; however, there was no difference in the abundance of small fish in enclosure cages and partial cages, and no difference between exclusion cages and partial cages. These patterns were consistent amongst habitats. Atherinids and syngnathids were again the numerically dominant families of small fish; atherinids varied more with cage structure while syngnathids did not vary statistically between cages, blocks (locations within which a single replicate of each cage treatment was applied) or habitats. Dietary analysis of caged A. truttacea demonstrated the potential for this species to influence the assemblage structure of small fish through predation - atherinids were consumed more frequently in unvegetated sand than seagrass, and syngnathids were consumed only in seagrass, where they are most abundant. Observations of significant cage or predation effects depended strongly on the time at which sampling was undertaken. In the case of the atherinids, no predation or cage effects were observed during the first two sampling times, but cage effects and predation effects strongly influenced abundances of fish during the third and fourth sampling times, respectively. Our study suggests that transient piscivorous fish may be important in structuring assemblages of small fish in seagrass and unvegetated sand, and seagrass beds may provide a refuge to fishes. But the importance of habitat complexity and predation, in relation to the potentially confounding effects of cage structure, depends strongly on the time at which treatments are sampled, and the periodicity and multiplicity of sampling should be considered in future predation studies.  相似文献   

8.
Nonreef habitats such as mangroves, seagrass, and macroalgal beds are important for foraging, spawning, and as nursery habitat for some coral reef fishes. The spatial configuration of nonreef habitats adjacent to coral reefs can therefore have a substantial influence on the distribution and composition of reef fish. We investigate how different habitats in a tropical seascape in the Philippines influence the presence, density, and biomass of coral reef fishes to understand the relative importance of different habitats across various spatial scales. A detailed seascape map generated from satellite imagery was combined with field surveys of fish and benthic habitat on coral reefs. We then compared the relative importance of local reef (within coral reef) and adjacent habitat (habitats in the surrounding seascape) variables for coral reef fishes. Overall, adjacent habitat variables were as important as local reef variables in explaining reef fish density and biomass, despite being fewer in number in final models. For adult and juvenile wrasses (Labridae), and juveniles of some parrotfish taxa (Chlorurus), adjacent habitat was more important in explaining fish density and biomass. Notably, wrasses were positively influenced by the amount of sand and macroalgae in the adjacent seascape. Adjacent habitat metrics with the highest relative importance were sand (positive), macroalgae (positive), and mangrove habitats (negative), and fish responses to these metrics were consistent across fish groups evaluated. The 500‐m spatial scale was selected most often in models for seascape variables. Local coral reef variables with the greatest importance were percent cover of live coral (positive), sand (negative), and macroalgae (mixed). Incorporating spatial metrics that describe the surrounding seascape will capture more holistic patterns of fish–habitat relationships on reefs. This is important in regions where protection of reef fish habitat is an integral part of fisheries management but where protection of nonreef habitats is often overlooked.  相似文献   

9.
A decrease in seagrass cover and a commensurate increase in Caulerpa taxifolia distribution in Moreton Bay have prompted concern for the impact that habitat change may have on faunal communities. Therefore, it is important to understand the patterns of habitat use. We examined habitat selection of three common seagrass species: double-ended pipefish (Syngnathoides biaculeatus), eastern trumpeter (Pelates quadrilineatus), and fan-bellied leatherjacket (Monacanthus chinensis) using a mesocosm experiment. Fish were given three possible habitat pairings (1) seagrass and C. taxifolia, (2) seagrass and unvegetated, and (3) C. taxifolia and unvegetated. Observation trials were conducted during the day and night over two days. In all trials, fish preferred vegetated habitat (seagrass or C. taxifolia) over unvegetated habitat (sand). In seagrass and C. taxifolia trials, all species preferred seagrass significantly over C. taxifolia. Habitat use patterns did not differ between day and night trials. Caulerpa taxifolia provides a valuable structured habitat in the absence of seagrass; however, it is unclear if C. taxifolia meadows provide other resource benefits to fishes beyond that of shelter.  相似文献   

10.
This paper presents the results of a series of habitat selection experiments aimed at determining if juvenile Melicertus latisulcatus generally occur on intertidal sand- and mud-flats as a result of active selection of unvegetated areas, or due to extrinsic factors (e.g. differential predation). In the laboratory, juvenile M. latisulcatus showed a clear preference for habitats containing sand irrespective of the presence or absence of predators. If sand was not available, artificial seagrass was chosen as a secondary preference but was avoided when sand alone was also present. Importantly, the combinations of habitats chosen for testing allowed us to determine that artificial seagrass provided a good surrogate for real seagrass, and that the presence of potential food (epiphytes) did not appear to influence habitat selection. There was also no difference in the habitat selected between day and night, and only minor differences with prawn size. Thus, juvenile M. latisulcatus appear to have a hierarchy of mechanisms for avoiding predators, with burying in sand being the preferred option. If burying is not possible, then seagrass is used for shelter. Active habitat selection to avoid predation appears likely to play a substantial role in determining the distribution of these animals on unvegetated sand- and mud-flats.  相似文献   

11.
Mean number of species and density of fishes in nearshore shallow waters of Shark Bay, a large subtropical embayment, were c . seven and 19.5 times greater in seagrass than over bare sand, where protection from predators and the abundance of potential invertebrate prey were less. The number of fish species and density of fishes over bare sand were lower in nearshore than offshore waters, where there was a greater amount of organic material and thus presumably a greater density of benthic macroinvertebrate prey. Species composition in vegetated and unvegetated habitats differed markedly, with species such as Monacanthus chinensis, Apogon rueppellii and Pelates quadrilineatus being largely confined to seagrass, whereas others such as Pseudorhombus jenynsii, Torquigener whitleyi and Engyprosopon grandisquama were found predominantly or exclusively over bare sand. The ichthyofauna in beds of Posidonia australis , in which the canopy is uniformly dense, differed in composition and comprised a greater number of species and density of fishes than that in Amphibolis antarctica , in which an open space is present beneath the terminal clusters of relatively short leaves. Species composition in the beds of both of these seagrass species underwent well defined cyclical changes, caused by out-of-phase sequential changes in the densities of certain species. Such changes were less common over bare sand, where the ichthyofaunal composition was more variable. The number of species and density of fishes over bare sand were greater at night than during the day, reflecting, in part, a tendency for species such as A. rueppellii to move into unvegetated areas to feed at night, when the likelihood of predation by visual predators would be reduced. Within Shark Bay, ichthyofaunal composition is influenced most by habitat type (vegetated v . unvegetated), followed in general by water depth and then region in the bay and time of year.  相似文献   

12.
Predator–prey interactions are strongly influenced by habitat structure, particularly in coastal marine habitats such as seagrasses in which structural complexity (SC) may vary over small spatial scales. For seagrass mesopredators such as juvenile fishes, optimality models predict that fitness will be maximized at levels of SC that enhance foraging but minimize predation risk, both of which are functions of body size. We tested the hypothesis that in eelgrass (Zostera marina) habitat, optimal SC for juvenile giant kelpfish (Heterostichus rostratus), an abundant eelgrass mesopredator in southern California, changes through ontogeny. To do this, we quantified eelgrass SC effects on habitat associations, relative predation risk, and foraging efficiency for three size classes of juvenile giant kelpfish. We found that habitat selection differed with fish size: small fish selected dense eelgrass, whereas larger fish selected sparse eelgrass. Small kelpfish experienced the lowest relative predation risk in dense eelgrass but also had higher foraging efficiency in dense eelgrass, suggesting that dense eelgrass is selected by these fish because it minimizes risk and maximizes potential for growth. Surprisingly, larger kelpfish did not experience lower predation risk than small kelpfish. However, larger kelpfish experienced higher foraging efficiency in sparse eelgrass vs. dense eelgrass, suggesting that they select sparse eelgrass to maximize foraging efficiency. Our study highlights that trade-offs between predation risk and foraging can occur within a single habitat type, that studies should consider how habitat value changes through ontogeny, and that seagrass habitat value may be maximal when within-patch variability in SC is high.  相似文献   

13.
Increased habitat complexity is supposed to promote increased diversity, abundance and biomass. This study tested the effect of the macroalgal cover on temperate reef fishes by mimicking macroalgae on artificial reefs in NW Sicily (Mediterranean Sea). Macroalgal cover affected reef fishes in different ways and independently of intrinsic temporal trends. The fish assemblages of manipulated and control artificial reef units differed in the relative abundances of the associated species, but little in species composition. In line with studies in seagrass habitats, fishes were most abundant in reefs covered by artificial macroalgae. Three species (Boops boops, Serranus scriba and Symphodus ocellatus) exhibited consistently greater abundance on vegetated reef units than on control reef units. The total number of species and the abundance of three particular species (S. scriba, S. ocellatus and Thalassoma pavo) displayed temporal trends which were independent on short and large temporal scales. Only fish total biomass and one species (Spicara flexuosa) displayed strong effects of interaction among the experimental factors. Mechanisms to explain these findings are discussed from observational evidence on habitat use and interactions among multiple species. This study highlights that manipulative experiments involving repeated sampling of fish in artificial habitats appear to be a valid approach to study fish-habitat relationships in fluctuating environments. It is also concluded that macroalgae mimics may serve as a tool for restoring lost marine vegetated habitats when current human-induced conditions prevent the recovery of pristine macroalgal stands.  相似文献   

14.
Seascape-scale trophic links for fish on inshore coral reefs   总被引:2,自引:0,他引:2  
It is increasingly accepted that coastal habitats such as inshore coral reefs do not function in isolation but rather as part of a larger habitat network. In the Caribbean, trophic subsidies from habitats adjacent to coral reefs support the diet of reef fishes, but it is not known whether similar trophic links occur on reefs in the Indo-Pacific. Here, we test whether reef fishes in inshore coral, mangrove, and seagrass habitats are supported by trophic links. We used carbon stable isotopes and mathematical mixing models to determine the minimum proportion of resources from mangrove or seagrass habitats in the diet of five fish species from coral reefs at varying distances (0–2,200 m) from these habitats in Moreton Bay, Queensland, eastern Australia. Of the fish species that are more abundant on reefs near to mangroves, Lutjanus russelli and Acanthopagrus australis showed no minimum use of diet sources from mangrove habitat. Siganus fuscescens utilized a minimum of 25–44 % mangrove sources and this contribution increased with the proximity of reefs to mangroves (R 2 = 0.91). Seagrass or reef flat sources contributed a minimum of 14–78 % to the diet of Diagramma labiosum, a species found in higher abundance on reefs near seagrass beds, but variation in diet among reefs was unrelated to seascape structure. Seagrass or reef flat sources also contributed a minimum of 8–55 % to a fish species found only on reefs (Pseudolabrus guentheri), indicating that detrital subsidies from these habitats may subsidize fish diet on reefs. These results suggest that carbon sources from multiple habitats contribute to the functioning of inshore coral reef ecosystems and that trophic connectivity between reefs and mangroves may enhance production of a functionally important herbivore.  相似文献   

15.
Studies on the effects of within-patch scale structure of seagrass habitats on predator–prey fish interactions and abundance/habitat use patterns were reviewed. Most laboratory experiments have employed chase-and-attack predators, usually resulting in lower foraging efficiency in (denser) seagrass. However, a few laboratory procedures employed alternative foraging tactics, resulting in no differences in prey mortality rates. Field studies did not always result in lower prey mortality rates in seagrass habitats. Accordingly, it is premature to conclude that seagrass presence is almost always negatively related to predator foraging efficiency or that increasing seagrass abundance is usually associated with a decrease in predator efficiency. Because several categories of predator and prey fishes occur in seagrass habitats, further studies are needed with all of these predator–prey combinations, in order to fully clarify predator–prey fish interactions in association with seagrass structure. Seagrass fishes have been shown to respond to alterations in seagrass structure in various ways: seagrass height and/or density reduction or clearance resulted in decreased abundance of some species but increases or no change in others. Some explanations have been proposed, not all mutually exclusive, for these phenomena. Although within-patch scale processes have been well studied, room exists for improvement. For example, predator–prey fish interactions in relation to varying within-patch scale complexity is not yet fully understand. The relationships of patch size, edge effects and within-patch scale complexity also still remain unclear. Further studies, which add to the clarification of within-patch scale process, will in turn improve our understanding of larger spatial scale processes.  相似文献   

16.
Seagrass habitats provide structural complexity in coastal estuarine and marine environments, which offer fish optimal foraging grounds and refuge from predation. However, seagrasses are some of the most threatened ecosystems globally, with anthropogenic activities such as population growth and environmental degradation leading to the fragmentation, thinning, and loss of these habitats. Rhabdosargus holubi is one of only a few vegetation-associated marine fish species in South African estuaries. Although field studies have shown a strong association with seagrass over other aquatic vegetation for the juveniles of this species, habitat choice has never been empirically tested. Here, we used artificial vegetation units to test habitat choice (different structural complexities) for this species. We also tested whether habitat choice is influenced by a predatory threat, with fish preferentially selecting dense habitat in the presence of a predator and whether this effect may be more apparent in smaller individuals. We found that R. holubi significantly prefer greater structural complexity over less complex habitats, in both the absence and presence of a predator and for both small and large juveniles, showing that R. holubi actively choose more complex structures and are attracted to the structure per se irrespective of the threat of predation. This study highlights the importance of dense seagrass as nursery areas for this species and demonstrates how the loss of these habitats could impact the nursery function of estuaries.  相似文献   

17.
Nursery habitats provide elevated survival and growth to the organisms that associate with them, and as such are a crucial early life-stage component for many fishes and invertebrates. The exact mechanisms by which these benefits are afforded to associated organisms, however, are often unclear. Here we assessed potential explanations of the nursery function of structurally complex habitats for post-settlement snapper, Chrysophrys auratus, in New Zealand. Specifically, we deployed Artificial Seagrass Units (ASUs) and used a combination of video observation, netting and diet analysis of associated post-settlement snapper as well describing potential prey within the micro-habitats surrounding ASUs. We did not observe any predation attempts and few potential predators, suggesting that for snapper the nursery value of structurally complex habitats is not as a predation refuge. The diet of post-settlement snapper mostly consisted of calanoid and cyclopoid copepods, which were most commonly sampled from within the water column. Nearly all suspected feeding events were also observed within the water column. When considering the velocity of water flow at each ASU, plankton sampling revealed a greater availability of copepods with increasing current strength, while netting and video observation demonstrated that the abundance of snapper was highest at sites with intermediate water velocity. This study highlights that the interaction between water flow and food availability may represent an important trade-off between energy expenditure and food intake for post-settlement snapper. Structurally complex habitats may mediate this relationship, allowing snapper to access sites with higher food availability while reducing swimming costs. This mechanism may have broader relevance, potentially explaining the importance of estuarine nursery habitats for other species.  相似文献   

18.
Seagrass habitats worldwide are degrading and becoming fragmented, threatening the important ecosystem services they provide. Fauna associated with seagrasses, particularly cryptic species, are expected to respond to these changes, but are difficult to detect at ecologically meaningful scales using non-extractive techniques. We used a small, wide-angle camera (GoPro) and a small quantity of bait positioned within the canopy of Posidonia australis meadows in Jervis Bay, New South Wales to assess the response of fishes to seagrass cover. We saw a clear positive relationship with the condition of P. australis; a high cover of this seagrass had positive effects on the diversity and abundance of cryptic fauna. Our findings highlight ecosystem shifts associated with the loss and fragmentation of biogenic habitat. These changes are of particular relevance for P. australis meadows given their current status as an endangered ecological community in several locations in NSW and their slow rate of recovery from disturbance.  相似文献   

19.
The effects of habitat structure and time of day on predation success of Moses perch, Lutjanus russelli , and blue-spotted trevally, Caranx bucculentus , feeding on juvenile brown tiger prawn, Penaeus esculentus , were tested in the laboratory. Our experiments demonstrated that both softsubstratum, in which prawns can burrow, and seagrass habitats reduce predation rates by fish during daytime when compared to hard-substratum habitats. However, the protection offered by burrowing in a soft substratum during daytime disappears at night when prawns become active and are more available to fish. Seagrass structure offers the same protection during both night and day. This is attributed to the structural complexity of the seagrass habitat, as well as the behaviour and disruptive coloration of the prawns. The results suggest that fish predation on juvenile P. esculentus may not be very important in seagrass nurseries but could be very high in other habitats.  相似文献   

20.
A replicated pattern of habitat‐associated morphology among different lineages may represent adaptive convergence. Deviation from the replicated (shared) pattern of diversification reflects unique (e.g. species specific) effects resulting from site‐ or species‐specific selection, intrinsic factors (e.g. G matrix differences) or chance historical events (e.g. genetic drift). For two distantly‐related estuarine fishes [Lagodon rhomboides (Sparidae; Linnaeus) and Leiostomus xanthurus (Sciaenidae; Lacepède)], we examined shared and unique instances of body shape variation between seagrass (complex) and sand (simple) microhabitats at four sites. We found extensive shape variation between microhabitats for both species. As a shared response, both species from sand had subterminal snouts and long caudal peduncles, whereas those from seagrass had terminal snouts and deep bodies. Unique responses involved a greater difference in Lagodon rhomboides head shape between microhabitats compared to L. xanthurus. Patterns of shape variation fit ecomorphological predictions for foraging in the respective microhabitats (simple versus complex) because deep bodies are expected for fish that must negotiate complex habitats and subterminal snouts facilitate benthic foraging common in barren habitats. Parallel differentiation between microhabitats simultaneously suggests that individuals of each species use a particular microhabitat within estuaries for development and the differentiation in shape represents adaptive convergence. Spatial variation in the magnitude of shape differences between microhabitats was an unexpected finding and suggests that phenotypic variation operates at multiple scales within estuaries. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 147–158.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号