首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
 Seagrass meadows are often important habitats for newly recruited juvenile fishes. Although substantial effort has gone into documenting patterns of association of fishes with attributes of seagrass beds, experimental investigations of why fish use seagrass habitats are rare. We performed two short-term manipulative field experiments to test (1) the effects of food supply on growth and densities of fish, and (2) effects of predation on the density and size distribution of fish recruits, and how this varies among habitat types. Experiments were conducted in Galveston Bay, Texas, and we focused on the common estuarine fish, pinfish Lagodon rhomboides. In the first experiment, replicate artifical seagrass and sand plots were either supplemented with food or left as controls. Recruitment of pinfish was significantly greater to seagrass than sand habitats; however, we detected no effect of food supplementation on the abundance of recruits in either habitat. Pinfish recruits in artifical seagrass grew at a significantly faster rate than those in sand habitats, and fish supplemented with food exhibited a greater growth rate than controls in both sand and artifical grass habitats. In our second experiment, we provided artificial seagrass and sand habitats with and without predator access. Predator access was manipulated with cages, and two-sided cages served as controls. Recruitment was significantly greater to the cage versus cage-control treatment, and this effect did not vary between habitats. In addition, the standard length of pinfish recruits was significantly larger in the predator access than in the predator exclusion treatment, suggesting size-selective predation on smaller settlers or density-dependent growth. Our results indicate that the impact of predation on pinfish recruits is equivalent in both sand and vegetated habitats, and thus differential predation does not explain the higher recruitment of pinfish to vegetated than to nonvegetated habitats. Since predators may disproportionately affect smaller fish, and a limited food resource appears to be more effectively utilized by fish in vegetated than in unvegetated habitats, we hypothesize that pinfish recruits may select vegetated habitats because high growth rates allow them to achieve a size that is relatively safe from predation more quickly. Received: 10 October 1996 / Accepted: 5 April 1997  相似文献   

2.
The importance of predation by fish in altering abundances of juvenile King George whiting (Sillaginodes punctata) was examined at multiple locations in Port Phillip Bay, Australia, by manipulating the numbers of piscivorous fish in unvegetated sand and seagrass habitats using cages. Additional information regarding the local abundances of, and habitat use by, the most common piscivorous fish, Western Australian salmon (Arripidae: Arripis truttacea, Cuvier), was gathered using netting surveys and underwater video. Regardless of habitat, abundances of S. punctata were similar in partial cages and uncaged areas. In unvegetated sand, S. punctata were more abundant inside cages than partial cages or uncaged areas. In seagrass, there was no difference in the numbers of S. punctata between caging treatments. Patterns in abundances of S. punctata between cage treatments in each habitat were consistent between sites, but the relative difference in the abundances of S. punctata between habitats was site specific. Abundances of A. truttacea varied significantly between sites, and they consumed a variety of epibenthic fishes including atherinids, clupeids, gobiids, syngnathids and pleuronectids. At one site in Port Phillip Bay (Blairgowrie), A. truttacea occurred more commonly in patches of unvegetated sand than seagrass. Over unvegetated sand, abundances of A. truttacea varied little between partial cages and uncaged areas. The numbers of S. punctata varied between caging treatments and habitats in a manner that was consistent with a model whereby seagrass interferes with foraging by predatory fish and provides juvenile fish with a refuge from predation. The almost total absence of A. truttacea in seagrass habitats and the lack of S. punctata in their diets implies, however, that patterns in S. punctata in seagrass/unvegetated sand mosaics are driven by processes other than direct predation.  相似文献   

3.
Synopsis Behavioral preference for a structured habitat (artificial seagrass) by juvenile walleye pollock,Theragra chalcogramma, was tested in controlled laboratory experiments. We monitored position of fish in 2000 1 tanks with and without artificial seagrass present in one half of the tank. In addition, we exposed walleye pollock to a predator model, assessing their response when a grass plot was available or unavailable as a potential refuge. In the absence of predators, the fish avoided the artificial seagrass, displaying a preference for the open water side of the experimental tanks. In the presence of a predator model, however, juvenile walleye pollock readily entered the artificial seagrass plots. In addition, they often remained in the grass canopy in proximity to the predator instead of moving out of the grass to avoid the predator (when no grass was present they consistently moved to the opposite side of the tank from the predator). The behavioral choices exhibited in this study suggest that juvenile walleye pollock modify habitat selection in response to perceived predation risk, and recognize the structure provided by artificial seagrass as a potential refuge.  相似文献   

4.
The role of fish predation in structuring assemblages of fish over unvegetated sand and seagrass was examined using enclosure and exclusion cages to manipulate the abundance of predatory fish from November 1998 to January 1999. In our exclusion experiment, piscivorous fish were excluded from patches of unvegetated sand and seagrass to measure how they altered abundances of small fishes, i.e., fish <10 cm in length. Habitats from which piscivorous fish were excluded contained more small fish than those with partial cages, which in turn contained more fish than uncaged areas. These patterns were consistent between unvegetated sand and seagrass areas, although the relative differences between predator treatments varied with habitat. Overall, small fish were more abundant in unvegetated sand than seagrass. Atherinids and syngnathids were the numerically dominant families of small fish and varied in complex ways amongst habitats and cage treatments. The abundance of atherinids varied inconsistently between cage treatments through time. Only during the final two sampling times did the abundance of atherinids vary significantly across cage treatments. Syngnathids were strongly associated with seagrass and were significantly more abundant in caged than uncaged habitats. In our enclosure experiment, five individuals of a single species of transient piscivorous fish, Western Australian salmon (Arripidae: Arripis truttacea Cuvier), were enclosed in cages to provide an estimate of the potential for this species to impact on small fish. The abundance of small fish varied significantly between cage treatments. Small fish were more abundant in enclosure cages and exclusion cages than uncaged areas; however, there was no difference in the abundance of small fish in enclosure cages and partial cages, and no difference between exclusion cages and partial cages. These patterns were consistent amongst habitats. Atherinids and syngnathids were again the numerically dominant families of small fish; atherinids varied more with cage structure while syngnathids did not vary statistically between cages, blocks (locations within which a single replicate of each cage treatment was applied) or habitats. Dietary analysis of caged A. truttacea demonstrated the potential for this species to influence the assemblage structure of small fish through predation - atherinids were consumed more frequently in unvegetated sand than seagrass, and syngnathids were consumed only in seagrass, where they are most abundant. Observations of significant cage or predation effects depended strongly on the time at which sampling was undertaken. In the case of the atherinids, no predation or cage effects were observed during the first two sampling times, but cage effects and predation effects strongly influenced abundances of fish during the third and fourth sampling times, respectively. Our study suggests that transient piscivorous fish may be important in structuring assemblages of small fish in seagrass and unvegetated sand, and seagrass beds may provide a refuge to fishes. But the importance of habitat complexity and predation, in relation to the potentially confounding effects of cage structure, depends strongly on the time at which treatments are sampled, and the periodicity and multiplicity of sampling should be considered in future predation studies.  相似文献   

5.
Mean number of species and density of fishes in nearshore shallow waters of Shark Bay, a large subtropical embayment, were c . seven and 19.5 times greater in seagrass than over bare sand, where protection from predators and the abundance of potential invertebrate prey were less. The number of fish species and density of fishes over bare sand were lower in nearshore than offshore waters, where there was a greater amount of organic material and thus presumably a greater density of benthic macroinvertebrate prey. Species composition in vegetated and unvegetated habitats differed markedly, with species such as Monacanthus chinensis, Apogon rueppellii and Pelates quadrilineatus being largely confined to seagrass, whereas others such as Pseudorhombus jenynsii, Torquigener whitleyi and Engyprosopon grandisquama were found predominantly or exclusively over bare sand. The ichthyofauna in beds of Posidonia australis , in which the canopy is uniformly dense, differed in composition and comprised a greater number of species and density of fishes than that in Amphibolis antarctica , in which an open space is present beneath the terminal clusters of relatively short leaves. Species composition in the beds of both of these seagrass species underwent well defined cyclical changes, caused by out-of-phase sequential changes in the densities of certain species. Such changes were less common over bare sand, where the ichthyofaunal composition was more variable. The number of species and density of fishes over bare sand were greater at night than during the day, reflecting, in part, a tendency for species such as A. rueppellii to move into unvegetated areas to feed at night, when the likelihood of predation by visual predators would be reduced. Within Shark Bay, ichthyofaunal composition is influenced most by habitat type (vegetated v . unvegetated), followed in general by water depth and then region in the bay and time of year.  相似文献   

6.
Seagrass beds provide food and shelter for many fish species. However, the manner in which fishes use seagrass bed habitats often varies with life stage. Juvenile fishes can be especially dependent on seagrass beds because seagrass and associated habitats (drift macroalgae) may provide an effective tradeoff between shelter from predation and availability of prey. This study addressed aspects of habitat use by post-settlement pinfish, Lagodon rhomboides (Linneaus), an abundant and trophically important species in seagrass beds in the western North Atlantic and Gulf of Mexico. Abundance of post-settlement fish in seagrass beds was positively related to volume of drift macroalgae, but not to percent cover of seagrass, indicating a possible shelter advantage of the spatially complex algae. Tethering experiments indicated higher rates of predation in seagrass without drift macroalgae than in seagrass with drift macroalgae. Aquarium experiments showed lower predation with higher habitat complexity, but differences were only significant for the most extreme cases (unvegetated bottom, highest macrophyte cover). Levels of dissolved oxygen did not differ between vegetated and unvegetated habitats, indicating no physiological advantage for any habitat. Seagrass beds with drift macroalgae provide the most advantageous tradeoff between foraging and protection from predation for post-settlement L. rhomboides. The complex three-dimensional shelter of drift macroalgae provides an effective shelter that is embedded in the foraging habitat provided by seagrass. Drift macroalgae in seagrass beds is a beneficial habitat for post-settlement L. rhomboides by reducing the risk of predation, and by providing post-settlement habitat within the mosaic (seagrass beds) of adult habitat, thus reducing risks associated with ontogenetic habitat shifts.  相似文献   

7.
Postlarval (glaucothoe) and juvenile (first crab stage, C1) red king crab Paralithodes camtschaticus actively select structurally complex substrata for settlement. Such habitats may provide them with shelter from predation during critical early stages. We tested this hypothesis by placing glaucothoe and juvenile crab in aquaria with or without natural or artificial habitats, and with or without predators (1-3-year-old red king crab) of two different sizes. Predators caused increased mortality of glaucothoe, but predator size, habitat presence and habitat type had no effect on survival. Predators caused significant mortality of C1 crabs in the absence of habitat, and mortality was inversely related to predator size. Density of glaucothoe on habitats was similar with or without predators, but density of C1 crab on habitats was higher than that of glaucothoe, and increased in the presence of large predators. Active selection for complex substrata by settling glaucothoe does not reduce cannibalism, but may pre-position them for improved survival after metamorphosis. In contrast, juvenile crabs modify their behavior to achieve higher densities in refuge habitats, which tends to dampen the effect of predation. These survival strategies may have evolved to compensate for the greater risk of predation in open habitats.  相似文献   

8.
Young juveniles of many motile benthic species are concentrated in structurally complex habitats, but the proximate causes of this distribution are usually not clear. In the present study, I assessed three potentially important processes affecting distribution and abundance of early benthic stages in the shore crab (Carcinus maenas): (1) selection of habitat by megalopae (postlarvae); (2) habitat-specific predation; and (3) post-settlement movements by juveniles. These processes were assessed concurrently over 3-9 days at two spatial scales: at the scale of square meters using cage techniques within nursery areas, and at the scale of hectares using isolated populations of juvenile shore crabs in small nursery areas as mesocosms. The results were compared to habitat-specific distribution in the field.Shore crab megalopae and first instar juveniles (settlers) were distributed non-randomly among micro-habitats in the assessed nursery areas, with great densities in both mussel beds, eelgrass and filamentous algal patches (on average 114-232 settlers m−2), and significantly smaller densities on open sand habitats at all times (on average 4 settlers m−2). The same habitat-specific settlement pattern was found in cages where predators were excluded, suggesting that active habitat selection at settlement was responsible for the initial distribution. Older juveniles (second to ninth instar crabs) were also sparse on sand, but in contrast to settlers, were concentrated in mussel beds, which showed significantly greater densities than eelgrass and algal habitats. The cage experiment demonstrated a dynamic distribution of juvenile crabs. Young juveniles constantly migrated over open sand habitats (20 m or further) and colonized the experimental plots in a habitat-specific pattern that reflected the distribution in the field. This pattern was also found for very small crabs colonizing predator-exclusion cages, suggesting that selection of habitat by migrating juveniles caused the ontogenetic change in habitat use. Although post-settlement movements were great within nursery areas, juvenile dispersal at a regional scale appeared to be small, and the recruitment of juvenile shore crabs to the shallow bays occurred mainly through pelagic megalopae.Conservative estimates at the scale of whole nursery areas, based on migration trap data and field samples, indicated great mortality of settlers and early benthic stages of shore crabs. Results from the cage experiment suggest that predation by crabs and shrimp were responsible for the high settlement mortality. Both enclosed cannibalistic juvenile crabs and local predators on uncaged habitat plots caused significant losses of settlers in all habitats (on average 22% and 64% 3 day−1, respectively). The effect of predators was highly variable between trials, but differed little between habitat types, and predation had no detectable proximate effect on juvenile distribution, despite the great losses. Small settlement densities on sand habitats in combination with a refuge at low prey numbers, and an aggregation of cannibalistic juvenile crabs in nursery habitats appear to decrease the effect of habitat-specific predation rates on the distribution of juvenile shore crabs. This study demonstrates that active habitat selection at settlement followed by a dynamic redistribution of young juveniles can be the proximate processes responsible for habitat-specific distribution of epibenthic juveniles, and indicate that predation represents a major evolutionary process reinforcing this behavior.  相似文献   

9.
Habitat edges frequently possess distinct ecological conditions that affect interactions such as competition and predation. Within a species' preferred habitat, the structural complexity and resource availability of adjacent habitats may influence the effect of edges on ecological processes. In nearshore waters of New England, American lobsters (Homarus americanus) inhabit fragmented cobble reefs that often are bordered by unvegetated sediment and occasionally by seagrass. We determined whether proximity to cobble patch edges, microhabitat characteristics within cobble habitat, and the type of habitat adjacent to cobble patches (seagrass or unvegetated sediment) influence the density and survival of juvenile and adult American lobsters in Narragansett Bay, Rhode Island, USA. We surveyed naturally occurring cobble patches and artificial cobble reefs to determine how the odds of finding lobsters varied with distance from the edge and habitat type. Additionally, we tethered lobsters at different distances from the edge inside and outside of cobble patches to determine how lobster relative survival varied with edge proximity and habitat type. In cobble habitat, the odds of finding large lobsters (adolescents and adults > 40 mm carapace length (CL)) were highest near patch edges regardless of adjacent habitat type, whereas smaller lobsters (e.g. emergent juveniles 15-25 mm CL) were more abundant in patch interiors when seagrass bordered cobble patches. The odds of finding lobsters also increased with the relative amount of cobble cover within patches. In predation experiments, lobster relative survival after 6 h was lowest outside of cobble and increased toward cobble patch interiors, but after 24 h this trend disappeared or reversed. Seagrass appeared to offer greater refuge for lobsters than did unvegetated sediment. Our results suggest that proximity to patch edges influences lobster distribution and survival, and that edge effects on lobsters vary with life history phase and with the type of habitat adjacent to cobble patches.  相似文献   

10.
Seagrasses form temporally dynamic, fragmented subtidal landscapes in which both large- and small-scale habitat structure may influence faunal survival and abundance. We compared the relative influences of seagrass (Zostera marina L.) habitat fragmentation (patch size and isolation) and structural complexity (shoot density) on juvenile blue crab (Callinectes sapidus Rathbun) survival and density in a Chesapeake Bay seagrass meadow. We tethered crabs to measure relative survival, suction sampled for crabs to measure density, and took seagrass cores to measure shoot density in patches spanning six orders of magnitude (ca. 0.25-30,000 m2) both before (June) and after (September) seasonally predictable decreases in seagrass structural complexity and increases in seagrass fragmentation. We also determined if juvenile blue crab density and seagrass shoot density varied between the edge and the interior of patches. In June, juvenile blue crab survival was not linearly related to seagrass patch size or to shoot density, but was significantly lower in patches separated by large expanses of unvegetated sediment (isolated patches) than in patches separated by <1 m of unvegetated sediment (connected patches). In September, crab survival was inversely correlated with seagrass shoot density. This inverse correlation was likely due to density-dependent predation by juvenile conspecifics (i.e. cannibalism); juvenile blue crab density increased with seagrass shoot density, was inversely correlated with crab survival, and was greater in September than in June. Shoot density effects on predator behavior and on conspecific density also likely caused crab survival to be lower in isolated patches than in connected patches in June. Isolated patches were either large (patch area >3000 m2) or very small (<1 m2). Large isolated patches had the lowest shoot densities, which may have allowed predators to easily find tethered crabs. Very small isolated patches had the highest shoot densities and consequently a high abundance of predators (=juvenile conspecifics). Though shoot density did not differ between the edge and the interior of patches, crabs were more abundant in the interior of patches than at the edge. These results indicate that seagrass fragmentation does not have an overriding influence on juvenile blue crab survival and density, and that crab cannibalism and seasonal changes in landscape structure may influence relationships between crab survival and seagrass habitat structure. Habitat fragmentation, structural complexity, faunal density, and time all must be incorporated into future studies on faunal survival in seagrass landscapes.  相似文献   

11.
Summary Two main hypotheses compete to explain why prey abundance decreases when seagrass density is reduced. One proposes that predators are more successful amongst seagrass of lower density; the other invokes habitat choice by prey. We reduced the density of seagrass in the presence, and in the absence, of predators in a field experiment to discriminate between these hypotheses. When seagrass was manipulated abundances of all six prey species decreased simultaneously both in the presence and in the absence of predators. We conclude that correlations of prey abundance and shoot density within a seagrass bed are proximately due to habitat preference of dense seagrass by prey. We report another experiment which supports this conclusion and shows that habitat preference is exercised at the earliest opportunity. However, the habitat preferences may have been selected by predation pressure.  相似文献   

12.
We examined the patterns of habitat-specific mortality for newly settled red drum (Sciaenops ocellatus) using an experimental mesocosm approach. Experiments were designed to analyze prey vulnerability and fish rearing-type (wild-caught or hatchery-reared) in estuarine habitats of varying structural complexity including marsh (Spartina alterniflora Loisel), oyster reef (Crassostrea virginica Gmelin), seagrass (Halodule wrightii Aschers), and nonvegetated sand bottom. We used two different predators, pinfish (Lagodon rhomboides Linnaeus) and spotted seatrout (Cynoscion nebulosus Cuvier). For both predators, vulnerability of wild-caught red drum was significantly lower in structurally complex habitats such as seagrass and oyster reef; the highest vulnerability was associated with the nonvegetated bottom. This habitat effect was not apparent for hatchery-reared prey. In trials using a combination of both rearing-types, there was no significant habitat effect on prey selection, but hatchery-reared red drum suffered higher overall mortality than wild-caught fish from pinfish predators. In these trials, spotted seatrout did not select for either prey type. Differences we observed in prey vulnerability were likely caused by behavioral differences between wild-caught and hatchery-reared red drum. Our results reinforce the conclusion that structural complexity in estuarine habitats increases survival of newly settled fishes. Our data also suggest that hatchery-reared red drum may be more vulnerable to predation than natural fishes, and that survival of stocked fish may be enhanced through habitat-related behavior modification.  相似文献   

13.
The effects of habitat structure and time of day on predation success of Moses perch, Lutjanus russelli , and blue-spotted trevally, Caranx bucculentus , feeding on juvenile brown tiger prawn, Penaeus esculentus , were tested in the laboratory. Our experiments demonstrated that both softsubstratum, in which prawns can burrow, and seagrass habitats reduce predation rates by fish during daytime when compared to hard-substratum habitats. However, the protection offered by burrowing in a soft substratum during daytime disappears at night when prawns become active and are more available to fish. Seagrass structure offers the same protection during both night and day. This is attributed to the structural complexity of the seagrass habitat, as well as the behaviour and disruptive coloration of the prawns. The results suggest that fish predation on juvenile P. esculentus may not be very important in seagrass nurseries but could be very high in other habitats.  相似文献   

14.
Density-dependent habitat selection theory was mainly tested on active foragers and therefore its applicability to trap-building predators is poorly understood. The high sensitivity of trap-building predators to changes in their physical environment, combined with their limited movement capability, can lead to habitat specialization, reducing their utilization of alternative habitats. We studied density-dependent habitat selection in two pit-building antlions, differing in their habitat utilization spectrum. The habitat generalist, Myrmeleon hyalinus, inhabits and performs equally well in both sand- and loess-derived soils, although preferring the former, more productive coarse-grained soils. In contrast, the habitat specialist, Cueta lineosa, only inhabits fine-grained soils such as loess, while showing reduced foraging performance in coarse-grained sandy soils. We allowed larvae to select between these two soils, while manipulating con-specific density and initial stocking position. Irrespective of the initial stocking position, the number of M. hyalinus pits in the sand was positively correlated with the number of con-specific pits in the loess, implying that this species is a density-dependent habitat selector. Furthermore, these patterns of density-dependence were consistent with the expectations of ideal pre-emptive distribution (i.e., strong non-linearity in the distribution of antlions between soils with increased total density), suggesting that interference competition largely dictates habitat selection in this species. In contrast, the habitat specialist showed constant habitat selectivity, as neither con-specific density nor initial stocking positions influenced its habitat preference. Although mainly tested on active foragers, habitat selection theory can be applicable for trap-building predators, demonstrating how mechanisms operating at the individual level influence spatial distribution patterns.  相似文献   

15.
This study investigated the feeding ecology of King George whiting Sillaginodes punctatus recruits to determine how diet composition varies between habitat types (seagrass and unvegetated habitats), and between sites separated by distance. Broad-scale sampling of seagrass and unvegetated habitats at nine sites in Port Phillip Bay (Australia) indicated the diet composition varied more by distance into the bay than by habitat. Near the entrance to the bay the diet was dominated by harpacticoids and gammarid amphipods, in the middle reaches of the bay the diet was completely dominated by harpacticoids, while at sites furthest into the bay, mysids and crab zoea were also important. Abundances of prey in guts was significantly higher between 1000 and 2200 hours compared with other times, indicating diurnal feeding. Laboratory determined gut evacuation rate (based on an exponential model) was estimated to be -0·54. Daily rations were highly variable among sites and habitat types. Sillaginodes punctatus recruits consumed much higher quantities of prey on unvegetated habitat than seagrass habitat at some middle reach sites; with prey consumption of harpacticoid copepods on unvegetated habitat approaching 3000 individuals per day at one site. The results of this study provide insight into why habitat associations of S. punctatus recruits within mosaics of seagrass and unvegetated habitat show high spatial variation.  相似文献   

16.
We tested the hypothesis for several Caribbean reef fish species that there is no difference in nursery function among mangrove, seagrass and shallow reef habitat as measured by: (a) patterns of juvenile and adult density, (b) assemblage composition, and (c) relative predation rates. Results indicated that although some mangrove and seagrass sites showed characteristics of nursery habitats, this pattern was weak. While almost half of our mangrove and seagrass sites appeared to hold higher proportions of juvenile fish (all species pooled) than did reef sites, this pattern was significant in only two cases. In addition, only four of the six most abundant and commercially important species (Haemulon flavolineatum, Haemulon sciurus, Lutjanus apodus, Lutjanus mahogoni, Scarus iserti, and Sparisoma aurofrenatum) showed patterns of higher proportions of juvenile fish in mangrove and/or seagrass habitat(s) relative to coral reefs, and were limited to four of nine sites. Faunal similarity between reef and either mangrove or seagrass habitats was low, suggesting little, if any exchange between them. Finally, although relative risk of predation was lower in mangrove/seagrass than in reef habitats, variance in rates was substantial suggesting that not all mangrove/seagrass habitats function equivalently. Specifically, relative risk varied between morning and afternoon, and between sites of similar habitat, yet varied little, in some cases, between habitats (mangrove/seagrass vs. coral reefs). Consequently, our results caution against generalizations that all mangrove and seagrass habitats have nursery function.  相似文献   

17.
Why do juvenile fish utilise mangrove habitats?   总被引:1,自引:0,他引:1  
Three hypotheses to discern the strong positive association between juvenile fish and mangrove habitat were tested with field and laboratory experiments. Artificial mangrove structure in the field attracted slightly more juvenile fish than areas without structure. Artificial structure left to accumulate fouling algae attracted four-times the total number of juvenile fish than areas without structure or areas with clean structure. Community composition of fish attracted to structure with fouling algae was different when compared with areas with no structure or clean structure; five species were attracted by structure with fouling algae whilst two species were associated with structure regardless of fouling algae. Algae were linked to increased food availability and it is suggested that this is an important selection criteria for some species. Other species were apparently attracted to structure for different reasons, and provision of shelter appears to be important. Predation pressure influenced habitat choice in small juvenile fish in laboratory experiments. In the absence of predators, small juveniles of four out of five species avoided shelter but when predators were introduced all species actively sought shelter. Large fish were apparently less vulnerable to predators and did not seek shelter when predators were added to their tank. Feeding rate was increased in the mangrove habitat for small and medium-sized fish compared with seagrass beds and mudflats indicating increased food availability or foraging efficiency within this habitat. Larger fish fed more effectively on the mudflats with an increased feeding rate in this habitat compared with adjacent habitats. The most important aspect of the mangrove habitat for small juvenile fish is the complex structure that provides maximum food availability and minimises the incidence of predation. As fish grow a shift in habitat from mangroves to mudflat is a response to changes in diet, foraging efficiency and vulnerability to predators.  相似文献   

18.
In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.  相似文献   

19.
Herein I compare the relative importance of preference for structurally complex habitat against avoidance of competitors and predators in two benthic fishes common in the Gulf of Mexico. The code goby Gobiosoma robustum Ginsburg and clown goby Microgobius gulosus (Girard) are common, ecologically similar fishes found throughout the Gulf of Mexico and in the southeastern Atlantic Ocean. In Florida Bay, these fishes exhibit habitat partitioning: G. robustum is most abundant in seagrass-dominated areas while M. gulosus is most abundant in sparsely vegetated habitats. In a small-scale field survey, I documented the microhabitat use of these species where their distributions overlap. In a series of laboratory experiments, I presented each species with structured (artificial seagrass) versus nonstructured (bare sand) habitats and measured their frequency of choosing either habitat type. I then examined the use of structured versus nonstructured habitats when the two species were placed together in a mixed group. Finally, I placed a predator (Opsanus beta) in the experimental aquaria to determine how its presence influenced habitat selection. In the field, G. robustum was more abundant in seagrass and M. gulosus was more abundant in bare mud. In the laboratory, both species selected grass over sand in allopatry. However, in sympatry, M. gulosus occupied sand more often when paired with G. robustum than when alone. G. robustum appears to directly influence the habitat choice of M. gulosus: It seems that M. gulosus is pushed out of the structured habitat that is the preferred habitat of G. robustum. Thus, competition appears to modify the habitat selection of these species when they occur in sympatry. Additionally, the presence of the toadfish was a sufficient stimulus to provoke both M. gulosus and G. robustum to increase their selection for sand (compared to single-species treatments). Distribution patterns of M. gulosus and G. robustum likely result from a synthesis of various biotic and abiotic filters, including physiological tolerances to environmental factors, dispersal ability of larvae, and availability of food. Selection for structural complexity, competition, and presence of predators may further define the resulting pattern of distribution observed in the field.  相似文献   

20.
The generality of mechanisms affecting habitat choice and grazing in seagrass meadows was evaluated in a latitudinal comparison of seagrass grazers from the temperate (60°N) Baltic Sea and the subtropical (30°N) Gulf of Mexico. Using similar habitat choice experiment set-ups in Finland and the USA, the role of food type, habitat complexity and predation hazard on habitat choice of the isopods Idotea baltica (Pallas) and Erichsonella attenuata Harger were tested. When shelter was provided by both living and artificial seagrass, epiphytic food resources on artificial vegetation were clearly preferred by both species, although Idotea was attracted to epiphyte-free seagrass when no alternative food was present. When choosing between food and shelter, both species preferred epiphytic food over shelter. However, under predation hazard of fish, Erichsonella clearly switched to the habitat offering shelter, while the presence of a predatory fish produced no preference for shelter by Idotea. Food type may be considered as an universal mechanism that partly determines the presence of grazers in seagrass habitats and is, in the absence of a predator, more important than shelter. Predation risk affected the behaviour of the grazers, but the response varied between species possibly due to varying importance of fish predation in the areas studied. Received: 16 November 1998 / Accepted: 13 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号