首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Artemisinin, a natural product isolated from aerial parts of Artemisia annua L. plant, is a potent antimalarial drug against drug-resistant malaria. In recent times, the demand (101–119 MT) for artemisinin is exponentially increasing with the increased incidence of drug-resistant malaria throughout the world, especially African and Asian continents. However, the commercial production of artemisinin-based combination therapies has limitation because of the presence of low concentration of artemisinin in plants. Therefore, transgenic lines of A. annua L. plants over-expressing both HMG-Co A reductase (hmgr) and amorpha-4, 11-diene synthase (ads) genes were developed to enhance the content of artemisinin. The selected transgenic lines (TR4, TR5, and TR7) were found to accumulate higher artemisinin (0.97–1.2%) as compared to the non-transgenic plants (0.63%). The secondary metabolite profiles of these lines were also investigated employing gas chromatography mass spectrometry, which revealed a clear difference in these metabolites in transgenic and non-transgenic lines of A. annua L. at different growth and developmental stages. The major metabolites reported in these lines at pre-flowering stage were related to essential oil and chlorophyll biosynthesis (71.33% in TR5 transgenic lines vs. 61.70% in non-transgenic line). Based on these results, we concluded that over-expression of both hmgr and ads genes in A. annua L. plants results not only increase in artemisinin content, but also enhances synthesis of other isoprenoid including essential oil. It is also evident from this study that the novel artemisinin-rich varieties of A. annua L. could be developed by suppressing essential oil biosynthesis, so that more carbon could preferentially be diverted from mevalonate pathway to artemisinin biosynthesis.  相似文献   

2.
Artemisinin, isolated from an annual herbaceous plant Artemisia annua L., is an effective antimalarial compound. However, artemisinin is accumulated in small amounts (0.01–0.1% leaf dry weight) in A. annua, resulting in constant high artemisinin price. Although metabolic engineering of partial artemisinin metabolic pathway in yeast achieved great success, artemisinin from A. annua is still the important business resource. Here, we report on the generation of transgenic plants with simultaneously overexpressing four artemisinin biosynthetic pathway genes, amorpha-4,11-diene synthase gene (ADS), amorpha-4,11-diene 12-monooxygenase gene (CYP71AV1), cytochrome P450 reductase gene (CPR), and aldehyde dehydrogenase 1 gene (ALDH1) via Agrobacterium-mediated transformation. The qRT-PCR analysis demonstrated that the introduced four genes of the transgenic lines were all highly expressed. Through high-performance liquid chromatography analysis, the artemisinin contents were increased markedly in transformants, with the highest being 3.4-fold higher compared with non-converter. These results indicate that overexpression of multiple artemisinin biosynthetic pathway genes is a promising approach to improve artemisinin yield in A. annua.  相似文献   

3.
The sesquiterpenoid artemisinin, isolated from the plant Artemisia annua L., and its semi-synthetic derivatives are a new and very effective group of antimalarial drugs. A branch point in the biosynthesis of this compound is the cyclisation of the ubiquitous precursor farnesyl diphosphate into the first specific precursor of artemisinin, namely amorpha-4,11-diene. Here we describe the isolation of a cDNA clone encoding amorpha-4,11-diene synthase. The deduced amino acid sequence exhibits the highest identity (50%) with a putative sesquiterpene cyclase of A. annua. When expressed in Escherichia coli, the recombinant enzyme catalyses the formation of amorpha-4,11-diene from farnesyl diphosphate. Introduction of the gene into tobacco (Nicotiana tabacum L.) resulted in the expression of an active enzyme and the accumulation of amorpha-4,11-diene ranging from 0.2 to 1.7 ng per g fresh weight. Received: 8 June 2000 / Accepted: 21 August 2000  相似文献   

4.
Artemisinin, an endoperoxidized sesquiterpene originally extracted from the medicinal plant Artemisia annua L., is a potent malaria-killing agent. Due to the urgent demand and short supply of this new antimalarial drug, engineering enhanced production of artemisinin by genetically-modified or transgenic microbes is currently being explored. Cloning and expression of the artemisinin biosynthetic genes in Saccharomyces cerevisiae and Escherichia coli have led to large-scale microbial production of the artemisinin precursors such as amorpha-4,11-diene and artemisinic acid. Although reconstruction of the complete biosynthetic pathway toward artemisinin in transgenic yeast and bacteria has not been achieved, artemisinic acid available from these transgenic microbes facilitates the subsequent partial synthesis of artemisinin by either chemical or biotransformational process, thereby providing an attractive strategy alternative to the direct extraction of artemisinin from A.annua L. In this review, we update the current trends and summarize the future prospects on genetic engineering of the microorganisms capable of accumulating artemisinin precursors through heterologous and functional expression of the artemisinin biosynthetic genes.  相似文献   

5.
The gene encoding for amorpha-4,11-diene synthase from Artemisia annua was transformed into yeast Saccharomyces cerevisiae in two fundamentally different ways. First, the gene was subcloned into the galactose-inducible, high-copy number yeast expression vector pYeDP60 and used to transform the Saccharomyces cerevisiae strain CEN·PK113-5D. Secondly, amorpha-4,11-diene synthase gene, regulated by the same promoter, was introduced into the yeast genome by homologous recombination. In protein extracts from galactose-induced yeast cells, a higher activity was observed for yeast expressing the enzyme from the plasmid. The genome-transformed yeast grows at the same rate as wild-type yeast while plasmid-carrying yeast grows somewhat slower than the wild-type yeast. The plasmid and genome-transformed yeasts produced 600 and 100 μg/l of the artemisinin precursor amorpha-4,11-diene, respectively, during 16-days’ batch cultivation. Revisions requested 14 November 2005; Revisions received 17 January 2006  相似文献   

6.
Abstract

Production of artemisinin in genetically modified microorganisms is an attractive option to enable sufficient supply of the effective antimalarial agent. Although a sundry of artemisinin precursors are available from engineered bacteria or yeast, no artemisinin has been manufactured by engineering any microbial platforms due to inaccessibility to unidentified steps. To this end, it is essential to consider how to convert artemisinin precursors to artemisinin, either biochemically or chemically. To establish a novel procedure of artemisinin production, we incubate the mixture of artemisinin precursors from engineered Sacchromyces cerevisiae with the cell-free enzyme extract of Artemisia annua. For the single gene-expressing strain INVScI (pYES-ADS), amorpha-4,11-diene accumulation within 48 h or 14 days led to higher artemisinin content than the control. In the multiple gene-expressing strain YPH501 (pYES-ADS:: pESC-CYP71AV1-DBR2), artemisinin accumulation from the 14-day-induced yeast precursor mixture was nearly equivalent between the single gene-transferred strain and the multiple gene-transferred strain. Alternatively, biotransformation of 48-hour-induced yeast amorpha-4,11-diene mixture by the cold-acclimated A. annua cell-free extract that possesses the abundant enzymes relevant to artemisinin biosynthesis gave rise to considerable elevation of artemisinin content up to 0.647% in maximum, accounting to 15-folds increase as the A. annua cell-free extract without cold-acclimation (0.045%), thereby providing a practical protocol for artemisinin overproduction through the interplay of engineered microbial artemisinin precursors with upregulated plant enzymes.  相似文献   

7.
A method based on the laser microdissection pressure catapulting technique has been developed for isolation of whole intact cells. Using a modified tissue preparation method, one outer pair of apical cells and two pairs of sub-apical, chloroplast-containing cells, were isolated from glandular secretory trichomes of Artemisia annua. A. annua is the source of the widely used antimalarial drug artemisinin. The biosynthesis of artemisinin has been proposed to be located to the glandular trichomes. The first committed steps in the conversion of FPP to artemisinin are conducted by amorpha-4,11-diene synthase, amorpha-4,11-diene hydroxylase, a cytochrome P450 monooxygenase (CYP71AV1) and artemisinic aldehyde Δ11(13) reductase. The expression of the three biosynthetic enzymes in the different cell types has been studied. In addition, the expression of farnesyldiphosphate synthase producing the precursor of artemisinin has been investigated. Our experiments showed expression of farnesyldiphosphate synthase in apical and sub-apical cells as well as in mesophyl cells while the three enzymes involved in artemisinin biosynthesis were expressed only in the apical cells. Elongation factor 1α was used as control and it was expressed in all cell types. We conclude that artemisinin biosynthesis is taking place in the two outer apical cells while the two pairs of chloroplast-containing cells have other functions in the overall metabolism of glandular trichomes.  相似文献   

8.
This paper provides evidence that salicylic acid (SA) can activate artemisinin biosynthesis in Artemisia annua L. Exogenous application of SA to A. annua leaves was followed by a burst of reactive oxygen species (ROS) and the conversion of dihydroartemisinic acid into artemisinin. In the 24 h after application, SA application led to a gradual increase in the expression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene and a temporary peak in the expression of the amorpha-4,11-diene synthase (ADS) gene. However, the expression of the farnesyl diphosphate synthase (FDS) gene and the cytochrome P450 monooxygenase (CYP71AV1) gene showed little change. At 96 h after SA (1.0 mM) treatment, the concentration of artemisinin, artemisinic acid and dihydroartemisinic acid were 54, 127 and 72% higher than that of the control, respectively. Taken together, these results suggest that SA induces artemisinin biosynthesis in at least two ways: by increasing the conversion of dihydroartemisinic acid into artemisinin caused by the burst of ROS, and by up-regulating the expression of genes involved in artemisinin biosynthesis.  相似文献   

9.
Artemisinin is an endoperoxide sesquiterpene lactone isolated from the aerial parts of Artemisia annua L., and is presently the most potent anti-malarial drug. Owing to the low yield of artemisinin from A. annua as well as the widespread application of artemisinin-based combination therapy recommended by the World Health Organization, the global demand for artemisinin is substantially increasing and is therefore rendering artemisinin in short supply. An economical way to increase artemisinin production is to increase the content of artemisinin in A. annua. In this study, three key genes in the artemisinin biosynthesis pathway, encoding farnesyl diphosphate synthase, amorpha-4, 11-diene C-12 oxidase and its redox partner cytochrome P450 reductase, were over-expressed in A. annua through Agrobacterium-mediated transformation. The transgenic lines were confirmed by Southern blotting and the over-expressions of the genes were demonstrated by real-time PCR assays. The HPLC analysis showed that the artemisinin contents in transgenic lines were increased significantly, with the highest one found to be 3.6-fold higher (2.9 mg/g FW) than that of the control. These results demonstrate that multigene engineering is an effective way to enhance artemisinin content in A. annua.  相似文献   

10.
11.
12.
以青蒿素为基础的联合药物疗法 (ACTs) 被认为是目前治疗恶性疟疾的最有效方法。然而青蒿素供应不足且价格昂贵,限制了ACTs的广泛使用。采用基因工程手段构建异源类异戊二烯生物合成途径,利用大肠杆菌发酵能高效合成抗疟药青蒿素前体——紫穗槐-4,11-二烯。首先在大肠杆菌Escherichia coli DHGT7中引入人工合成的紫穗槐-4,11-二烯合酶基因,利用大肠杆菌内源的法尼基焦磷酸,成功获得了紫穗槐-4,11-二烯。为提高前体供给,引入粪肠球菌的甲羟戊酸途径,紫穗槐-4,11-二烯的产量提高了13  相似文献   

13.
14.
The endoperoxide sesquiterpene lactone artemisinin and its derivatives are a promising new group of drugs against malaria. Artemisinin is a constituent of the annual herb Artemisia annua L. So far only the later steps in artemisinin biosynthesis--from artemisinic acid--have been elucidated and the expected olefinic sesquiterpene intermediate has never been demonstrated. In pentane extracts of A. annua leaves we detected a sesquiterpene with the mass spectrum of amorpha-4,11-diene. Synthesis of amorpha-4,11-diene from artemisinic acid confirmed the identity. In addition we identified several sesquiterpene synthases of which one of the major activities catalysed the formation of amorpha-4,11-diene from farnesyl diphosphate. This enzyme was partially purified and shows the typical characteristics of sesquiterpene synthases, such as a broad pH optimum around 6.5-7.0, a molecular mass of 56 kDa, and a K(m) of 0.6 microM. The structure and configuration of amorpha-4,11-diene, its low content in A. annua and the high activity of amorpha-4,11-diene synthase all support that amorpha-4,11-diene is the likely olefinic sesquiterpene intermediate in the biosynthesis of artemisinin.  相似文献   

15.

Background

Artemisinin derivatives are the key active ingredients in Artemisinin combination therapies (ACTs), the most effective therapies available for treatment of malaria. Because the raw material is extracted from plants with long growing seasons, artemisinin is often in short supply, and fermentation would be an attractive alternative production method to supplement the plant source. Previous work showed that high levels of amorpha-4,11-diene, an artemisinin precursor, can be made in Escherichia coli using a heterologous mevalonate pathway derived from yeast (Saccharomyces cerevisiae), though the reconstructed mevalonate pathway was limited at a particular enzymatic step.

Methodology/ Principal Findings

By combining improvements in the heterologous mevalonate pathway with a superior fermentation process, commercially relevant titers were achieved in fed-batch fermentations. Yeast genes for HMG-CoA synthase and HMG-CoA reductase (the second and third enzymes in the pathway) were replaced with equivalent genes from Staphylococcus aureus, more than doubling production. Amorpha-4,11-diene titers were further increased by optimizing nitrogen delivery in the fermentation process. Successful cultivation of the improved strain under carbon and nitrogen restriction consistently yielded 90 g/L dry cell weight and an average titer of 27.4 g/L amorpha-4,11-diene.

Conclusions/ Significance

Production of >25 g/L amorpha-4,11-diene by fermentation followed by chemical conversion to artemisinin may allow for development of a process to provide an alternative source of artemisinin to be incorporated into ACTs.  相似文献   

16.
17.
18.
To elucidate the fine-tuned temporal and spatial modulation of artemisinin production in annual wormwood (Artemisia annua), we conducted enzyme-linked immunosorbent assay-based immunoquantification of three key enzymes involved in artemisinin biosynthesis, amorpha-4,11-diene synthase (ADS), cytochrome P450 monooxygenase (CYP71AV1), and cytochrome P450 reductase (CPR), in various tissues and under different growth conditions. The field-grown plants accumulate abundant ADS and CYP71AV1 but a trace amount of CPR in all tested tissues. Furthermore, ADS and CYP71AV1 accumulations in leaves are 16- and eightfold higher than in roots, and ten- and fourfold higher than in stems, respectively, demonstrating a tissue-specific expression pattern. Interestingly, the flowering field plants and cold-acclimated cultural plants produce higher levels of ADS and CYP71AV1 than non-flowering field plants or untreated cultural plants, indicating the environmental and developmental induction on ADS and CYP71AV1 genes and providing possible explanation for the observation that elevation of artemisinin level occurs after flowering.  相似文献   

19.
Artemisinin has attracted interest due to its medicinal value in treating malaria and its potential for use against certain cancers and viral diseases. Trichome density and capacity determine artemisinin content in Artemisia annua plants. Thus, the ATP-binding cassette transporter G (ABCG) subfamily involved in trichome cuticle development may also influence artemisinin accumulation. In this study, putative A. annua ABC transporter unigenes were identified and classified from the unigene sequences up to date in the National Center for Biotechnology Information database, and nine putative A. annua ABCG transporter unigenes that may be involved in cuticle development were selected for expression analyses. Two of them, AaABCG6 and AaABCG7, showed parallel expression pattern as two artemisinin biosynthesis-specific genes (amorpha-4, 11-diene synthase and a cytochrome P450-dependent hydroxylase, CYP71AV1) in different tissues and different leaf development stages and also showed similar induction in the plants after methyl jasmonate or abscisic acid treatments. Identification of these putative A. annua ABCG transporter unigenes could provide the basis for cloning of the full-length genes and further functional investigation to find the artemisinin relevant transporters, which could be used for improving artemisinin yield in both A. annua plants and heterologous systems using transgenic technology.  相似文献   

20.
Amorpha-4,11-diene synthase (ADS) is a very important enzyme which catalyzes the committed step of artemisinin biosynthesis. In this work, two lines of transgenic Artemisia annua L. which ADS was over-expressed (line A9) and suppressed (line Amsi), respectively, were utilized. And the transgenic line GUS with β-Glucuronidase gene was regarded as the control. Their terpenoid metabolic profiling was investigated by using GC × GC–TOFMS. The metabolic profiling method established included simple extraction, two-dimension separation and multivariate analysis. Partial least squares discriminant analysis (PLS-DA) was used to classify two transgenic lines and the control line. Eleven important compounds in classification were identified. Most of them were sesquiterpenoids including monoterpenoid, diterpenoid and four bioprecursors of artemsisnin. Compared with the control, artemisinin and bioprecursors in the line A9 increased as a result of over-expressing ADS. Borneol and phytol also increased in the line A9, but (E)-β-farnesene and germacrene D were reversely altered. The result indicated that over-expression of the ADS affected not only artemisinin biosynthesis, but also the whole metabolic network of terpenoid. Compared with the line A9, no opposite change of artemisinin and related derivatives was observed in the line Amsi, the ADS inhibition had no significant effect on artemisinin biosynthesis in the line Amsi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号