首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
为了构建高产的紫穗槐-4,11-二烯酵母工程菌,主要探究了含紫穗槐-4,11-二烯合酶基因的不同表达载体在酵母工程菌中是否存在协同效应。首先构建了含紫穗槐-4,11-二烯合酶基因的酵母表达载体pGADADS,分别将pGADADS和pYeDP60/G/ADS转入酿酒酵母W303-1B和WK1中,获得6种能产生紫穗槐-4,11-二烯的酵母工程菌:W303B[pGADADS]、W303B[pYGADS]、W303B[pYGADS+pGADADS]、WK1[pGADADS]、WK1[pYGADS]和WK1[pYG  相似文献   

2.
The sesquiterpenoid artemisinin, isolated from the plant Artemisia annua L., and its semi-synthetic derivatives are a new and very effective group of antimalarial drugs. A branch point in the biosynthesis of this compound is the cyclisation of the ubiquitous precursor farnesyl diphosphate into the first specific precursor of artemisinin, namely amorpha-4,11-diene. Here we describe the isolation of a cDNA clone encoding amorpha-4,11-diene synthase. The deduced amino acid sequence exhibits the highest identity (50%) with a putative sesquiterpene cyclase of A. annua. When expressed in Escherichia coli, the recombinant enzyme catalyses the formation of amorpha-4,11-diene from farnesyl diphosphate. Introduction of the gene into tobacco (Nicotiana tabacum L.) resulted in the expression of an active enzyme and the accumulation of amorpha-4,11-diene ranging from 0.2 to 1.7 ng per g fresh weight. Received: 8 June 2000 / Accepted: 21 August 2000  相似文献   

3.
Aims:  To investigate the effect of the yeast-conform variant of the Artemisia annua gene encoding for amorpha-4,11-diene synthase (ADS) on the production of amorpha-4,11-diene in a transformed yeast.
Methods and Results:  The ADS gene was mutated to the yeast-conform variant ADSm . The ADSm synthesis was performed based on step-by-step extension of a short region of the gene through a series of polymerase chain reactions (PCR). The artificial ADSm gene contained codons preferred by the yeast translation machinery. The sequence was then integrated into a yeast expression vector pYeDP60. The fusion construct was active and the transformed yeast cells produced higher level of amorpha-4,11-diene compared with the plant gene-transformed yeast cells.
Conclusions:  Strains transformed with the yeast-conform allele ( ADSm ) were more efficient in terms of production of amorpha-4,11-diene than those transformed with the plant gene.
Significance and Impact of the Study:  We demonstrated that yeast-conform allele of foreign genes by serial PCR reactions can be a solution to low efficiency of heterologous gene expression in Saccharomyces cerevisiae cells.  相似文献   

4.
Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene synthase in yeast, led to formation of trans-nootkatol, cis-nootkatol and (+)-nootkatone. The novel enzyme was also found to catalyse a three step conversion of germacrene A to germacra-1(10),4,11(13)-trien-12-oic acid, indicating its involvement in chicory sesquiterpene lactone biosynthesis. Likewise, amorpha-4,11-diene was converted to artemisinic acid. Surprisingly, the chicory P450 has a different regio-specificity on (+)-valencene compared to germacrene A and amorpha-4,11-diene.  相似文献   

5.
A gene encoding a plant terpene cyclase, Artemisia annua amorpha-4,11-diene synthase (ADS), was expressed in Aspergillus nidulans under control of a strong constitutive promoter, (p)gpdA. The transformants produced only small amounts of amorphadiene, but much larger amounts of similar sesquiterpenes normally produced as minor by-products in planta. In contrast, expression of ADS in Escherichia coli produced almost exclusively amorpha-4,11-diene. These results indicate that the host environment can greatly impact the terpenes produced from terpene synthases.  相似文献   

6.

Background

Artemisinin derivatives are the key active ingredients in Artemisinin combination therapies (ACTs), the most effective therapies available for treatment of malaria. Because the raw material is extracted from plants with long growing seasons, artemisinin is often in short supply, and fermentation would be an attractive alternative production method to supplement the plant source. Previous work showed that high levels of amorpha-4,11-diene, an artemisinin precursor, can be made in Escherichia coli using a heterologous mevalonate pathway derived from yeast (Saccharomyces cerevisiae), though the reconstructed mevalonate pathway was limited at a particular enzymatic step.

Methodology/ Principal Findings

By combining improvements in the heterologous mevalonate pathway with a superior fermentation process, commercially relevant titers were achieved in fed-batch fermentations. Yeast genes for HMG-CoA synthase and HMG-CoA reductase (the second and third enzymes in the pathway) were replaced with equivalent genes from Staphylococcus aureus, more than doubling production. Amorpha-4,11-diene titers were further increased by optimizing nitrogen delivery in the fermentation process. Successful cultivation of the improved strain under carbon and nitrogen restriction consistently yielded 90 g/L dry cell weight and an average titer of 27.4 g/L amorpha-4,11-diene.

Conclusions/ Significance

Production of >25 g/L amorpha-4,11-diene by fermentation followed by chemical conversion to artemisinin may allow for development of a process to provide an alternative source of artemisinin to be incorporated into ACTs.  相似文献   

7.
Amorpha-4,11-diene is the precursor of the antimalarial compound artemisinin. The effect of Vitreoscilla hemoglobin (VHb) and its yeast-conform variant (VHbm) on amorpha-4,11-diene production in engineered Saccharomyces cerevisiae was investigated. First, the VHb gene was mutated to the yeast-conform variant VHbm based on step-by-step extension of a short region of the gene through a series of polymerase chain reactions (PCR). The artificial VHbm gene contained codons preferred by the yeast translation machinery. Two yeast expression vectors containing VHb or VHbm gene were constructed and introduced into the amorpha-4,11-diene-producing strain S. cerevisiae WK1 to form WK1[VHb] and WK1[VHbm], respectively. Western blot and CO-difference spectrum absorbance assay showed that VHb and VHbm were successfully expressed. In shake flasks, VHbm expression conferred higher cell growth than VHb expression. GC-MS results indicated the amorpha-4,11-diene production in WK1[VHbm] and WK1[VHb] was 3- and 2-fold higher than that in WK1, respectively. This suggests that VHb might improve the amorpha-4,11-diene production in engineered S. cerevisiae.  相似文献   

8.
以青蒿素为基础的联合药物疗法 (ACTs) 被认为是目前治疗恶性疟疾的最有效方法。然而青蒿素供应不足且价格昂贵,限制了ACTs的广泛使用。采用基因工程手段构建异源类异戊二烯生物合成途径,利用大肠杆菌发酵能高效合成抗疟药青蒿素前体——紫穗槐-4,11-二烯。首先在大肠杆菌Escherichia coli DHGT7中引入人工合成的紫穗槐-4,11-二烯合酶基因,利用大肠杆菌内源的法尼基焦磷酸,成功获得了紫穗槐-4,11-二烯。为提高前体供给,引入粪肠球菌的甲羟戊酸途径,紫穗槐-4,11-二烯的产量提高了13  相似文献   

9.
Liu Z  Sun Z 《Biotechnology letters》2004,26(24):1861-1865
A d -lactonohydrolase gene of about 1.1 kb was cloned from Fusarium moniliforme. The ORF sequence predicted a protein of 382 amino acids with a molecular mass of about 40 kDa. An expression plasmid carrying the gene under the control of the triose phosphate isomerase gene promotor was introduced into Saccharomyces cerevisiae, and the d -lactonohydrolase gene was successfully expressed in the recombinant strains.Revisions requested 10 September 2004; Revisions received 15 October 2004The nucleotide sequence data reported in this paper has been assigned accession number AY728018 in the GeneBank database.  相似文献   

10.
A method based on the laser microdissection pressure catapulting technique has been developed for isolation of whole intact cells. Using a modified tissue preparation method, one outer pair of apical cells and two pairs of sub-apical, chloroplast-containing cells, were isolated from glandular secretory trichomes of Artemisia annua. A. annua is the source of the widely used antimalarial drug artemisinin. The biosynthesis of artemisinin has been proposed to be located to the glandular trichomes. The first committed steps in the conversion of FPP to artemisinin are conducted by amorpha-4,11-diene synthase, amorpha-4,11-diene hydroxylase, a cytochrome P450 monooxygenase (CYP71AV1) and artemisinic aldehyde Δ11(13) reductase. The expression of the three biosynthetic enzymes in the different cell types has been studied. In addition, the expression of farnesyldiphosphate synthase producing the precursor of artemisinin has been investigated. Our experiments showed expression of farnesyldiphosphate synthase in apical and sub-apical cells as well as in mesophyl cells while the three enzymes involved in artemisinin biosynthesis were expressed only in the apical cells. Elongation factor 1α was used as control and it was expressed in all cell types. We conclude that artemisinin biosynthesis is taking place in the two outer apical cells while the two pairs of chloroplast-containing cells have other functions in the overall metabolism of glandular trichomes.  相似文献   

11.
[目的] 利用酿酒酵母表达系统,通过乙醇脱氢酶启动子异源表达细菌源的铁载体合成蛋白PchE,并与来源于枯草芽孢杆菌的泛酰化酶Sfp同宿主共表达,探索真核表达体系表达具有生化活性的细菌源蛋白。[方法] 从大肠杆菌BAP 1染色体上扩增sfp基因,将pchE基因及串联的pchEsfp基因分别构建到酵母-大肠杆菌穿梭质粒pXW55中,各自转化酿酒酵母BJ5464-npgA表达,经过亲和层析和离子交换层析纯化蛋白,利用HPLC检测细菌源与酵母源表达的PchE在体外重构生化反应中的催化活性。[结果] 利用酿酒酵母表达系统可以获得高纯度的原核蛋白PchE。真菌源的泛酰化基因NpgA和细菌源的Sfp,均可泛酰化修饰PchE,合成中间产物HPT-Cys。[结论] 在酿酒酵母Saccharomyces cerevisiae BJ5464-npgA表达系统中,首次证明真菌源的泛酰化基因NpgA和细菌源的Sfp,均可泛酰化修饰细菌源的非核糖体肽合酶。比较酵母和细菌宿主的目标蛋白表达,证明酵母表达的巨大蛋白PchE的纯度更高,非特异性条带减少,推测酵母宿主可能更适合表达纯化功能性的巨型蛋白质。  相似文献   

12.
This paper provides evidence that salicylic acid (SA) can activate artemisinin biosynthesis in Artemisia annua L. Exogenous application of SA to A. annua leaves was followed by a burst of reactive oxygen species (ROS) and the conversion of dihydroartemisinic acid into artemisinin. In the 24 h after application, SA application led to a gradual increase in the expression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene and a temporary peak in the expression of the amorpha-4,11-diene synthase (ADS) gene. However, the expression of the farnesyl diphosphate synthase (FDS) gene and the cytochrome P450 monooxygenase (CYP71AV1) gene showed little change. At 96 h after SA (1.0 mM) treatment, the concentration of artemisinin, artemisinic acid and dihydroartemisinic acid were 54, 127 and 72% higher than that of the control, respectively. Taken together, these results suggest that SA induces artemisinin biosynthesis in at least two ways: by increasing the conversion of dihydroartemisinic acid into artemisinin caused by the burst of ROS, and by up-regulating the expression of genes involved in artemisinin biosynthesis.  相似文献   

13.
Abstract

Production of artemisinin in genetically modified microorganisms is an attractive option to enable sufficient supply of the effective antimalarial agent. Although a sundry of artemisinin precursors are available from engineered bacteria or yeast, no artemisinin has been manufactured by engineering any microbial platforms due to inaccessibility to unidentified steps. To this end, it is essential to consider how to convert artemisinin precursors to artemisinin, either biochemically or chemically. To establish a novel procedure of artemisinin production, we incubate the mixture of artemisinin precursors from engineered Sacchromyces cerevisiae with the cell-free enzyme extract of Artemisia annua. For the single gene-expressing strain INVScI (pYES-ADS), amorpha-4,11-diene accumulation within 48 h or 14 days led to higher artemisinin content than the control. In the multiple gene-expressing strain YPH501 (pYES-ADS:: pESC-CYP71AV1-DBR2), artemisinin accumulation from the 14-day-induced yeast precursor mixture was nearly equivalent between the single gene-transferred strain and the multiple gene-transferred strain. Alternatively, biotransformation of 48-hour-induced yeast amorpha-4,11-diene mixture by the cold-acclimated A. annua cell-free extract that possesses the abundant enzymes relevant to artemisinin biosynthesis gave rise to considerable elevation of artemisinin content up to 0.647% in maximum, accounting to 15-folds increase as the A. annua cell-free extract without cold-acclimation (0.045%), thereby providing a practical protocol for artemisinin overproduction through the interplay of engineered microbial artemisinin precursors with upregulated plant enzymes.  相似文献   

14.
The endoperoxide sesquiterpene lactone artemisinin and its derivatives are a promising new group of drugs against malaria. Artemisinin is a constituent of the annual herb Artemisia annua L. So far only the later steps in artemisinin biosynthesis--from artemisinic acid--have been elucidated and the expected olefinic sesquiterpene intermediate has never been demonstrated. In pentane extracts of A. annua leaves we detected a sesquiterpene with the mass spectrum of amorpha-4,11-diene. Synthesis of amorpha-4,11-diene from artemisinic acid confirmed the identity. In addition we identified several sesquiterpene synthases of which one of the major activities catalysed the formation of amorpha-4,11-diene from farnesyl diphosphate. This enzyme was partially purified and shows the typical characteristics of sesquiterpene synthases, such as a broad pH optimum around 6.5-7.0, a molecular mass of 56 kDa, and a K(m) of 0.6 microM. The structure and configuration of amorpha-4,11-diene, its low content in A. annua and the high activity of amorpha-4,11-diene synthase all support that amorpha-4,11-diene is the likely olefinic sesquiterpene intermediate in the biosynthesis of artemisinin.  相似文献   

15.
The expression of the mouse α-amylase gene in the methylotrophic yeast,P. pastoris was investigated. The mouse α-amylase gene was inserted into the multi-cloning site of a Pichia expression vector, pPIC9, yielding a new expression vector pME624. The plasmid pME624 was digested withSalI orBglII, and was introduced intoP. pastoris strain GS115 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested withSalI orBglII into theHIS 4 locus (38 of Mut+ clone) or into theAOX1 locus (45 of Muts clone). Southern blot was carried out in 11 transformants, which showed that the mouse α-amylase gene was integrated into thePichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest α-amylase activity, 290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse α-amylase gene is compared with that in recombinantSaccharomyces cerevisiae harboring a plasmid encoding the same mouse α-amylase gene, the specific enzyme activity is eight fold higher than that of the recombinantS. cerevisiae.  相似文献   

16.
Summary The trifunctional TRP1 gene from Neurospora crassa (N-TRP1) was subcloned into the yeast-Escherichia coli shuttle vector YEp13 and expressed in Saccharomyces cerevisiae. The three activities of the N-TRP1 gene product were detected in yeast mutants that lacked either N-(5-phosphoribosyl) anthranilate (PRA) isomerase or both the glutamine amidotransferase function of anthranilate synthase and indole-3-glycerol phosphate (InGP) synthase. The protein was detected on immunoblots only as the full length 83 kda product indicating that the trifunctional gene product was expressed in yeast primarily in a fully active, undegraded form. By placing the subcloned N-TRP1 gene under the control of the inducible PHO5 promoter from yeast, the expression of all three activities was increased to more than ten fold that of wild-type yeast and the overproduced protein could be visualized by SDS-polyacrylamide gel electrophoresis of crude extract and Coomassie Blue staining. Using the expression system described the effect of selective deletion of regions of the coding sequence of the N-TRP1 gene on expression of the three activities was tested. Expression of either the F- or C-domains, catalyzing respectively the PRA isomerase or InGP synthase activities, did not depend on the presence of the other domain in the active polypeptide. Furthermore, normal dimer formation occurred with a protein active for InGP synthase in a deletion derivative lacking most of the PRA isomerase domain, ruling out the hypothesis that interaction between the active site regions for PRA isomerase and InGP synthase accounted for dimer formation in the trifunctional product.Abbreviations PRA N-(5'-phosphoribosyl)anthranilate - InGP indole-3-glycerol phosphate - SDS sodium dodecyl sulfate  相似文献   

17.
Because of many advantages, the yeast Saccharomyces cerevisiae is increasingly being employed for expression of recombinant proteins. Usually, hybrid plasmids (shuttle vectors) are employed as carriers to introduce the foreign DNA into the yeast host. Unfortunately, the transformed host often suffers from some kind of instability, tending to lose or alter the foreign plasmid. Construction of stable plasmids, and maintenance of stable expression during extended culture, are some of the major challenges facing commercial production of recombinant proteins. This review examines the factors that affect plasmid stability at the gene, cell, and engineering levels. Strategies for overcoming plasmid loss, and the models for predicting plasmid instability, are discussed. The focus is on S. cerevisiae, but where relevant, examples from the better studied Escherichia coli system are discussed. Compared to free suspension culture, immobilization of cells is particularly effective in improving plasmid retention, hence, immobilized systems are examined in some detail. Immobilized cell systems combine high cell concentrations with enhanced productivity of the recombinant product, thereby offering a potentially attractive production method, particularly when nonselective media are used. Understanding of the stabilizing mechanisms is a prerequisite to any substantial commercial exploitation and improvement of immobilized cell systems.  相似文献   

18.
CRISPR/Cas9基因编辑技术已经被广泛应用于工程酿酒酵母的基因插入、基因替换和基因敲除,通过使用选择标记进行基因编辑具有简单高效的特点。前期利用CRISPR/Cas9系统敲除青蒿酸生产菌株酿酒酵母(Saccharomyces cerevisiae) 1211半乳糖代谢负调控基因GAL80,获得菌株S. cerevisiae 1211-2,在不添加半乳糖诱导的情况下,青蒿酸摇瓶发酵产量达到了740 mg/L。但在50 L中试发酵实验中,S. cerevisiae 1211-2很难利用对青蒿酸积累起到决定性作用的碳源-乙醇,青蒿酸的产量仅为亲本菌株S.cerevisiae 1211的20%–25%。我们推测因遗传操作所需的筛选标记URA3突变,影响了其生长及青蒿酸产量。随后我们使用重组质粒pML104-KanMx4-u连同90 bp供体DNA成功恢复了URA3基因,获得了工程菌株S. cerevisiae 1211-3。S. cerevisiae 1211-3能够在葡萄糖和乙醇分批补料的发酵罐中正常生长,其青蒿酸产量超过20g/L,与亲本菌株产量相当。研究不但获得了不加半乳糖诱导的青...  相似文献   

19.
A cDNA encoding farnesyl diphosphate synthase, an enzyme that synthesizes C15 isoprenoid diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate, was cloned from an Arabidopsis thaliana cDNA library by complementation of a mutant of Saccharomyces cerevisiae deficient in this enzyme. The A. thaliana cDNA was also able to complement the lethal phenotype of the erg20 deletion yeast mutant. As deduced from the full-length 1.22 kb cDNA nucleotide sequence, the polypeptide contains 343 amino acids and has a relative molecular mass of 39689. The predicted amino acid sequence presents about 50% identity with the yeast, rat and human FPP synthases. Southern blot analyses indicate that A. thaliana probably contains a single gene for farnesyl diphosphate synthase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号