首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Reconstituted skin from murine embryonic stem cells   总被引:16,自引:0,他引:16  
Embryonic stem (ES) cell lines can be expanded indefinitely in culture while maintaining their potential to differentiate into any cell type. During embryonic development, the skin forms as a result of reciprocal interactions between mesoderm and ectoderm. Here, we report the in vitro differentiation and enrichment of keratinocytes from murine ES cells seeded on extracellular matrix (ECM) in the presence of Bone Morphogenic Protein-4 (BMP-4) or ascorbate. The enriched preparation of keratinocytes was able to form an epidermal equivalent composed of a stratified epithelium when cultured at the air-liquid interface on a collagen-coated acellular substratum. Interestingly, an underlying cellular compartment that belongs to the fibroblast lineage was systematically formed between the reconstituted epidermis and the inert membrane. The resulting tissue displayed morphological patterns similar to normal embryonic skin, as evidenced by light and transmission electron microscopy. Immunohistochemical studies revealed expression patterns of cytokeratins, basement membrane (BM) proteins and late differentiation markers of epidermis, as well as fibroblast markers, similar to native skin. The results demonstrate the capacity of ES cells to reconstitute in vitro a fully differentiated skin. This ES-derived bioengineered skin provides a powerful tool for studying the molecular mechanisms controlling epidermal and dermal commitments.  相似文献   

3.
Despite numerous elegant transgenic mice experiments, the absence of an appropriate in vitro model system has hampered the study of the early events responsible for epidermal and dermal commitments. Embryonic stem (ES) cells are derived from the pluripotent cells of the early mouse embryo. They can be expanded infinitely in vitro while maintaining their potential to spontaneously differentiate into any cell type of the three germ layers, including epidermal cells. We recently reported that ES cells have the potential to recapitulate the reciprocal instructive ectodermal-mesodermal commitments, which are characteristic of embryonic skin formation. Derivation of epidermal cells from murine ES cells has been successfully established by exposing the cells to precisely controlled instructive influences normally found in the body, including extracellular matrix and the morphogen BMP-4. These differentiated ES cells are able to form, in culture, a multilayered epidermis coupled with an underlying dermal compartment similar to native skin. This bioengineered skin provides a powerful tool for studying the molecular mechanisms controlling skin development and epidermal stem cell properties.  相似文献   

4.
Embryonal stem (ES) cells that are homozygous null for the beta(1) integrin subunit fail to differentiate into keratinocytes in vitro but do differentiate in teratomas and wild-type/beta(1)-null chimeric mice. The failure of beta(1)-null ES cells to differentiate in culture might be the result of defective extracellular matrix assembly or reduced sensitivity to soluble inducing factors. By culturing embryoid bodies on dead, deepidermized human dermis (DED) we showed that epidermal basement membrane did not induce beta(1)-null ES cells to undergo keratinocyte differentiation and did not stimulate the differentiation of wild-type ES cells. Coculture with epidermal keratinocytes also had no effect. However, when human dermal fibroblasts were incorporated into DED, the number of epidermal cysts formed by wild-type ES cells increased dramatically, and small groups of keratin 14-positive cells differentiated from beta(1)-null ES cells. Fibroblast-conditioned medium stimulated differentiation of K14-positive cells in wild-type and beta(1)-null embryoid bodies. Of a range of growth factors tested, KGF, FGF10, and TGFalpha all stimulated differentiation of keratin 14-positive beta(1)-null cells, and KGF and FGF10 were shown to be produced by the fibroblasts used in coculture experiments. The effects of the growth factors on wild-type ES cells were much less pronounced, suggesting that the concentrations of inducing factors already present in the medium were not limiting for wild-type cells. We conclude that the lack of beta(1) integrins decreases the sensitivity of ES cells to soluble factors that induce keratinocyte differentiation.  相似文献   

5.
During wound healing, interfollicular epidermis can be regenerated from the outer root sheath of hair follicles, showing that the cells of this structure can shift toward an interfollicular epidermal phenotype. Similarly, it has been shown that a multilayered epithelium originating from outer sheath cells can be obtained in vitro by culturing hair follicles. However, in the culture systems developed so far, the phenotypical shift was incomplete since the cells retained some of their original characteristics and did not acquire several key markers of terminally differentiated epidermis. In this paper, we describe a new tissue culture method for obtaining a multilayered epithelium from outer sheath cells. This is performed by implanting human hair follicles vertically into dermal equivalents and then raising the culture at the air-liquid interface. The morphological, immunological, and biochemical features of the in vitro reconstructed tissue are very similar to those observed in normal interfollicular epidermis, including those specific for terminally differentiated keratinocytes. Thus, under appropriate in vitro conditions, outer root sheath cells are able to express an interfollicular epidermal phenotype as occurs in vivo during wound healing.  相似文献   

6.
Embryonic stem (ES) cells can be differentiated into many cell types in vitro, thus providing a potential unlimited supply of cells for cognitive in vitro studies and cell-based therapy. We recently reported the efficient derivation of ectodermal and epidermal cells from murine ES cells. These differentiated ES cells were able to form, in culture, a multilayered epidermis coupled with an underlying dermal compartment, similar to native skin. We clarified the function of BMP-4 in the binary neuroectodermal choice by stimulating sox-1(+) neural precursors to undergo specific apoptosis while inducing epidermal differentiation through DeltaNp63 gene activation. We further demonstrated that DeltaNp63 enhances ES-derived ectodermal cell proliferation and is necessary for epidermal commitment. This unique cellular model further provides a powerful tool for identifying the molecular mechanisms controlling normal skin development and for investigating p63-ectodermal dysplasia human congenital pathologies.  相似文献   

7.
Murine embryonic stem (ES) cells are cell lines established from blastocyst which can contribute to all adult tissues, including the germ-cell lineage, after reincorporation into the normal embryo. ES cell pluripotentiality is preserved in culture in the presence of LIF. LIF withdrawal induces ES cell differentiation to nervous, myocardial, endothelial and hematopoietic tissues. The model of murine ES cell hematopoietic differentiation is of major interest because ES cells are non transformed cell lines and the consequences of genomic manipulations of these cells are directly measurable on a hierarchy of synchronized in vitro ES cell-derived hematopoietic cell populations. These include the putative hemangioblast (which represents the emergence of both hematopoietic and endothelial tissues during development), myeloid progenitors and mature stages of myeloid lineages. Human ES cell lines have been recently derived from human blastocyst in the USA. Their manipulation in vitro should be authorized in France in a near future with the possibility of developing a model of human hematopoietic differentiation. This allows to envisage in the future the use of ES cells as a source of human hematopoietic cells.  相似文献   

8.
A detailed protocol is described allowing the generation of essentially pure populations of glutamatergic neurons from mouse embryonic stem (ES) cells. It is based on the culture of ES cells that are kept undifferentiated by repeated splitting and subsequently amplified as non-adherent cell aggregates. Treatment with retinoic acid causes these ES cells to essentially become neural progenitors with the characteristics of Pax6-positive radial glial cells. As they do in vivo, these progenitors differentiate in glutamatergic pyramidal neurons that form functional synaptic contacts and can be kept in culture for long periods of time. This protocol does not require the use of ES lines expressing resistance or fluorescent markers and can thus be applied in principle to any wild-type or mutant ES line of interest. At least 2 weeks are required from starting ES cell culture until plating progenitors and differentiating neurons establish synaptic transmission within about 10 days.  相似文献   

9.
Generation of insulin-expressing cells from mouse embryonic stem cells   总被引:6,自引:0,他引:6  
The therapeutic potential of transplantation of insulin-secreting pancreatic beta-cells has stimulated interest in using pluripotent embryonic stem (ES) cells as a starting material from which to generate insulin secreting cells in vitro. Mature beta-cells are endodermal in origin so most reported differentiation protocols rely on the identification of endoderm-specific markers. However, endoderm development is an early event in embryogenesis that produces cells destined for the gut and associated organs in the embryo, and for the development of extra-embryonic structures such as the yolk sac. We have demonstrated that mouse ES cells readily differentiate into extra-embryonic endoderm in vitro, and that these cell populations express the insulin gene and other functional elements associated with beta-cells. We suggest that the insulin-expressing cells generated in this and other studies are not authentic pancreatic beta-cells, but may be of extra-embryonic endodermal origin.  相似文献   

10.
Embryonic stem (ES) cells are pluripotent cells able to differentiate into many cell types in vitro, thus providing a potential unlimited supply of cells for cognitive in vitro studies and cell-based therapy. We recently reported their efficient ability to recapitulate ectodermal and epidermal fates and form, in culture, a multilayered epidermis coupled with an underlying dermal compartment, similar to native skin. Thus, ES cells have the potential to recapitulate the reciprocal instructive ectodermal-mesodermal commitments, characteristic of embryonic skin formation. We clarified the function of BMP-4 in the binary neuroectodermal choice by stimulating sox-1+ neural precursors to undergo specific apoptosis while inducing epidermal differentiation. We further demonstrated that p63 stimulates ectodermal cell proliferation and is necessary for epidermal commitment. We provided further evidence that this unique cellular model provides a powerful tool to identify the molecular mechanisms controlling normal skin development and to investigate human ectodermal dysplasia congenital pathologies linked to p63 (in p63-ectodermal dysplasia human congenital pathologies). Epidermal stem cell activity has been used for years to repair skin injuries, but ex vivo keratinocyte amplification has limitations and grafted skin homeostasis is not totally satisfactory. Human ES cells raise hopes that the understanding of developmental steps leading to the generation of epidermal stem cells will once be translated into therapeutic benefit. We recently demonstrated that human embryonic stem cells can give rise to a stable somatic ectodermal cell population. Its finite population doubling, normal cell cycle kinetics and the absence of teratoma formation strongly suggest that, although derived from human embryonic stem cells, these ectodermal cells represent a clinically safe somatic cell population. They could thus be particularly useful as a source for committed, homogeneous, non-tumorigenic cell populations to be employed in clinical trials for epithelial stem cell loss.  相似文献   

11.
Embryonic stem (ES) cells are clonal cell lines derived from the inner cell mass of the developing blastocyst that can proliferate extensively in vitro and are capable of adopting all the cell fates in a developing embryo. Clinical interest in the use of ES cells has been stimulated by studies showing that isolated human cells with ES properties from the inner cell mass or developing germ cells can provide a source of somatic precursors. Previous studies have defined in vitro conditions for promoting the development of specific somatic fates, specifically, hematopoietic, mesodermal, and neurectodermal. In this study, we present a method for obtaining dopaminergic (DA) and serotonergic neurons in high yield from mouse ES cells in vitro. Furthermore, we demonstrate that the ES cells can be obtained in unlimited numbers and that these neuron types are generated efficiently. We generated CNS progenitor populations from ES cells, expanded these cells and promoted their differentiation into dopaminergic and serotonergic neurons in the presence of mitogen and specific signaling molecules. The differentiation and maturation of neuronal cells was completed after mitogen withdrawal from the growth medium. This experimental system provides a powerful tool for analyzing the molecular mechanisms controlling the functions of these neurons in vitro and in vivo, and potentially for understanding and treating neurodegenerative and psychiatric diseases.  相似文献   

12.
There have been many attempts to acquire and culture human keratinocytes for clinical purposes including from keratotome slices in media with fetal calf serum (FCS) or pituitary extract (PE), from skin specimens in media with feeder layers, from suction blister epidermal roofs’ in serum-free culture and from human umbilical cord blood (hUCB) mesenchymal stem cells (MSCs) in media with skin feeder layers. Conversely this study was designed to investigate whether keratinocytes could be obtained directly from hUCB MSCs in vitro. It is widely established that mesenchymal stem cells from human umbilical cord blood have multipotent capacity and the ability to differentiate into disparate cell lineages hUCB MSCs were directly induced to differentiate into keratinocytes by using a specific medium composed of primary culture medium (PCM) and serum free medium (SFM) in a ratio 1:9 for a period of 7 days and tested by immunostain p63 and K1-K10. Cells thus cultured were positive in both tests, confirming the possibility to directly obtain keratinocytes from MSCs hUCB in vitro.  相似文献   

13.
Embryonic stem cells (ES cells) are developmentally pluripotent cells isolated from pre-implantation mammalian embryos. In cell culture ES cells can be easily differentiated to generate cultures of neural progenitors. We present a simple method for the cryopreservation of these ES-derived neural progenitors. Cryopreserved neural progenitor stocks can be thawed, expanded with FGF2, and differentiated into functional neurons. This method will facilitate studies using ES-derived neural progenitor cells as a cell culture model system for neural development and differentiation. It will also aid studies designed to test the ability of these progenitor cells to functionally engraft and repair damaged neural tissue.  相似文献   

14.
The present study was designed to examine whether in vitro produced porcine embryos can be used to establish an embryonic stem (ES) cell line. Porcine embryos were produced by in vitro maturation and in vitro fertilization. Embryos at the 4-cell to blastocyst stages were cultured in an ES medium containing 16% fetal bovine serum with mouse embryonic fibroblasts as a feeder layer. It was found that ES-like colonies were derived only from blastocysts. When these ES-like colonies were separated in 0.25% trypsin-0.02% EDTA solution and cultured again, ES-like colonies were further observed in the subsequent culture until the fourth passage. The cells from ES-like colonies showed positive alkaline phosphatase activity. Some cells from the colonies differentiated into several types of cells in vitro when they were cultured in the medium without feeder layers and leukemin inhibitory factor. Embryoid bodies were also formed when the cells were cultured in a suspension status. These results indicate that porcine ES-like cells can be derived from in vitro produced porcine blastocysts and these ES-like cells are pluripotent. The culture system used in the present study is useful to isolate and culture ES cells from in vitro produced porcine embryos.  相似文献   

15.
Hepatic differentiation of murine embryonic stem cells.   总被引:49,自引:0,他引:49  
Murine embryonic stem (ES) cells can replicate indefinitely in culture and can give rise to all tissues, including the germline, when reimplanted into a murine blastocyst. ES cells can also be differentiated in vitro into a wide range of cell types. We have utilized a liver-specific marker to demonstrate that murine ES cells can differentiate into hepatocytes in vitro. We have used ES cells carrying a gene trap vector insertion (I.114) into an ankyrin repeat-containing gene (Gtar) that we have previously shown provides an exclusive beta-galactosidase marker for the early differentiation of hepatocytes in vivo. beta-Galactosidase-positive cells were differentiated from I.114 ES cells in vitro. The identity of these cells was confirmed by the expression of the proteins alpha-fetoprotein, albumin, and transferrin and by the fact that they have an ultrastructural appearance consistent with that of embryonic hepatocytes. We propose that this model system of hepatic differentiation in vitro could be used to define factors that are involved in specification of the hepatocyte lineage. In addition, human ES cells have recently been derived and it has been proposed that they may provide a source of differentiated cell types for cell replacement therapies in the treatment of a variety of diseases.  相似文献   

16.
鱼类的胚胎干细胞   总被引:6,自引:1,他引:6  
胚胎干细胞(ES)是未分化的细胞培养物,来自动物的早期胚胎。它们能成为稳定的细胞系和长期冻存。在适当的条件下,ES细胞能分化成各种细胞类型,包括生殖细胞。这样,ES细胞就提供了一个有效的纽带,将动物基因组的体外和体内遗传操作连系起来。ES细胞的魅力就由其在产生和分析基因敲除老鼠中显现出来。目前,ES细胞技术仅见之老鼠,因其它脊椎动物的ES细胞的培养和建系难获成功。在鱼类,人们已做了大量的尝试。我们以青鳉(Oryzias latipes)作为建立鱼类ES细胞技术的模式,通过建立并应用无滋养层细胞的培养条件,获得了来自中期囊胚的ES细胞系。青鳉的ES细胞和老鼠的ES细胞有很多共同特征,如二倍体核型、分化潜力和形成嵌合体。因此,在鱼类建立和应用ES细胞技术是可能的。青鳉ES细胞的培养条件已成功地应用到其它鱼类如斑马鱼甚至海水鱼。本文旨在以青鳉为模式,综述获得和应用模式鱼和经济鱼ES细胞的主要进展和前景。  相似文献   

17.
干细胞与心肌细胞替代治疗   总被引:1,自引:0,他引:1  
胚胎干细胞及来源于骨髓、骨骼肌、血管、肝脏、皮肤、脂肪等组织器官的成体干细胞均有多向分化潜能。胚胎干细胞可分化为3个胚层的所有组织细胞。成体干细胞具有可塑性和转分化的潜能。在一定条件下,这些干细胞可被诱导分化为心肌细胞。成年心脏可能存在心肌干细胞,具有增殖和分化为包括跳动性心肌细胞的多种细胞的潜能。因此,干细胞可用于心肌细胞替代治疗,以替代死亡的心肌细胞,改善心脏功能,防治心肌梗塞后心衰、减少心肌重构等症状。本文对干细胞治疗心肌梗塞有关进展及问题作一综述。  相似文献   

18.
Wang X  Wang W  Ma J  Guo X  Yu X  Ma X 《Biotechnology progress》2006,22(3):791-800
Embryonic stem (ES) cells hold promise either as an in vitro model recapitulating early embryonic development or as a renewable source of therapeutically useful cells. Certain aspects of the microenvironment (or niche) play critical roles in determining the fate of ES cells. Here, we reported the feasibility of using the technique of microencapsulation to study the interaction between ES cells and their tissue niche. ES cells' growth, viability, and differentiation in vitro were evaluated when they were enclosed in solid or liquefied core APA microcapsules. In comparison with those microcapsules with solid cores, the liquefied capsules provided a more suitable culture environment for the growth of ES cells. In addition, behavior of encapsulated ES cells in vivo was observed after their being implanted into mouse peritoneal cavities. In contrast to the prolonged lag phase in vitro, ES cells encapsulated grew much faster in vivo. Typical markers for the undifferentiated ES cells, such as AP, SSEA-1, and Oct-4 gene, were also tracked by immunochemistry and RT-PCR. Results showed that expression of markers remained high over 2 weeks of culture in vitro. However, decreased expression of markers was found in those samples in vivo with time passage. These findings implied that it was the combination of the intrinsic characteristics of ES cells and their microenvironment that regulated their fate. The APA-ES cells system may provide an optimal model to study the interaction between stem cells and their tissue niches.  相似文献   

19.
Epidermal cells were harvested from the dorsal skin of adult mice by trypsinization and were sedimented through continuous density gradients of Percoll, formulated to separate basal cells of different buoyant density. Five fractions from the gradients were characterized with regard to the number of cells present, their viability and morphology and their basal origin. Suprabasal keratinocytes remained primarily at the top of the gradient; basal keratinocytes sedimented throughout. With increasing density, a relative enrichment was observed: (i) for [3H]-thymidine and [3H]-benzo[alpha]pyrene label-retaining (slowly cycling) keratinocytes; (ii) for keratinocytes that could proliferate in vitro in the continuous presence of 0.1 micrograms ml-1 of 12-O-tetradecanoylphorbol-13-acetate; (iii) for cells from untreated as well as initiated epidermis able to proliferate under conditions where calcium induces terminal differentiation; and (iv) for primary in vitro clonogenic keratinocytes from normal epidermis. The relative enrichment for epidermal basal cells having characteristics thought to be associated with immaturity and with the initiation and promotion of skin carcinogenesis suggests that density gradient sedimentation could be used in conjunction with other methods for the eventual purification of epidermal progenitors.  相似文献   

20.
The reprogramming of human somatic cells to induced pluripotent stem (hiPS) cells enables the possibility of generating patient-specific autologous cells for regenerative medicine. A number of human somatic cell types have been reported to generate hiPS cells, including fibroblasts, keratinocytes and peripheral blood cells, with variable reprogramming efficiencies and kinetics. Here, we show that human astrocytes can also be reprogrammed into hiPS (ASThiPS) cells, with similar efficiencies to keratinocytes, which are currently reported to have one of the highest somatic reprogramming efficiencies. ASThiPS lines were indistinguishable from human embryonic stem (ES) cells based on the expression of pluripotent markers and the ability to differentiate into the three embryonic germ layers in vitro by embryoid body generation and in vivo by teratoma formation after injection into immunodeficient mice. Our data demonstrates that a human differentiated neural cell type can be reprogrammed to pluripotency and is consistent with the universality of the somatic reprogramming procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号