首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Myosin light chain kinase purified from chicken white skeletal muscle (Mr = 150,000) was significantly larger than both rabbit skeletal (Mr = 87,000) and chicken gizzard smooth (Mr = 130,000) muscle myosin light chain kinases, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Km and Vmax values with rabbit or chicken skeletal, bovine cardiac, and chicken gizzard smooth muscle myosin P-light chains were very similar for the chicken and rabbit skeletal muscle myosin light chain kinases. In contrast, comparable Km and Vmax data for the chicken gizzard smooth muscle myosin light chain kinase showed that this enzyme was catalytically very different from the two skeletal muscle kinases. Affinity-purified antibodies to rabbit skeletal muscle myosin light chain kinase cross-reacted with chicken skeletal muscle myosin light chain kinase, but the titer of cross-reacting antibodies was approximately 20-fold less than the anti-rabbit skeletal muscle myosin light chain kinase titer. There was no detectable antibody cross-reactivity against chicken gizzard myosin light chain kinase. Proteolytic digestion followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or high performance liquid chromatography showed that these enzymes are structurally very different with few, if any, overlapping peptides. These data suggest that, although chicken skeletal muscle myosin light chain kinase is catalytically very similar to rabbit skeletal muscle myosin light chain kinase, the two enzymes have different primary sequences. The two skeletal muscle myosin light chain kinases appear to be more similar to each other than either is to chicken gizzard smooth muscle myosin light chain kinase.  相似文献   

2.
Purified myosin light chain kinases from skeletal muscle are reported to be significantly smaller (Mr = 75,000-90,000) than the kinases purified from smooth muscle (Mr = 130,000-155,000). It has been suggested that the smaller kinases from striated muscle are proteolytic fragments of a larger enzyme which is homologous, if not identical, to myosin light chain kinase from smooth muscle. Therefore, we have used an antiserum to rabbit skeletal muscle myosin light chain kinase and Western blot analysis to compare the subunit molecular weight of the kinase in skeletal muscle extracts of several mammalian species. In rabbit skeletal muscle, the antiserum only recognized a polypeptide of Mr = 87,000, with no indication that this polypeptide was a proteolyzed fragment of a larger protein. The apparent molecular weights observed in different animal species were 75,000 (mouse), 83,000 (guinea pig), 82,000 (rat), 87,000 (rabbit), 100,000 (dog), and 108,000 (steer). The molecular weight of myosin light chain kinase was constant within an animal species, regardless of skeletal muscle fiber type. The antiserum inhibited the catalytic activity of skeletal muscle myosin light chain kinase. Similar antibody dilution curves for inhibition of myosin light chain kinase activity in extracts were observed for all animal species (rabbit, rat, mouse, guinea pig, dog, cat, steer, and chicken) and different fibers (slow twitch oxidative, fast twitch oxidative glycolytic, and fast twitch glycolytic) tested. The antiserum did not inhibit the activity of rabbit smooth muscle myosin light chain kinase. These results suggest that there may be at least two classes of muscle myosin light chain kinase represented in skeletal and smooth muscles, respectively.  相似文献   

3.
Monoclonal antibodies raised against chicken gizzard smooth muscle myosin light chain kinase were used for immunological and structural studies of this enzyme. Epitope mapping of trypsin-digested chicken gizzard enzyme showed that MM-1, 2, 3, 4, 5, 6, and 7 bind to 65 kDa (trypsin-digested) and 60 kDa (chymotrypsin-digested) fragments which contain the catalytic domain of the kinase. Kinetic analysis demonstrated that MM-7 inhibited kinase activity competitively with respect to ATP and noncompetitively with respect to myosin light chain, thereby indicating that MM-7 binds at or near the ATP binding site of the enzyme. Immunoblot analysis revealed that all these antibodies (MM-1 to 12) reacted with the enzyme (130 kDa) from intestinal and vascular smooth muscles, whereas 5 (MM-1, 3, 4, 6, and 9) or 3 (MM-1, 3, and 4) of 12 antibodies did not cross-react with chicken cardiac muscle or with blood platelet myosin light chain kinase (130 kDa), respectively. None of these antibodies showed cross-reactivity against skeletal muscle myosin light chain kinase. As for mammalian species, MM-11 and 12 reacted with myosin light chain kinase of vascular smooth muscle (140 kDa) and MM-11 cross-reacted with the enzyme (140 kDa) from cardiac muscle of rat and rabbit. These data suggest the existence of at least 4 subspecies of myosin light chain kinase in chicken tissues and the heterogeneity of tissue- and species-specific isozyme forms.  相似文献   

4.
Substrate determinants for rabbit and chicken skeletal muscle myosin light chain kinases were examined with synthetic peptides. Both skeletal muscle myosin light chain kinases had similar phosphorylation kinetics with synthetic peptide substrates. Average kinetic constants for skeletal muscle myosin light chain heptadecapeptide, (formula; see text) where S(P) is phosphoserine, were Km, 2.3 microM and Vmax, 0.9 mumol/min/mg of enzyme. Km values were 122 and 162 microM for skeletal muscle peptides containing A-A for basic residues at positions 2-3 and 6-7, respectively. Average kinetic constants for smooth muscle myosin light chain peptide, (formula; see text), were Km, 1.4 microM and Vmax 27 mumol/min/mg of enzyme. Average Km values for the smooth muscle peptide, residues 11-23, were 10 microM which increased 6- and 11-fold with substitutions of alanine at residues 12 and 13, respectively. Vmax values decreased and Km values increased markedly by substitution of residue 16 with glutamate in the 11-23 smooth muscle tridecapeptide. Basic residues located 3 and 6-7 residues toward the NH2 terminus from phosphoserine in smooth muscle myosin light chain and 6-8 and 10-11 residues toward the NH2 terminus from phosphoserine in skeletal muscle myosin light chain appear to be important substrate determinants for skeletal muscle myosin light chain kinases. These properties are different from myosin light chain kinase from smooth muscle.  相似文献   

5.
Smooth muscle myosin light chain kinase contains a 64 residue sequence that binds calmodulin in a Ca2+-dependent manner (Guerriero, V., Jr., Russo, M. A., and Means, A. R. (1987) Biochemistry, in press). Within this region is a sequence with homology to the corresponding sequence reported for the calmodulin binding region of skeletal muscle myosin light chain kinase (Blumenthal, D. K., Takio, K., Edelman, A. M., Charbonneau, H., Titani, L., Walsh, K. A., and Krebs, E. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 3187-3191). Inspection of these sequences reveals that they both share a similar number and spatial arrangement of basic residues with those present in the myosin light chain substrate. We have synthesized a 22-residue peptide corresponding to residues 480-501 (determined from the cDNA) of the smooth muscle myosin light chain kinase. This peptide, Ala-Lys-Lys-Leu-Ser-Lys-Asp-Arg-Met-Lys-Lys-Tyr-Met-Ala-Arg-Arg-Lys-Trp- Gln-Lys-Thr-Gly, inhibited calmodulin-dependent activation of the smooth muscle myosin light chain kinase with an IC50 of 46 nM. At saturating concentrations of calmodulin, the 22-residue peptide inhibited myosin light chain and synthetic peptide substrate phosphorylation competitively with IC50 values of 2.7 and 0.9 microM, respectively. An 11-residue synthetic peptide analog, corresponding to part of the calmodulin-binding sequence in skeletal muscle myosin light chain kinase, Lys-Arg-Arg-Trp-Lys-Lys-Asn-Phe-Ile-Ala-Val, also competitively inhibited synthetic peptide substrate phosphorylation with a Ki of 1 microM. The competitive inhibitory activity of the calmodulin binding regions is similar to the apparent Km of 2.7 microM for phosphorylation of the 23-residue peptide analog of the smooth muscle myosin light chain and raises the possibility that the calmodulin binding region of the myosin light chain kinase may act as a pseudosubstrate inhibitor of the enzyme.  相似文献   

6.
A 5.6-kilobase cDNA clone has been isolated which includes the entire coding region for the myosin light chain kinase from rabbit uterine tissue. This cDNA, expressed in COS cells, encodes a Ca2+/calmodulin-dependent protein kinase with catalytic properties similar to other purified smooth muscle myosin light chain kinases. A module (TLKPVGNIKPAE), repeated sequentially 15 times, has been identified near the N terminus of this smooth muscle kinase. It is not present in chicken gizzard or rabbit skeletal muscle myosin light chain kinases. This repeat module and a subrepeat (K P A/V) are similar in amino acid content to repeated motifs present in other proteins, some of which have been shown to associate with chromatin structures. Immunoblot analysis after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, used to compare myosin light chain kinase present in rabbit, bovine, and chicken smooth and nonmuscle tissues, showed that within each species both tissue types have myosin light chain kinases with indistinguishable molecular masses. These data suggest that myosin light chain kinases present in smooth and nonmuscle tissues are the same protein.  相似文献   

7.
Calmodulin-dependent protein kinases such as myosin light chain kinase (MLCK), calmodulin kinase II, and phosphorylase kinase contain specific sequences responsible for binding calmodulin. These regions are known as calmodulin-binding domains and in many cases are contained within sequences that are short enough to be synthesized by solidphase techniques. The ability to chemically-synthesize target enzyme calmodulin-binding domains has permitted the use of a variety of biophysical techniques to study the interactions between calmodulin and calmodulin-binding domain peptides. The work reviewed here describes the development and characterization of peptides based on the sequence, of the calmodulin-binding domain of skeletal muscle myosin light chain kinase which were labeled with the fluorescent reagent, acrylodan. Data are presented demonstrating the use of fluorescently-labeled peptides to study various aspects of calmodulin-peptide interactions including binding affinity, stoichiometry, specificity, changes in peptide conformation, and thermal stability of the peptide-calmodulin complex. These data indicate the peptides exhibit many of the salient features seen with calmodulin-target enzyme interactions. The fluorescently-labeled peptides should thus serve as useful models for studying calmodulin-target enzyme interactions at the molecular level.  相似文献   

8.
Myosin light chain kinase can be divided into three distinct structural domains, an amino-terminal "tail," of unknown function, a central catalytic core and a carboxy-terminal calmodulin-binding regulatory region. We have used a combination of deletion mutagenesis and monoclonal antibody epitope mapping to define these domains more closely. A 2.95-kilobase cDNA has been isolated that includes the entire coding sequence of rabbit skeletal muscle myosin light chain kinase (607 amino acids). This cDNA, expressed in COS cells encoded a Ca2+/calmodulin-dependent myosin light chain kinase with a specific activity similar to that of the enzyme purified from rabbit skeletal muscle. Serial carboxy-terminal deletions of the regulatory and catalytic domains were constructed and expressed in COS cells. The truncated kinases had no detectable myosin light chain kinase activity. Monoclonal antibodies which inhibit the activity of the enzyme competitively with respect to myosin light chain were found to bind between residues 235-319 and 165-173, amino-terminal of the previously defined catalytic core. Thus, residues that are either involved in substrate binding or in close proximity to a light chain binding site may be located more amino-terminal than the previously defined catalytic core.  相似文献   

9.
Protease activated kinase I from rabbit reticulocytes has been shown to phosphorylate the P-light chain of myosin light chains isolated from rabbit skeletal muscle. The enzyme is not activated by Ca2+ and calmodulin or phospholipids. Protease activated kinase I is not inhibited by trifluoperazine at concentrations up to 200 μM or by the antibody to the Ca2+, calmodulin-dependent myosin light chain kinase from rabbit skeletal muscle. Two-dimensional peptide mapping of chymotryptic digests of myosin P-light chain show the site phosphorylated by the protease activated kinase is different from that phosphorylated by the Ca2+, calmodulin-dependent myosin light chain kinase.  相似文献   

10.
Selective binding of L-thyroxine by myosin light chain kinase   总被引:3,自引:0,他引:3  
L-Thyroxine selectively inhibited Ca2+-calmodulin-activated myosin light chain kinases (MLC kinase) purified from rabbit skeletal muscle, chicken gizzard smooth muscle, bovine thyroid gland, and human platelet with similar Ki values (Ki = 2.5 microM). A detailed analysis of L-thyroxine inhibition of smooth muscle myosin light chain kinase activation was undertaken in order to determine the effect of L-thyroxine on the stoichiometries of Ca2+, calmodulin, and the enzyme in the activation process. The kinetic data indicated that L-thyroxine does not interact with calmodulin but, instead, through direct association with the enzyme, inhibits the binding of the Ca2+-calmodulin complex to MLC kinase. L-[125I]Thyroxine gel overlay revealed that the 95-kDa fragment of chicken gizzard MLC kinase digested by chymotrypsin and all the fragments of 110, 94, 70, and 43 kDa produced by Staphylococcus aureus V8 protease digestion which contain the calmodulin binding domain retain L-[125I]thyroxine binding activity, whereas smaller peptides were not radioactive. Since MLC kinase is phosphorylated by cAMP-dependent protein kinase (2 mol of phosphate/mol of MLC kinase), the effect of L-thyroxine on the phosphorylation of MLC kinase also was examined. L-Thyroxine binding did not inhibit the phosphorylation of MLC kinase and, moreover, reversed the inhibition of phosphorylation obtained with the calmodulin-enzyme complex. These observations support the suggestion that L-thyroxine binds at or near the calmodulin-binding site of MLC kinase. L-Thyroxine may serve as a different type of pharmacological tool for elucidating the biological significance of MLC kinase-mediated reactions.  相似文献   

11.
Nanomolar concentrations of synthetic peptides corresponding to the calmodulin-binding domain of skeletal muscle myosin light chain kinase were found to inhibit calmodulin activation of seven well-characterized calmodulin-dependent enzymes: brain 61 kDa cyclic nucleotide phosphodiesterase, brain adenylate cyclase, Bordetella pertussis adenylate cyclase, red blood cell membrane Ca++-pump ATPase, brain calmodulin-dependent protein phosphatase (calcineurin), skeletal muscle phosphorylase b kinase, and brain multifunctional Ca++ (calmodulin)-dependent protein kinase. Inhibition could be entirely overcome by the addition of excess calmodulin. Thus, the myosin light chain kinase peptides used in this study may be useful antagonists for studying calmodulin-dependent enzymes and processes.  相似文献   

12.
Many studies have established a correlation of differences in the activities of various muscle types with differences in the expression of myosin isoforms. In this paper we report the sequence determination of myosin light chain-2 from rabbit slow skeletal (LC2s) and ventricular (LC2v) nmscles. We sequenced tryptic peptides from LC2v which account for all except a few terminal amino acid residues. The major part (87 residues) of the rabbit LC2s sequence, obtained from tryptic and cyanogen bromide (CNBr) peptides, was found to be identical to rabbit LC2v. Our results provide the first sequence information on LC2s from any species, and lend strong support to the hypothesis that LC2s and LC2v are identical. Comparisons of rabbit LC2v and LC2s with rabbit LC2f (from fast skeletal muscle), and also with chicken LC2f and LC2v, show clearly that LC2s and LC2v from mammalian and avian species are more closely related to each other than they are to LC2f isoforms from the same species.  相似文献   

13.
Two proteins with myosin light chain kinase activity and electrophoretic molecular weights of 155,000 and 130,000 were each isolated from bovine stomach smooth muscle [Kuwayama, H., Suzuki, M., Koga, R., & Ebashi, S. (1988) J. Biochem. 104, 862-866]. The 155 kDa component showed a much higher superprecipitation-inducing activity than the 130 kDa component, when compared on the basis of equivalent myosin light chain kinase activity. In this study, we isolated a cDNA for the entire coding region of the 155 kDa protein. The deduced amino acid sequence revealed a high degree of similarity to those of chicken and rabbit smooth muscle myosin light chain kinases. Multiple motifs, such as three repeats of an immunoglobulin C2-like domain, a fibronectin type III domain, and unusual 20 repeats of 12 amino acids were detected in the sequence. Part of the amino-terminal sequence was similar to that of the actin- and calmodulin-binding domain of smooth muscle caldesmon. These observations suggest that the 155 kDa protein has additional functions other than its enzymatic activity. Two mRNAs of 6.0 and 2.6 kb in length in the bovine stomach smooth muscle RNAs were hybridized with cDNA probes. The 2.6-kb RNA probably encodes telokin, which is the carboxyl terminus of smooth muscle myosin light chain kinase. mRNAs with identical lengths were also detected in bovine aorta.  相似文献   

14.
Amino acid sequences of peptides containing the phosphorylation site of bovine cardiac myosin light chain (L2) were determined. The site was localized to a serine residue in the tentative amino terminus of the light chain and is homologous to phosphorylation sites in other myosin light chains. Phosphorylation of bovine cardiac light chain by chicken gizzard myosin light chain kinase was Ca2+-calmodulin dependent. Kinetic data gave a Km of 107; microM and a Vmax of 23.6 mumol min-1 mg-1. In contrast to what has been observed with smooth muscle light chains, neither the phosphorylation site fragment of the cardiac light chain nor a synthetic tetradecapeptide containing the phosphorylation site were effectively phosphorylated by the chicken gizzard kinase. Phosphorylation of cardiac myosin light chains by chicken gizzard myosin light chain kinase, therefore, requires other regions of the light chain in addition to a phosphate acceptor site.  相似文献   

15.
A protease-activated protein kinase that phosphorylates the P light chain of myosin in the absence of Ca2+ and calmodulin has been isolated from rabbit skeletal muscle. The enzyme has properties similar to protease-activated kinase I from rabbit reticulocytes [S. M. Tahara and J. A. Traugh (1981) J. Biol. Chem. 256, 11588-11564], which has been shown to phosphorylate the P light chain of myosin [P. T. Tuazon, J. T. Stull, and J. A. Traugh (1982) Biochem. Biophys. Res. Commun. 108, 910-917]. The protease-activated kinase from skeletal muscle has been partially purified by chromatography on DEAE-cellulose, phosphocellulose and hydroxyapatite. The enzyme phosphorylates histone as well as the P light chain of myosin following activation by proteolysis. Stoichiometric phosphorylation of myosin light chain was observed with the protease-activated kinase and myosin light chain kinase. The sites phosphorylated by the protease-activated kinase and myosin light chain kinase were examined by two-dimensional peptide mapping following chymotryptic digestion. The phosphopeptides observed with the protease-activated kinase were different from those obtained with the Ca2+-dependent myosin light chain kinase, indicating that the two enzymes phosphorylated different sites on the P light chain of skeletal muscle myosin. When actomyosin from skeletal muscle was examined as substrate, the P light chain was phosphorylated following activation of the protease-activated kinase by limited proteolysis.  相似文献   

16.
Myosin light and heavy chains from skeletal and cardiac muscles and from the electric organ of Electrophorus electricus (L.) were characterised using biochemical and immunological methods, and compared with myosin extracted from avian, reptilian, and mammalian skeletal and cardiac muscles. The results indicate that the electric tissue has a myosin light chain 1 (LC1) and a muscle-specific myosin heavy chain. We also show that monoclonal antibody F109-12A8 (against LC1 and LC2) recognizes LC1 of myosin from human skeletal and cardiac muscles as well as those of rabbit, lizard, chick, and electric eel. However, only cardiac muscles from humans and rabbits have LC2, which is recognized by antibody F109-16F4. The data presented confirm the muscle origin of the electric tissue of E. electricus. This electric tissue has a profile of LC1 protein expression that resembles the myosin from cardiac muscle of the eel more than that from eel skeletal muscle. This work raises an interesting question about the ontogenesis and differentiation of the electric tissue of E. electricus.  相似文献   

17.
Monoclonal antibodies directed against rabbit skeletal muscle myosin light chain kinase have been used to study the domains of this kinase. Specificity of nine monoclonal antibodies against rabbit skeletal muscle myosin light chain kinase was demonstrated by immunoblot analysis and immunoadsorption of kinase activity. None of the antibodies reacted by immunoblot analysis with either chicken skeletal or rabbit smooth muscle myosin light chain kinases. Epitope mapping of trypsin-digested rabbit skeletal muscle myosin light chain kinase showed that antibodies 2a, 9a, 9b, 12a, 12b, 16a, and 16b are directed against the 40-kDa catalytic domain. In addition, these seven antibodies reacted with sites that are clustered within a 14-kDa fragment of the kinase generated by Staphylococcus aureus V8 protease digestion. Two monoclonal antibodies, 14a and 19a, reacted with two distinct epitopes located within the inactive, asymmetric trypsin fragment. Six of nine monoclonal antibodies (2a, 9a, 9b, 12a, 12b, and 14a) inhibited kinase activity. Kinetic analyses demonstrated that antibodies 2a, 12a, and 14a inhibited kinase activity competitively with respect to myosin phosphorylatable light chain; 2a, 12a, and 14a exhibit noncompetitive inhibition with respect to calmodulin. These data suggest that monoclonal antibodies 2a, 12a, and 14a bind at or adjacent to the active site of the kinase.  相似文献   

18.
In mammalian organisms the regulatory or phosphorylatable myosin light chains in heart and slow skeletal muscle have been shown to be identical and presumable constitute the product of a single gene. We analyzed the expression of the avian cardiac myosin light chain (MLC) 2-A in heart and slow skeletal muscle by a combination of experimental approaches, e.g., two-dimensional gel electrophoresis of the protein and hybridization of mRNA to specific MLC 2-A sequences cloned from chicken. The investigations have indicated that, unlike in mammals, in avian organisms the phosphorylatable myosin light chains from heart and slow skeletal muscle are distinct proteins and therefore products of different genes. The expression of MLC 2-A is restricted to the myocardium and no evidence was found that it is shared with slow skeletal muscle.  相似文献   

19.
A synthetic peptide modeled after the calmodulin (CaM)-binding domain of rabbit skeletal muscle myosin light chain kinase, Lys-Arg-Arg-Trp-Lys5-Lys-Asn-Phe-Ile-Ala10-Val-Ser-Ala-Ala-+ ++Asn15-Arg-Phe-Glycyl amide (M5), inhibited the CaM-independent chymotryptic fragment of the enzyme, C35 (Edelman, A. M., Takio, K., Blumenthal, D. K., Hansen, R. S., Walsh, K. A., Titani, K., and Krebs, E. G. (1985) J. Biol. Chem. 260, 11275-11285), with a Ki of 3.2 +/- 2.1 microM. Inhibition was competitive with respect to the peptide substrate Lys-Lys-Arg-Ala-Ala5-Arg-Ala-Thr-Ser-Asn10-Val-Phe-Ala and was of the noncompetitive linear mixed type with respect to ATP. M5 and homologues with a serine residue substituted at positions 9, 13, or 14 were phosphorylated with the following order of preference: M5(Ser9) greater than M5(Ser13) much greater than M5(Ser14) greater than M5. The order of preference observed agreed with that predicted by comparison of the sequence of these peptides with the phosphorylation sites of myosin P-light chains. Both inhibition of C35 by M5 and phosphorylation of M5 and its serine-substituted homologues were severely curtailed by the addition of a stoichiometric excess of CaM over peptide. Thus, synthetic peptides modeled after the CaM-binding domain of skeletal muscle myosin light chain kinase can function as calmodulin-regulated active site-directed inhibitors of the enzyme.  相似文献   

20.
Considerable attention is being directed toward defining a binding site in the central region of calmodulin that forms a high affinity interaction with certain enzymes and amphiphilic peptides. However, other regions of calmodulin are also known to be involved in the activation of enzymes such as myosin light chain kinase, regions which may not be directly involved in the binding of small peptides, e.g. mastoparan X. We investigated the properties of wheat calmodulin fluorescent derivatives, which were modified chemically in the first calcium binding site at Cys-27, in the activation of rabbit fast skeletal muscle myosin light chain kinase. Unmodified wheat calmodulin stimulated myosin light chain kinase to a greater maximal velocity than wheat calmodulin that was modified at Cys-27 by any of four fluorescent compounds, IAANS (2-[4'-iodoacetamidoanilino]naphthalene-6-sulfonic acid), 5-[2'-[[iodoacetyl]amino]ethyl]aminonaphthalene]-1-sulfonic acid, 5-iodoacetamidofluorescein, and 7-diethylamino-3-[4'-maleimidylphenyl]-4-methylcoumarin; the midpoints for activation of myosin light chain kinase were not significantly different for unmodified wheat calmodulin and three of the four wheat calmodulin derivatives. Myosin light chain kinase, but not mastoparan X, enhanced the fluorescence emission intensity of wheat calmodulin-IAANS. Mastoparan X reversed, in a dose-dependent manner, the changes in fluorescence intensity of a preformed complex of myosin light chain kinase and wheat calmodulin-IANNS. Thus, we propose that the region vicinal to Cys-27 participates in the activation but not the high affinity association of myosin light chain kinase. Lastly, a comparison of mammalian and plant calmodulin showed that the Vmax for the stimulation of myosin light chain kinase was 1.6-fold greater for bovine than wheat calmodulin. The difference between the two calmodulins was more pronounced at lower Ca2+ because less Ca2+ was needed to saturate the kinase rate when stimulated by bovine calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号