首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective binding of L-thyroxine by myosin light chain kinase   总被引:3,自引:0,他引:3  
L-Thyroxine selectively inhibited Ca2+-calmodulin-activated myosin light chain kinases (MLC kinase) purified from rabbit skeletal muscle, chicken gizzard smooth muscle, bovine thyroid gland, and human platelet with similar Ki values (Ki = 2.5 microM). A detailed analysis of L-thyroxine inhibition of smooth muscle myosin light chain kinase activation was undertaken in order to determine the effect of L-thyroxine on the stoichiometries of Ca2+, calmodulin, and the enzyme in the activation process. The kinetic data indicated that L-thyroxine does not interact with calmodulin but, instead, through direct association with the enzyme, inhibits the binding of the Ca2+-calmodulin complex to MLC kinase. L-[125I]Thyroxine gel overlay revealed that the 95-kDa fragment of chicken gizzard MLC kinase digested by chymotrypsin and all the fragments of 110, 94, 70, and 43 kDa produced by Staphylococcus aureus V8 protease digestion which contain the calmodulin binding domain retain L-[125I]thyroxine binding activity, whereas smaller peptides were not radioactive. Since MLC kinase is phosphorylated by cAMP-dependent protein kinase (2 mol of phosphate/mol of MLC kinase), the effect of L-thyroxine on the phosphorylation of MLC kinase also was examined. L-Thyroxine binding did not inhibit the phosphorylation of MLC kinase and, moreover, reversed the inhibition of phosphorylation obtained with the calmodulin-enzyme complex. These observations support the suggestion that L-thyroxine binds at or near the calmodulin-binding site of MLC kinase. L-Thyroxine may serve as a different type of pharmacological tool for elucidating the biological significance of MLC kinase-mediated reactions.  相似文献   

2.
Myosin light chain kinase is activated by Ca2+/calmodulin. Insights into the kinetic mechanism of this activation by Ca2+/calmodulin have now been obtained using extrinsically labeled fluorescent calmodulin, a fluorescent peptide substrate, and a stopped-flow spectrophotofluorimeter. We employed spinach calmodulin labeled with the sulfhydryl-selective probe, 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid, to measure changes in the fluorescence intensity of the 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid-calmodulin upon binding to rabbit skeletal muscle myosin light chain kinase. The fluorescent peptide substrate KKRAARAC(sulfobenzo-furazan)SNVFS-amide was used to measure kinase activity. Our results showed that the binding interaction could be modeled as a two-step process: a bimolecular reaction with an association rate of 4.6 x 10(7) M-1 s-1 followed by an isomerization with a rate of 2.2 s-1. Phosphorylation of the peptide during stopped-flow experiments could be modeled by a two-step process with a catalytic association rate of 6.5 x 10(6) M-1 s-1 and a turnover rate of 10-20 s-1. Our results also indicated that kinase activity occurred too rapidly for the slower isomerization rate of 2.2 s-1 to be linked specifically to the activation process.  相似文献   

3.
To elucidate the interaction of calmodulin with calmodulin binding proteins, we studied the location of the interaction sites on calmodulin by using a chemical cross-linking reagent. Calmodulin prepared from wheat germ was cross-linked to myosin light chain kinase and troponin-I with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. The cross-linked products were cleaved partially with cyanogen bromide and cross-linked sites were determined by peptide mapping analysis using SDS-urea polyacrylamide gel electrophoresis. Peptides which contain the cross-linked site were displaced from their position because of the attached fragments of myosin light chain kinase or troponin I. The peptide of calmodulin from the N-terminal to Met-73 in the cross-linked product with myosin light chain kinase had the same mobility as that of uncross-linked calmodulin on the map though the amount of the peptide was decreased in the cross-linked product. The peptide from the N-terminal to Met-110 in the cross-linked product was displaced from its position. Similar change in the mobility of the calmodulin peptides was also observed in the cross-linked products with troponin I. It was concluded, therefore, that at least one cross-linked site for myosin light chain kinase and one for troponin I were located between Met-73 and Met-110 of the wheat germ calmodulin.  相似文献   

4.
Myosin II regulatory light chain (RLC) phosphorylation by Ca(2+)/calmodulin (CaM)-dependent myosin light chain kinase (MLCK) is implicated in many cellular actin cytoskeletal functions. We examined MLCK activation quantitatively with a fluorescent biosensor MLCK where Ca(2+)-dependent increases in kinase activity were coincident with decreases in fluorescence resonance energy transfer (FRET) in vitro. In cells stably transfected with CaM sensor MLCK, increasing [Ca(2+)](i) increased MLCK activation and RLC phosphorylation coincidently. There was no evidence for CaM binding but not activating MLCK at low [Ca(2+)](i). At saturating [Ca(2+)](i) MLCK was not fully activated probably due to limited availability of cellular Ca(2+)/CaM.  相似文献   

5.
Using site-directed mutagenesis we have expressed in Escherichia coli three engineered calmodulins (CaM) containing deletions in the solvent-exposed region of the central helix. These are CaM delta 84, Glu-84 removed; CaM delta 83-84, Glu-83 and Glu-84 removed; and CaM delta 81-84, Ser-81 through Glu-84 removed. The abilities of these proteins to activate skeletal muscle myosin light chain kinase, plant NAD kinase, and bovine brain calcineurin activities were determined, as were their abilities to bind a synthetic peptide based on the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Similar results were obtained with all three deletion proteins. Vm values for enzymes activated by the deletion proteins are all within 10-20% of those values obtained with bacterial control calmodulin. Relative to bacterial control values, changes in Kact or Kd values associated with the deletions are all less than an order of magnitude: Kact values for NAD kinase and myosin light chain kinase are increased 5-7-fold, Kd values for binding of the synthetic peptide are increased 4-7-fold, and Kact values for calcineurin are increased only 1-3-fold. In assays of NAD kinase and myosin light chain kinase activation some differences between bovine calmodulin and bacterial control calmodulin were observed. With NAD kinase, Kact values for the bacterial control protein are increased 4-fold relative to values for bovine calmodulin, and Vm values are increased by 50%; with myosin light chain kinase, Kact values are increased 2-fold and Vm values are decreased 10-15% relative to those values obtained with bovine calmodulin. These differences between bacterial control and bovine calmodulins probably can be attributed to known differences in postranslational processing of calmodulin in bacterial and eucaryotic cells. No differences between bovine and control calmodulins were observed in assays of calcineurin activation or peptide binding. Our observations indicate that contacts with the deleted residues, Ser-81 through Glu-84, are not critical in the calmodulin-target complexes we have evaluated. Formation of these calmodulin-target complexes also does not appear to be greatly affected by the global alterations in the structure of calmodulin that are associated with the deletions. In models in which the central helix is maintained in the altered calmodulins, each deleted residue causes the two lobes of calmodulin to be twisted 100 degrees relative to one another and brought 1.5 A closer together.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
A synthetic peptide representing the calmodulin-binding domain of rabbit skeletal muscle myosin light chain kinase (K-R-R-W-K-K-N-F-I-A-V-S-A-A-N-R-F-K-K-I-S-S-S-G-A-L) was used as an antigen to produce a monoclonal antibody. The antibody (designated MAb RSkCBP1, of the IgM class) reacted with similar affinity (KD approximately 20 nM) by competitive enzyme-linked immunoassay (ELISA) with the antigen peptide and intact rabbit skeletal muscle myosin light chain kinase. MAb RSkCBP1 inhibited rabbit skeletal muscle myosin light chain kinase activity competitively with respect to calmodulin (Ki = 20 nM). The antibody also inhibited myosin light chain kinase activity in extracts of skeletal muscle from several mammalian species (rabbit, sheep, and bovine) and an avian species (chicken). The concentration of MAb RSKCBP1 required for 50% inhibition of enzyme activity was similar for the mammalian species (80 nM) but was significantly higher for the avian species (1.2 microM). A competitive ELISA protocol was used to analyze weak cross-reactivity to other calmodulin-binding peptides and proteins. This assay demonstrated no cross-reactivity with the venom peptides melittin or mastoparan; smooth muscle myosin light chain kinases from hog carotid, bovine trachea, or chicken gizzard; bovine brain calmodulin-dependent calcineurin; or rabbit skeletal muscle troponin I. These data support the contention that the synthetic peptide used as the antigen represents the calmodulin-binding domain of rabbit skeletal muscle myosin light chain kinase and that the calmodulin-binding domains of different calmodulin-regulated proteins may have distinct primary and/or higher order structures.  相似文献   

7.
Myosin light chain kinase phosphorylation in tracheal smooth muscle   总被引:6,自引:0,他引:6  
Purified myosin light chain kinase from smooth muscle is phosphorylated by cyclic AMP-dependent protein kinase, protein kinase C, and the multifunctional calmodulin-dependent protein kinase II. Because phosphorylation in a specific site (site A) by any one of these kinases desensitizes myosin light chain kinase to activation by Ca2+/calmodulin, kinase phosphorylation could play an important role in regulating smooth muscle contractility. This possibility was investigated in 32P-labeled bovine tracheal smooth muscle. Treatment of tissues with carbachol, KCl, isoproterenol, or phorbol 12,13-dibutyrate increased the extent of kinase phosphorylation. Six primary phosphopeptides (A-F) of myosin light chain kinase were identified. Site A was phosphorylated to an appreciable extent only with carbachol or KCl, agents which contract tracheal smooth muscle. The extent of site A phosphorylation correlated to increases in the concentration of Ca2+/calmodulin required for activation. These results show that cyclic AMP-dependent protein kinase and protein kinase C do not affect smooth muscle contractility by phosphorylating site A in myosin light chain kinase. It is proposed that phosphorylation of myosin light chain kinase in site A in contracting tracheal smooth muscle may play a role in the reported desensitization of contractile elements to activation by Ca2+.  相似文献   

8.
113Cd-NMR experiments were performed to characterize the nature of Cd2+ binding to calmodulin in the presence of a tetradecapeptide mastoparan or a 26-residue peptide M13 (calmodulin-binding region of skeletal muscle myosin light-chain kinase). The results indicate that binding of these peptides to calmodulin induces a positive cooperativity between Ca2+ binding to C- and N-terminal domains. The results imply that the activation of myosin light-chain kinase caused by the increase in Ca2+ concentration occurs as a result of cooperative interactions not only between two Ca2+ binding sites in each domain but also between the two domains. The interdomain interaction manifests itself only in the presence of such peptides.  相似文献   

9.
Effects of K-252a, (8R*, 9S*, 11S*)-(-)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8, 11-epoxy-1H,8H,11H-2,7b,11a-triazadibenzo[a,g]cycloocta [cde]trinden-1-one, purified from the culture broth of Nocardiopsis sp., on the activity of myosin light chain kinase were investigated. 1) K-252a (1 x 10(-5) M) affected three characteristic properties of chicken gizzard myosin-B, natural actomyosin, to a similar degree: the Ca2+-dependent activity of ATPase, superprecipitation, and the phosphorylation of the myosin light chain. 2) K-252a inhibited the activities of the purified myosin light chain kinase and a Ca2+-independent form of the enzyme which was constructed by cross-linking of myosin light chain kinase and calmodulin using glutaraldehyde. The degrees of inhibition by 3 x 10(-6) M K-252a were 69 and 48% of the control activities with the purified enzyme and the cross-linked complex, respectively. Chlorpromazine (3 x 10(-4) M), a calmodulin antagonist, inhibited the native enzyme, but not the cross-linked one. These results suggested that K-252a inhibited myosin light chain kinase by direct interaction with the enzyme, whereas chlorpromazine suppressed the enzyme activation by interacting with calmodulin. 3) The inhibition by K-252a of the cross-linked kinase was affected by the concentration of ATP, a phosphate donor. The concentration causing 50% inhibition was two orders magnitude lower in the presence of 100 microM ATP than in the presence of 2 mM ATP. 4) Kinetic analyses using [gama-32P]ATP indicated that the inhibitory mode of K-252a was competitive with respect to ATP (Ki = 20 nM). These results suggest that K-252a interacts at the ATP-binding domain of myosin light chain kinase. The direct action of the compound on the enzyme would explain the multivarious inhibition of myosin ATPase, of superprecipitation, and of the contractile response of smooth muscle.  相似文献   

10.
A 20-residue peptide analogue (IASGRTGRRNAIHDILVSSA) of the 8000-dalton heat-stable cAMP-dependent protein kinase inhibitor undergoes efficient calcium-dependent binding by calmodulin, with Kd approximately 70 nM when calcium is present. It is a potent inhibitor of smooth muscle myosin light chain kinase and of the calmodulin-dependent phosphatase activity of calcineurin. At concentrations above 3 microM, the peptide stimulates the basal activity of calcineurin. The native protein kinase inhibitor has no effect on the catalytic activity of myosin light chain kinase and is moderately inhibitory to both the calmodulin-dependent and -independent phosphatase activity of calcineurin. Competition experiments using excess concentrations of calcineurin and calmodulin suggest that the primary interaction of the native heat-stable inhibitor is with the catalytic subunit of protein kinase. Dansylcalmodulin exhibits only a weak interaction with the inhibitor. Observations on deletion peptides of the 20-residue analogue help to delineate the overlapping peptide binding specificities of the cAMP-dependent protein kinase [Scott, J. D., Glaccum, M. B., Fischer, E. H., & Krebs, E. G. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 1613-1616] and calmodulin. In both cases, the most effectively bound peptides contain the RTGRR sequence.  相似文献   

11.
Melittin is a 26-residue peptide which undergoes high-affinity calcium-dependent binding by calmodulin [Barnette, M.S., Daly, R., & Weiss, B. (1983) Biochem. Pharmacol. 32, 2929; Comte, M., Maulet, Y., & Cox, J.A. (1983) Biochem. J. 209, 269; Anderson, S.R., & Malencik, D.A. (1986) Calcium Cell Funct. 6, 1]. The results in this paper show that three different types of myosin light chain--the smooth muscle regulatory light chain, the smooth muscle essential light chain, and the skeletal muscle regulatory 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) light chain--also associate with melittin. The resulting complexes have dissociation constants ranging from 1.1 to 2.5 microM in the presence of 0.10 M NaCl and from approximately 50 to approximately 130 nM in solutions of 20 mM 3-(N-morpholino)propanesulfonic acid alone. The regulatory smooth muscle myosin light chain exhibits two equivalent melittin binding sites while each of the others displays only one. The myosin light chains evidently contain elements of structure related to the macromolecular interaction sites present in calmodulin and troponin C but not in parvalbumin. The association of melittin and other peptides with the light chains requires consideration whenever assays of the calmodulin-dependent activity of myosin light chain kinase are used to determine peptide binding by calmodulin. The binding measurements performed on the DTNB light chain and melittin necessitated derivation of the equation relating complex formation to the observed fluorescence anisotropy of a solution containing three fluorescent components. This analysis is generally applicable to equilibria involving the association of two fluorescent molecules emitting in the same wavelength range.  相似文献   

12.
The phosphorylation of the calmodulin-dependent enzyme myosin light chain kinase, purified from bovine tracheal smooth muscle and human blood platelets, by the catalytic subunit of cAMP-dependent protein kinase and by cGMP-dependent protein kinase was investigated. When myosin light chain kinase which has calmodulin bound is phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, 1 mol of phosphate is incorporated per mol of tracheal myosin light chain kinase or platelet myosin light chain kinase, with no effect on the catalytic activity. Phosphorylation when calmodulin is not bound results in the incorporation of 2 mol of phosphate and significantly decreases the activity. The decrease in myosin light chain kinase activity is due to a 5 to 7-fold increase in the amount of calmodulin required for half-maximal activation of both tracheal and platelet myosin light chain kinase. In contrast to the results with the catalytic subunit of cAMP-dependent protein kinase, cGMP-dependent protein kinase cannot phosphorylate tracheal myosin light chain kinase in the presence of bound calmodulin. When calmodulin is not bound to tracheal myosin light chain kinase, cGMP-dependent protein kinase phosphorylates only one site, and this phosphorylation has no effect on myosin light chain kinase activity. On the other hand, cGMP-dependent protein kinase incorporates phosphate into two sites in platelet myosin light chain kinase when calmodulin is not bound. The sites phosphorylated by the two cyclic nucleotide-dependent protein kinases were compared by two-dimensional peptide mapping following extensive tryptic digestion of the phosphorylated myosin light chain kinases. With respect to the tracheal myosin light chain kinase, the single site phosphorylated by cGMP-dependent protein kinase when calmodulin is not bound appears to be the same site phosphorylated in the tracheal enzyme by the catalytic subunit of cAMP-dependent protein kinase when calmodulin is bound. With respect to the platelet myosin light chain kinase, the additional site that was phosphorylated by cGMP-dependent protein kinase when calmodulin was not bound was different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

13.
M Nomura  J T Stull  K E Kamm  M C Mumby 《Biochemistry》1992,31(47):11915-11920
Smooth muscle myosin light chain kinase is phosphorylated at two sites (A and B) by different protein kinases. Phosphorylation at site A increases the concentration of Ca2+/calmodulin required for kinase activation. Diphosphorylated myosin light chain kinase was used to determine the site-specificity of several forms of protein serine/threonine phosphatase. These phosphatases readily dephosphorylated myosin light chain kinase in vitro and displayed differing specificities for the two phosphorylation sites. Type 2A protein phosphatase specifically dephosphorylated site A, and binding of Ca2+/calmodulin to the kinase had no effect on dephosphorylation. The purified catalytic subunit of type 1 protein phosphatase dephosphorylated both sites in the absence of Ca2+/calmodulin but only dephosphorylated site A in the presence of Ca2+/calmodulin. A protein phosphatase fraction was prepared from smooth muscle actomyosin by extraction with 80 mM MgCl2. On the basis of sensitivity to okadaic acid and inhibitor 2, this activity was composed of multiple protein phosphatases including type 1 activity. This phosphatase fraction dephosphorylated both sites in the absence of Ca2+/calmodulin. However, dephosphorylation of both sites A and B was completely blocked in the presence of Ca2+/calmodulin. These results indicate that two phosphorylation sites of myosin light chain kinase are dephosphorylated by multiple protein serine/threonine phosphatases with unique catalytic specificities.  相似文献   

14.
Smooth muscle myosin light chain kinase is phosphorylated in vitro by protein kinase C purified from human platelets. When myosin light chain kinase which has calmodulin bound is phosphorylated by protein kinase C, 0.8-1.1 mol of phosphate is incorporated per mol of myosin light chain kinase with no effect on its enzyme activity. Phosphorylation of myosin light chain kinase with no calmodulin bound results in the incorporation of 2-2.4 mol of phosphate and significantly decreases the rate of myosin light chain kinase activity. The decrease in myosin light chain kinase activity is due to a 3.3-fold increase in the concentration of calmodulin necessary for the half-maximal activation of myosin light chain kinase. The sites phosphorylated by protein kinase C and the catalytic subunit of cAMP-dependent protein kinase were compared by two-dimensional peptide mapping following extensive tryptic digestion of phosphorylated myosin light chain kinase. The single site phosphorylated by protein kinase C when calmodulin is bound to myosin light chain kinase (site 3) is different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 1). The additional site that is phosphorylated by protein kinase C when calmodulin is not bound appears to be the same site phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 2). These studies confirm the important role of site 2 in binding calmodulin to myosin light chain kinase. Sequential studies using both protein kinase C and the catalytic subunit of cAMP-dependent protein kinase suggest that the phosphorylation of site 1 also plays a part in decreasing the affinity of myosin light chain kinase for calmodulin.  相似文献   

15.
It is postulated that basic residues in the regulatory region of myosin light chain kinase are important for conferring autoinhibition by binding to the catalytic core. To investigate this proposal, 10 basic amino acids within the regulatory region of rabbit smooth muscle myosin light chain kinase (Lys961-Lys979) were replaced either singularly or in combination with acidic or nonpolar residues by site-directed mutagenesis. All active mutant kinases were dependent on Ca2+/calmodulin for catalytic activity. None of the mutants was active in the absence of Ca2+/calmodulin, suggesting that the autoinhibitory region has not been defined completely. Charge reversal mutants at Arg974, Arg975, and Lys976 resulted in loss of high affinity binding of calmodulin and increased the concentration of calmodulin required for half-maximal activation (KCaM). The charge reversal mutant at Lys979 also increased KCaM but to a lesser extent. Charge reversal mutants at Lys965 and Arg967 resulted in an inactive myosin light chain kinase that could not be proteolytically activated. When these residues were mutated to Ala, the expressed kinase was dependent upon Ca2+/calmodulin for activity and exhibited a decrease in KCaM. Charge reversal mutants in Lys961 and Lys962 also had decreased KCaM values. These basic residues amino-terminal of the calmodulin binding domain may play an important role in the activation of the kinase.  相似文献   

16.
Calmodulin-dependent protein kinases such as myosin light chain kinase (MLCK), calmodulin kinase II, and phosphorylase kinase contain specific sequences responsible for binding calmodulin. These regions are known as calmodulin-binding domains and in many cases are contained within sequences that are short enough to be synthesized by solidphase techniques. The ability to chemically-synthesize target enzyme calmodulin-binding domains has permitted the use of a variety of biophysical techniques to study the interactions between calmodulin and calmodulin-binding domain peptides. The work reviewed here describes the development and characterization of peptides based on the sequence, of the calmodulin-binding domain of skeletal muscle myosin light chain kinase which were labeled with the fluorescent reagent, acrylodan. Data are presented demonstrating the use of fluorescently-labeled peptides to study various aspects of calmodulin-peptide interactions including binding affinity, stoichiometry, specificity, changes in peptide conformation, and thermal stability of the peptide-calmodulin complex. These data indicate the peptides exhibit many of the salient features seen with calmodulin-target enzyme interactions. The fluorescently-labeled peptides should thus serve as useful models for studying calmodulin-target enzyme interactions at the molecular level.  相似文献   

17.
Incubation of bovine aortic native actomyosin with cyclic AMP and bovine aortic cyclic AMP-dependent protein kinase produced a rightward shift in the relation between free Ca2+ and both superprecipitation and actomyosin ATPase activity. The relation between free Ca2+ and phosphorylation of myosin light chains was also shifted to the right. The concentration of free Ca2+ required for half-maximal activation of both ATPase activity and myosin light chain phosphorylation was approximately 1.0 microM for control actomyosin and 2.5 microM for actomyosin incubated with cyclic AMP-protein kinase. Neither basal nor maximal activities were significantly affected by incubation with cyclic AMP-protein kinase. Addition of e microM calmodulin to cyclic AMP-protein kinase-treated actomyosin relieved inhibition of both superprecipitation and myosin light chain phosphorylation. These findings suggest that cyclic AMP-protein kinase-mediated inhibition of actin-myosin interactions in vascular smooth muscle involve a shift in the Ca2+ sensitivity of the system. This shift probably involves Ca2+-calmodulin interactions and the control of phosphorylation of the myosin light chains.  相似文献   

18.
Small-angle X-ray and neutron scattering have been used to study the solution structures of calmodulin complexed with synthetic peptides corresponding to residues 342-366 and 301-326, designated PhK5 and PhK13, respectively, in the regulatory domain of the catalytic subunit of skeletal muscle phosphorylase kinase. The scattering data show that binding of PhK5 to calmodulin induces a dramatic contraction of calmodulin, similar to that previously observed when calmodulin is complexed with the calmodulin-binding domain peptide from rabbit skeletal muscle myosin light chain kinase. In contrast, calmodulin remains extended upon binding PhK13. In the presence of both peptides, calmodulin also remains extended. Apparently, the presence of PhK13 inhibits calmodulin from undergoing the PhK5-induced contraction. These data indicate that there is a fundamentally different type of calmodulin-target enzyme interaction in the case of the catalytic subunit of phosphorylase kinase compared with that for myosin light chain kinase.  相似文献   

19.
A monoclonal antibody (IM7) toward scallop testis calmodulin and another one (PBE2) toward wheat germ calmodulin were produced. Ca2+ was required for IM7 to react with scallop calmodulin. IM7 reacted with the C-terminal region (Asp78-Lys148) of the calmodulin. As observed on competitive ELISA, IM7 reacted with chicken calmodulin, but not with Euglena gracilis or wheat calmodulin, troponin C, myosin light chains, or parvalbumin. It is assumed that the cluster of Thr143, Thr146, and Ser147 in the C-terminal region acts as the antigenic site. IM7 (and Fab of IM7) inhibited the activities of myosin light chain kinase and cAMP-phosphodiesterase. PBE2 reacted with wheat germ calmodulin irrespective of the presence or absence of Ca2+, the antigenic site being in the N-terminal region (Ala1-Met37). It reacted with wheat and spinach calmodulins, but not with scallop, chicken, or Euglena calmodulin, troponin C, myosin light chains, or parvalbumin. PBE2 had no effect on the activities of myosin light chain kinase and cAMP-phosphodiesterase.  相似文献   

20.
D A Malencik  S R Anderson 《Biochemistry》1984,23(11):2420-2428
Calmodulin and troponin C exhibit calcium-dependent binding of 1 mol/mol of dynorphin. The dissociation constants of the complexes, determined in 0.20 N KC1-1.0 mM CaCI2, pH 7.3, are 0.6 microM for calmodulin, 2.4 microM for rabbit fast skeletal muscle troponin C, and 9 microM for bovine heart troponin C. Experiments with deletion peptides of dynorphin show that peptide chain length and especially charge affect the binding of the peptides by calmodulin. Dynorphin, but not mastoparan or melittin, inhibits adenosinetriphosphatase activity in a reconstituted rabbit skeletal muscle actomyosin assay. The inhibition is partially reversed by the addition of calmodulin or troponin C in the presence of calcium. Calmodulin also exhibits calcium-dependent binding of a synthetic peptide corresponding to positions 104-115 of rabbit fast skeletal muscle troponin I. Mastoparan is a tetradecapeptide from the vespid wasp having exceptional affinity for calmodulin, with Kd approximately 0.3 nM [Malencik, D.A., & Anderson, S.R. (1983) Biochem. Biophys. Res. Commun. 114, 50]. The addition of 1 mol/mol of mastoparan to the complex of calmodulin with dynorphin results in complete dissociation of dynorphin. Similar titrations of the skeletal muscle troponin C-dynorphin complex produce a gradual dissociation consistent with a dissociation constant of 0.2 microM for the troponin C-mastoparan complex. Fluorescence anisotropy measurements using the intrinsic tryptophan fluorescence of mastoparan X show strongly calcium-dependent binding by proteolytic fragments of calmodulin. binding by proteolytic fragments of calmodulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号