首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
Corpora cardiaca-corpora allata (CC-CA) from vitellogenic females of Nauphoeta cinerea degraded, in vitro, racemic and (10R)-juvenile hormone III (JH III) at a rate of 249 pmol/CC-CA/h and 786 pmol/CC-CA/h, respectively. The major metabolite formed was JH III acid, together with some highly polar products. CC-CA homogenates degraded racemic JH III to a small extent, whereas (10R)-JH III was degraded efficiently to JH III acid. No highly polar products were formed by CC-CA homogenates. When CC-CA were incubated with racemic JH III acid, some of this substance was degraded to highly polar products, and a minor part was methylated to JH III. CC degraded very little JH III acid and did not methylate it to JH III. CC-CA homogenates methylated JH III acid very efficiently; we measured an apparent Kmax of 37.8 μM and a Vmax of 1,260 pmol/4 h/ CC-CA equivalent. The addition of JH III acid to CC-CA in vitro increased the rate of biosynthesis of JH III, as determined by measuring incorporation of methyl[14C]methionine into JH III. These data indicate that the metabolite JH III acid can enter the CA and be methylated to JH III.  相似文献   

2.
  • 1.1. A radiochemical assay was used to examine juvenile hormone (JH) synthesis and secretion in vitro by incubating two pairs of larval corpus cardiacum-corpus allatum complexes (CC-CA) from, Lymantria dispar, in 50 μl of osmotically balanced Grace's medium containing 1 μC1 [3H-methyl]-methionine for 6 hr.
  • 2.2. For CC-CA of fourth instar female larvae, maximal incorporation of 3H-methyl was 0.15 pmol/pr/hr between days 2 and 3. High pressure liquid chromatographic (HPLC) analysis suggested that the biosynthetic products are mainly JH III with a little JH II at times.
  • 3.3. For CC-CA of last instar female larvae, incorporation of 3H-methyl was 0.48 pmol/pr/hr at the beginning of the stadium and decreased to negligible levels by day 10. HPLC analysis suggested that CC-CA of last instar larvae produced only JH III. Volume increases in CA during the last instar were associated with declining activities of JH secretion.
  • 4.4. Comparisons of maximal rates of 3 H-methyl incorporation by each unit volume of CA revealed that in the last instar each unit volume (μm3) of glandular tissue secreted 50% more JH than in the fourth instar.
  相似文献   

3.
When measuring the in vitro JH III-biosynthesis by corpora allata (CA) from adult female crickets in the presence of corpora cardiaca (CC), the amount of JH III in the medium decreased in a dose dependent manner. The CC of a 4-day-old female Gryllus bimaculatus contain 42 pmol.pair CC−1 Grb-AKH, 0.62 pmol.pair CC−1 octopamine, and a JH-esterase activity of 9.8 pmol JH.h−1.pair CC−1. Comparable values for Acheta domesticus are 21 pmol.pair CC−1 Grb-AKH, 0.53 pmol.pair CC−1 octopamine, and 6.5 pmolJH.h−1.pair CC−1 of JH-esterase activity. Even if the entire octopamine content of the CC were released into the medium, the concentration would be below the 10−5 M threshold for octopamine inhibition of JH synthesis. An in vitro AKH inhibition of JH III synthesis was observed, but only at a relatively high concentration (10−5 M). If the entire AKH content (10−6 M) of the CC were released into the medium, the AKH concentration would approach JH synthesis inhibiting levels. However, the rate of release of AKH in vitro was very low, and, therefore, AKH from the CC could not affect JH synthesis. In contrast, a specific JH-esterase, released by isolated CC into the medium, was sufficiently high in both cricket species to account for the observed decrease in JH III present. OTFP-sulfone (10−5 M) restored apparent JH synthesis of the CA to the control level. There was no reduction in the amount of JH released when CA were incubated with heat treated CC. The CA themselves contained almost no JH-esterase activity. © 1997 Wiley-Liss, Inc.  相似文献   

4.
In vitellogenic females of Nauphoeta cinerea, injected (10R)-juvenile hormone (JH) III was degraded more rapidly than racemic JH III: we measured a half-life of 21 min (with or without coinjection of lipophorin) for the former and 24 min (with coinjection of lipophorin) and 43 min (without coinjection of lipophorin) for the latter. One to two hours after injection, JH III acid was the major metabolite observed; in addition, several highly polar products were found. The half-life of injected racemic JH III acid was 19 min with coinjection of lipophorin and 4 min without. The JH III acid titer in hemolymph was low (around 5–10 pmol/ml) in last instar larvae and previtellogenic and pregnant females and reached higher values (40–100 pmol/ml) in vitellogenic and ovulating females. Racemic JH III acid could be methylated in vitro to JH III by corpora cardiaca–corpora allata (CC-CA) from penultimate instar larvae and females at stages between adult ecdysis and ovulation and at the very end of pregnancy, but not by CC-CA from last instar larvae and adult females at earlier stages of pregnancy. This indicates that CC-CA are capable of methylating JH III acid only at stages when JH III is detectable in the hemolymph. In double-labelling experiments with CC-CA from vitellogenic females and L-[14C]methionine and [3H]JH III acid as precursors, we observed that only a small proportion (1–8%) of total biosynthesized JH III was derived from JH III acid when the latter was present at physiological concentration. This suggests that in vivo recycling of JH III acid by CC-CA plays only a minor role in the regulation of the titer of JH III and JH III acid.  相似文献   

5.
The increase in the juvenile hormone (JH) III titer in the hemolymph of Lymantria dispar larvae that were parasitized by the endoparasitoid braconid, Glyptapanteles liparidis, during the host's premolt to third instar, coincided with the molt of the parasitoid larvae to the second instar between day 5 and 7 of the fourth host instar. It reached a maximum mean value of 89 pmol/ml on day 7 of the fifth instar while it remained below 1 pmol/ml in unparasitized larvae. Only newly molted fifth instar hosts showed a low JH III titer similar to that of the unparasitized larvae. JH II, which is the predominant JH homologue in unparasitized gypsy moth larvae, also increased relative to controls in the last two samples (days 7 and 9) from parasitized fourth and fifth instars. Compared to unparasitized larvae, a generally reduced activity of JH esterase (JHE) was found in parasitized larvae throughout both larval stages. The reduction in enzyme activity at the beginning and at the end of each instar, when the JHE activity in unparasitized larvae was high, may be in part responsible for the increased JH II and JH III titers in parasitized larvae. Ester hydrolysis was the only pathway of JH metabolism in the hemolymph of unparasitized and parasitized gypsy moth larvae as detected by chromatographic assays. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Analysis of extracts of hemolymph obtained from sexually mature alate females of Solenopsis invicta from monogyne colonies resulted in identification of juvenile hormone III (JH III). The average amount of JH III was 0.32±0.04 pmol/μmolof hemolymph. Topical application of 0.038 pmol of JH III was sufficient to stimulate alates to shed their wings in the presence of the queen. The time in which alates were induced to dealate decreased linearly with increasing concentrations of JH III from 0.038 to 3.8 pmol. However, higher JH III concentrations deviated from linearity and did not reach dealation times comparable with those that occur after mating flights. Thus, it appears that the mechanism of dealation that occurs when female alates are out of the influence of their queen is different from the one associated with mating flights. Application of 0.42 μmol of precocene II inhibited dealation of alates in queenless colonies. However, this inhibition was reversed after applying 38 pmol JH III to precocene-treated alates. The sizes of corpora allata (CA) from sexuals treated with JH III did not differ from those of controls. However, the sizes of CA were reduced in alates treated with precocene II. The results indicated that JH was important to dealation.  相似文献   

7.
ABSTRACT. Female P. americana, reared with males from the time of adult emergence, mated on the 4th–5th day after metamorphosis, produced the first ootheca on the 8th or 9th day, and then produced successive oothecae at intervals of 3.0 days, whereas, only 50% of virgin females had produced their first ootheca by the 28th day after adult emergence. Examination of the ovaries indicated that oocyte development is normal in virgins until shortly after the time when they first become receptive to males. When mating was not allowed there was a dramatic reduction in the rate of vitellogenic growth of the terminal batch of oocytes which persisted until mating was allowed, and was often accompanied by resorption of a percentage of the oocytes. Short-term, in vitro, radiochemical assay of juvenile hormone (JH III) biosynthesis by corpora allata (CA) showed that, in females reared with males, the cycles of ovarian development are accompanied by regular pulses of CA activity. There is a small, possibly preparatory peak of JH III biosynthesis before vitellogenesis of the first wave of oocytes, followed by a larger peak of JH III production during vitellogenesis of this batch of eggs and one peak of CA activity between ovulation of each subsequent wave of oocytes. Activities as low as 0.25 pmol C16JH/CA pair/h and as high as 48.38 pmol/CA pair/h were observed in CA from mated females after the onset of cyclic activity. Stimuli received during mating are somehow responsible for the cyclic activity of the CA, for when females were subjected to enforced virginity the first small peak was normal but the second peak was not fully realized and there was then a gradual decline in CA activity until approximately 2 weeks post-emergence. Thereafter the glands exhibited a more or less constant rate of JH biosynthesis (mean = 3.45 ± 0.32 pmol/CA pair/h.) When females were mated after 21 days of enforced virginity the activity of the CA was enhanced. By 48 h after mating the mean glandular activity was at least four times that found in virgins of the same age, and by 72 h rates as high as 40 pmol/CA pair/h were observed. This was followed by normal cyclic activity of the CA. The increase in rate of JH biosynthesis appears to result in a recommencement of oocyte development in these ‘delayed-mated’ females.  相似文献   

8.
A radiochemical assay for Juvenile Hormone (JH) biosynthesis and release by the corpus allatum (CA) was used to assess the effects of diet on CA activity of adult female Phormia regina (Meigen) fed either sugar-water or sugar-water-liver. CC-CA complexes were incubated in L-methionine-free medium 199 supplemented with 3H-L-methionine. The rate of JH release by the CC-CA complexes is linear for 3 h and declines slightly thereafter. JH III appears to be one of the major components of the isooctane-extractable product from incubated CC-CA. High pressure liquid chromatographic analysis indicates that 10% of the released radiolabelled product is JH III. Rates of JH release show a strict dependence on L-methionine concentration in the incubation medium, with optimal rates occurring between 100 and 150 μM L-methionine. JH release is at a low level (<0.02pmolh-1 per pair of CC-CA) in flies fed only sugar-water, but increases dramatically in flies fed sugar-water-liver (average release rate of 0.2pmolh-1 per pair of CA, 24h after a liver meal). The rate of JH release increases steadily to more than 1.2pmolh-1 per pair at 128h of age (i.e. 56h after a liver meal) at which time oocytes are mature. Elevated rates of JH release in vitro appear to be correlated in vivo with the appearance of vitellogenin in the haemolymph and its uptake by the developing oocytes.  相似文献   

9.
Synthesis of (10R)-juvenile hormone III (JH III) outside the corpora allata (CA) was investigated in female Aedes aegypti. Intact females or ligated abdomens of blood-fed and sugar-fed females synthesized in vivo [12-3H]JH III-like molecules from [12-3H]-methyl farnesoate, indicating that an organ(s) in the female abdomen, other than the CA, converted methyl farnesoate into JH III. To find out the organ(s) that synthesized JH III-like molecules, ovaries, fat bodies, and midguts were incubated in vitro with [12-3H]methyl farnesoate and the synthesis of JH III-like molecules was compared with JH III synthesized by CA. To identify tissue(s) having both farnesoic acid methyl transferase and farnesoate epoxidase, enzymes that convert farnesoic acid into JH III, ovaries, and fat bodies were removed from sugar and blood-fed females and incubated with [12-3H]farnesoic acid. Chemical derivatization by methoxyhydrin formation followed by esterification with (+)-α-methoxy- α-trifluoromethyl phenylacetic (MTPA) acid chloride and reversed phase liquid chromatography identified (10R)-JH III methoxyhydrin (+)-MTPA ester as the sole JH III-like molecule produced in tissue culture incubation of ovaries. Since only (10R)-JH III is produced and not racemic JH III, the oxidation of farnesoic acid must be enzymatically mediated. Ovaries and corpora allata of female A. aegypti also synthesized [3H,14C]JH III from L-[methyl-3H]methionine and [14C]acetate which was characterized by HPLC and gas chromatography. These results suggest that mosquito ovary can synthesize (10R)-JH III from farnesoic acid, and that this tissue synthesizes JH III-like molecules from L-methionine and acetate. © 1994 Wiley-Liss, Inc.  相似文献   

10.

The products released by the corpus allatum (CA), an endocrine gland producing juvenile hormone (JH), were analyzed in three species of stink bugs. Liquid chromatography–mass spectrometry (LC–MS) analysis of the CA products from female adults of Halyomorpha halys (Stål), Nezara viridula (Linnaeus), and Nezara antennata Scott (Hemiptera: Pentatomidae) revealed that the CA biosynthesized JH III skipped bisepoxyside (JHSB3) in all three species. In H. halys, in addition to JHSB3, the CA also produced its stereoisomer, 10S-JHSB3. A bioassay focusing on the number of antennal segments was adopted to examine biological activity of these products. When last instar nymphs were treated with either of the two JHs, they emerged as adults bearing nymphal type antennae with four segments in a dose-dependent fashion, indicating that both JHSB3 and 10S-JHSB3 had the JH activity in H. halys. Therefore, for the first time, 10S-JHSB3 in H. halys was found to be a naturally occurring JH molecule with 10S-configuration.

  相似文献   

11.
The participation of juvenile hormone (JH) in the regulation of growth and protein synthesis in the accessory reproductive gland of male Locusta migratoria has been investigated. After elimination of endogenous JH with ethoxyprecocene, the accessory gland failed to grow, but growth was restored by a single application of the JH analog, pyriproxyfen. Pyriproxyfen appeared to stimulate total protein synthesis by 3 h, with a significant effect by 12 h, in contrast to 24 h observed in fat body. The dose curve for stimulation of protein synthesis 12 h after applying pyriproxyfen gave an ED50 of 0.1 μg; the dose curve for gland growth at 72 h was biphasic, with steps at about 0.01 μg and 10 μg, suggesting two phases in JH action. SDS-PAGE analysis showed several components that were stimulated by pyriproxyfen, the effect being strongest in an 11 kDa band. A 5 kDa component was enhanced in the soluble and reduced in the particulate fraction after precocene treatment. The accessory gland contained JH esterase activity at levels about 100 times those in fat body or hemolymph, and was higher in precocene treated locusts. Binding activity for [3H]10R -JH III was high in cytosolic and nuclear fractions, and was identified immunologically as due to the previously described hemolymph JH binding protein. The results indicate that the mode of action of JH in the accessory gland may differ from that in the fat body. The presence of intracellular JH binding protein suggests a direct action of JH within the gland, that may be modulated by JH esterase. © 1995 Wiley-Liss, Inc.  相似文献   

12.
The genome of Tribolium castaneum encodes two allatostatin [AS type B; W(X)6Wamide and AS type C; PISCF‐OH] and one allatotropin (AT) precursor, but no AS type A (FGLamide) (Tribolium Genome Sequencing Consortium, 2008: Nature 452:949–955). Here we studied the activity (in vitro) of peptides derived from these precursors on the synthesis/release of juvenile hormone (JH) III. The corpora cardiaca‐corpora allata (CC‐CA) complexes of adult females of another tenebrionid beetle, the mealworm Tenebrio molitor, were used. Incubating the gland complexes in a medium containing Trica‐AS B3 peptide, we showed that the peptide has allatostatic function in T. molitor. The activity of the type C AS depended on the age of the test animals and their intrinsic rate of JH III biosynthesis. The Trica‐AS C peptide inhibited the JH release from CA of 3‐day‐old females with a high intrinsic rate of JH synthesis, but activated JH release from the CA of 7‐day‐old females with a lower intrinsic rate of JH production. The allatotropin peptide (Trica‐AT) also activated the JH release from the CA of 7‐day‐old females in a dose‐dependent and reversible manner. Unexpectedly, a type A AS derived from the precursor of the American cockroach Periplaneta americana (Peram‐AS A2b) inhibited the JH release from the CA of younger and older females in the concentration range of 10?8 to 10?4 M, and the effects were fully reversible in the absence of peptide. These data suggest a complex role of allatoactive neuropeptides in the regulation of JH III biosynthesis in beetles. © 2010 Wiley Periodicals, Inc.  相似文献   

13.
We studied the metabolism of [U-14C]isoleucine by intact and homogenized corpora allata (CA) from various insect species to determine how this substrate is converted to precursors of juvenile hormone (JH). CA homogenates of the lepidopterans Manduca sexta, Hyalophora cecropia, and Samia cynthia metabolize [U-14C]isoleucine to several products including 2-keto-3-methyl-valerate, 2-methylbutyrate, CO2, propionate, and acetate. Intact CA of male H. cecropia produce particularly high levels of 2-keto-3-methylvalerate, indicating a highly active branched-chain-amino acid transaminase. In contrast, CA homogenates from the nonlepidopterans Periplaneta americana, Schistocerca nitens, Tenebrio molitor, and Diploptera punctata barely metabolize [U-14C]isoleucine. However, P. americana CA homogenate metabolizes [U-14C]2-keto-3-methylvalerate, the transamination product of [U-14C]isoleucine, more rapidly than does a homogenate of M. sexta CA. Furthermore, intact CA from P. americana incubated with [U-14C]2-keto-3-methylvalerate incorporate low levels of 14C into JH III, but do not metabolize this substrate to JH II or JH I. Intact CA from female Diploptera punctata produce very high levels of JH III, but are also unable to incorporate radiolabel from [U-14C]isoleucine into JH III, which substantiates our findings with other nonlepidopteran CA. The results suggest that CA of nonlepidopteran insects lack an active branched-chain amino acid transaminase and, consequently, are unable to utilize these substrates for JH biosynthesis.  相似文献   

14.
We report on juvenile hormone (JH) biosynthesis from long‐chain intermediates by specific reproductive tissues and the corpora allata (CA) prepared from adult longhorned beetles, Apriona germari. The testes, male accessory glands (MAGs), ovaries, and CA contained the long‐chain intermediates in the JH biosynthetic pathway, farnesoic acid (FA), methyl farnesoate (MF), and JH III. The testes and ovaries, but not CA, produced radioactive JH III after the addition of 3H‐methionine and, separately, unlabeled methionine, to the incubation medium. We inferred that endogenous FA is methylated to MF in the testes and ovaries. Addition of farnesol led to increased amounts of FA in the testes, MAGs, ovaries, and CA, indicating oxidation of farnesol to FA. Addition of FA to incubation medium yielded increased JH III, again indicating methylation of FA to MF in the testes, MAGs, ovaries, but not CA. Addition of MF to incubation medium also led to JH III, from which we inferred the epoxidation of MF to JH III. JH biosynthesis from farnesol in the testes, MAGs, and ovaries of A. germari proceeds via oxidation to FA, methylation to MF, and epoxidation to JH III. This is a well‐known pathway to JH III, described here for the first time in reproductive tissues of longhorned beetles. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
《Insect Biochemistry》1988,18(8):867-872
Activity of the corpora allata (CA) in vitro of adult female Gryllus bimaculatus was studied following incorporation of radioactivity from [2-14C]acetate and l-[methyl-3H]methionine into juvenile hormone III (JH III) and its immediate precursor methyl farnesoate (MF). Spontaneously active glands from females reared at 27°C utilized exogenous labelled acetate extensively for synthesis of MF and JH III (incorporation 80–84% at 2 mM acetate). 10−7 to 10−5 M exogenous JH III in the incubation medium had no effect on the rate of JH biosynthesis in spontaneously active glands. At 10−4 M JH III incorporation of acetate into JH III was reduced. The amount of MF was also lowered. JH III treatment (10−8–10−6 M) of spontaneously inactive glands led to an increase in the amount of MF. This increase was due to a de novo synthesis. Exogenous farnesol (20–200 μM) increased JH III biosynthesis and the amount of MF, but suppressed [2-14C]acetate incorporation. Dilution of the endogenous precursors is probably the most important cause of this suppression. As shown by the abnormally high MF levels in farnesol treated glands, epoxidation seems to be a rate-limiting step under certain experimental conditions.  相似文献   

16.
To study the effect of brain signals on the biosynthesis of juvenile hormone by the corpora allata of the grey fleshfly Neobellieria bullata, exposed corpora allata connected to the brain were surgically removed from sugar-fed flies and incubated in vitro with L -[3H-methyl]methionine. After incubation, the media together with the tissues were analyzed by HPLC. [3H]Juvenile hormone III (JH III), [3H]JH III bisepoxide (BE), [3H]methyl farnesoate (MF) and an unknown [3H]labeled metabolite (Un) were identified as the primary products. The rate of synthesis of [3H]JH III bisepoxide was higher than that of [3H]JH III, [3H]MF and [3H]Un. Two days after a liver meal, female flies synthesized more JH III, MF, BE, and the Un than did males. Synthesis of JH III, BE, and MF in females was lower during the previtellogenic, sugar-feeding period than during the vitellogenic liver-feeding period. Isolated corpus cardiacum–corpus allatum (CC-CA) complexes that were incubated in vitro synthesized less JH III, MF, and BE, as compared to complexes that were attached to the brain, indicating that the brain probably modulates the biosynthesis of JH III, MF, and BE in the corpora allata. Upon incubation of brain–CC–CA complexes with Neb-TMOF (10–8 M), Neb-colloostatin (10–8 M), ovarian, or brain extracts resulted in significant inhibition of JH III and BE biosynthesis in the presence of ovarian extracts. These results indicate that allatostatin-like factors are present in the ovary of the flesh fly. Arch. Insect Biochem. Physiol. 37:248–256, 1998. © 1998 Wiley–Liss, Inc.  相似文献   

17.
The larval haemolymph of the sheep blowfly Lucilia cuprina (Weidemann) contains a juvenile hormone binding protein with a Kd for racemic JH III of 33 ± 6 nM. The density of the binding sites is 212 ± 33 pmol/mg haemolymph protein. The binding protein is equally specific for JH III and methyl farnesoate. Some natural juvenoids were ranked for their ability to displace [3H]JH III with JH III > JH II > JH I > JH III > JH III diol > JHB3 = no detectable displacement. These data, together with displacement studies for 14 synthetic juvenoids, indicate some characteristics of the JH binding cleft. The binding protein is a high density lipophorin (density = 1.15 g/ml) and has subunit molecular weights of 228 kDa (apolipophorin I) and 70 kDa (apolipophorin II). The N-terminal amino acid sequences of the subunits have no discernible homology to any previously sequenced protein. Lipophorin-specific immunocytochemical staining occurs in a subset of fat body cells.  相似文献   

18.
Summary

A radiochemical method was adopted to analyze the in vitro products of the corpus allatum (CA) of Plautia stali. The radiolabel derived from 3H-methionine added to the incubation medium was incorporated and released by CA as two main radiolabelled products. They showed Rf values of about 0.3 and 0.5, respectively, in the thin layer chromatography (TLC) system used. The release of these products was shown to be CA-specific since in control incubations using the brain, midgut, aorta and flight muscle, virtually no release of these products was observed. The locations where these main products migrated on the TLC did not coincide with spots of synthetic standards of JH I-III or JHB3, a JH found in higher Diptera. An addition of precursors of JH III, farnesoic acid or farnesol stimulated the CA to biosynthesize the products with an Rf value of 0.5 up to about 10-fold, suggesting that the product in question may have a sesquiterpenoid skeleton similar to JH III. Topical applications of the hexane extracts of the medium in which the CA had been incubated exerted a juvenilizing, metamorphosis-inhibiting effect on final instar nymphs in a dose-dependent fashion. The nymphs treated with the hexane extracts at a high dose moulted to intermediates with reduced forewings and scutellum, as well as nymphs implanted with the CA from reproductively active females. Based on this juvenilizing effect found in the hexane extracts, the JH-active fraction was determined after TLC separation. This assay indicated that the products found at an Rf value of about 0.5 was JH-active. These results suggest the presence of a new JH different from any known JHs in P. stali.  相似文献   

19.
Oogenesis in the codling moth, Cydia pomonella, and the role of juvenile hormones (JHs) were addressed. Rudimentary ovarian structures were recognisable in day 3–4 pupae, when haemolymph JH was still undetectable by coupled gas chromatography‐mass spectrometry in the selected ion mode (GC‐MS/SIM). The presence of developing oocytes was observed by light microscopy on day 8, coincident with very low JH titres (0.74 ± 0.05 ng/ml JH II). Chorionation was only evident upon emergence, following an increase in JH in the pharate adult (0h old: 4.71 ± 0.34 ng/ml JH II). Analysis of haemolymph from virgin and mated females indicated that JH II was predominant, with approximately equal and lower quantities of JHs I and III (3.3‐ to 5.0‐fold less). When pupae or newly emerged adults were treated with JH homologues, no alteration in ovarian protein content was apparent, but the JH mimetic, fenoxycarb, depressed the number of oocytes filling ≥ 50% follicular volume. Chorion deposition was stimulated by JHs I, II, or III (10 μg), but not by fenoxycarb (0.05 μg, 10 μg). Mating provided correct stimuli for enhanced choriogenesis and egg laying, and, since haemolymph JH titres were concomitantly elevated (approximately 2‐fold), it was postulated that the rise in JH elicited both these events. Application of JHs to virgin females, however, could not mimic mating; only increases in choriogenesis were induced: JH‐treatment of virgins (or mated insects) significantly decreased oviposition rates over 24 and 48 h and markedly reduced the life‐time total number of eggs. Arch. Insect Biochem. Physiol. 41:186–200, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
The hemolymph of last instar Manduca sexta larvae contains a protein factor that enhances ecdysone synthesis by prothoracic glands in vitro. The titer of the factor fluctuates during development in a pattern that suggests that it is regulated by juvenile hormone (JH). In untreated control larvae, the titer drops from 2.17 U ml?1 on day 1 to 0.27 U ml?1 on day 3. When larvae were treated with (7S)-hydroprene (a JH analog), the titer remained elevated (2.09 U ml?1 on day 3). JH I, however, was ineffective in preventing the precommitment drop in the titer of the factor. After pupal commitment, the titer of the factor increases in untreated larvae from 0.84 U ml?1 on day 5 to 1.62 U ml?1 on day 7. This increase was blocked when the sources of JH (the corpora allata) were removed on day 5 by head ligation. When head-ligated day 5 larvae were treated with either (7S)-hydroprene or JH I, the titer of the factor was driven to a level (1.88 U ml?1 and 2.05 U ml?1, respectively) that was not significantly different from that found in untreated day 7 larvae (1.62 U ml?1). The combined results indicate the titer of the hemolymph factor is regulated by JH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号