首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
罗丹  周忠发  陈全  张露  吴岚  伍堂银 《生态学报》2023,43(9):3500-3516
喀斯特地区生态系统脆弱,对气候变化响应敏感,空间异质性强,碳汇潜力大。喀斯特生态治理对土地利用格局的改变,会导致生态系统碳储量的显著变化,对陆地生态系统碳循环和区域生态安全具有深远影响。以喀斯特典型区南北盘江流域为例,运用InVEST模型和热点分析评估流域2000—2020年土地利用变化对碳储量时空分布的影响,根据碳储量集聚特征使用FLUS-Markov模型分区预测生态系统碳储量对不同土地利用模式的响应。结果表明:(1)2000—2020年,研究区土地利用类型由高碳密度的地类转为较低碳密度的地类,致使生态系统碳储量呈减少趋势,累计损失90.36×105t C。(2)2000—2020年碳储量在空间上呈现“西低东高”的格局。热点区集中分布在东部和东南部,冷点区主要分布在西部和西南部,弱显著区大多在北部。(3)各热点分区在不同模式下固碳能力差异显著。热点区在不同模式下的平均碳密度均大于155.40t/hm2,显著高于2020年南北盘江流域的平均碳密度143.59t/hm2,整体固碳功能突出;弱显著区的碳汇能力与研究区平均水平...  相似文献   

2.
中国主要灌丛植被碳储量   总被引:29,自引:0,他引:29       下载免费PDF全文
在广泛收集资料的基础上,利用植被平均碳密度方法,估算了我国6种主要灌丛植被的碳储量,并分析了其区域分布特征。主要结果如下:1) 6种灌丛植被总面积为15 462.64 ×104 hm2,总碳储量为1.68±0.12 Pg C (1 Pg=1015g),灌丛植被平均碳密度为10.88±0.77 Mg C·hm-2(1 Mg=106 g),不同植被类型差异较大,在5.92~17 Mg C·hm-2之间波动。2)从区域分布来看,西南3省(云南、贵州、四川)既是我国灌丛主要的分布地区之一,分布面积占6种灌丛总面积的23.5%,又是我国灌丛碳储量的主要储库,碳储量占整个6种灌丛碳储量的1/3(32.6%),适宜的水热条件决定了该地区的植被平均碳密度要高于全国平均水平。3) 与我国森林和草地的植被碳储量相比,这些灌丛碳储量相当于我国森林和草地碳储量的27%~40%和36%~55%。  相似文献   

3.
湿地生态系统的固碳及其调节气候等生态系统服务十分重要,准确评估黄河流域自然保护地的碳储量有助于碳中和研究和区域生态保护与高质量发展。该研究基于野外采样和室内分析,并结合遥感数据,评估了陕西黄河湿地省级自然保护区光滩和典型自然植被区的地上植被和0–50 cm土壤碳储量。碳储量评估区总面积13 086.52 hm2,占保护区面积的23.87%。结果表明,高草植被的地上碳储量显著高于低草植被和矮灌丛植被,其碳密度分别为496.73、23.45和138.38g·m–2;土壤0–50 cm的碳密度为7.15–11.98 kg·m–2,高草植被区的土壤碳储量(5.02×105 t)显著高于光滩(2.09×105 t)、低草植被区(3.40×105t)和矮灌丛植被区(1.45×105t);最终核算出陕西黄河湿地省级自然保护区典型植被区的地上植被和0–50cm土壤总碳储量约为1.22×106 t,其中光滩区、低草植被区、矮灌丛植...  相似文献   

4.
东北森林带森林生态系统固碳服务空间特征及其影响因素   总被引:4,自引:0,他引:4  
孙滨峰  赵红  逯非  王效科 《生态学报》2018,38(14):4975-4983
东北森林带作为国家主体生态区划"两屏三带"国家生态安全格局中的重要组成部分,在全球碳平衡中发挥着重要的碳汇作用。以东北森林带为研究区域,采用净生态系统生产力(NEP)评估其森林固碳服务,通过Anselin Local Moran's Ⅰ算法识别固碳服务的"热点"、"冷点"和"异常点",并分析探讨其空间格局与影响因素。结果表明:(1)东北森林带森林生态系统整体上是碳汇。2014年东北森林带森林固碳总量为36.41 Tg C/a,单位面积固碳量为89.57 g C m~(-2)a~(-1)。(2)固碳服务的热点区主要分布在大兴安岭北部和长白山中北部,冷点区主要分布在大兴安岭东部、小兴安岭和长白山南部,固碳服务的高值异常区域主要分布在森林边缘的农林交错带,低值异常区域主要分布在人为干扰严重的城市蔓延区。(3)东北森林带森林生态系统整体上受人为因素的影响小,其固碳服务与NDVI显著正相关。(4)城市扩张等人为干扰是固碳服务异常降低的根本原因,植被本身生长状况不佳和较高的温度是导致固碳服务的异常降低的重要影响因素。  相似文献   

5.
人工林生态系统碳储量的空间分配格局对全球陆地碳循环有重要的影响,但湖南省杉木人工林生态系统碳储量的分配格局并不清楚。本研究在湖南省样地野外调查的基础上,结合第八次全国森林资源清查的结果,计算出湖南省杉木人工林生态系统的碳储量空间分布格局。结果表明:杉木人工林生态系统碳密度随着林龄增加而增加,幼龄林、中龄林和成熟林分别为125.70、138.57、193.72 Mg·hm~(-2);其中,幼龄林、中龄林和成熟林的植被生物量碳密度分别为18.72、38.86、62.48 Mg·hm~(-2);土壤碳密度随着林分发育先降低后增加,幼龄林为105.49 Mg·hm~(-2)、中龄林为97.23 Mg·hm~(-2)、成熟林126.7 Mg·hm~(-2);湖南省杉木人工林生态系统碳储量为307.48 Tg,其中幼龄林为90.57 Tg,中龄林为91.87 Tg,成熟林为125.31 Tg;湖南省杉木人工林生态系统的固碳潜力为85.56 Tg,其中,植被固碳潜力为47.19 Tg,土壤的固碳潜力为34.82 Tg。确定杉木人工林固碳潜力有助于量化人工林对碳汇的贡献及其制定实现潜力的森林经营管理措施。  相似文献   

6.
宁夏回族自治区森林生态系统固碳现状   总被引:6,自引:2,他引:4  
根据宁夏回族自治区森林资源清查资料以及野外调查和室内分析的结果,研究了宁夏地区森林生态系统固碳现状,估算了该区森林生态系统的碳密度、碳储量,并分析了其空间分布特征.结果表明: 宁夏森林各植被层生物量大小顺序为: 乔木层(46.64 Mg·hm-2)>凋落物层(7.34 Mg·hm-2)>细根层(6.67 Mg·hm-2)>灌草层(0.73 Mg·hm-2).云杉类(115.43 Mg·hm-2)和油松(94.55 Mg·hm-2)的单位面积植被生物量高于其他树种.不同林龄乔木层碳密度中,过熟林最高,但由于幼龄林面积所占比例最大,其乔木层碳储量(1.90 Tg C)最大.宁夏地区森林生态系统平均碳密度为265.74 Mg C·hm-2,碳储量为43.54 Tg C,其中,植被层平均碳密度为27.24 Mg C·hm-2、碳储量为4.46 Tg C,土壤层碳储量是植被层的8.76倍.宁夏地区的森林碳储量整体呈南高北低分布,总量较低.这与其森林面积小和林龄结构低龄化有很大关系.随着林龄结构的改善和林业生态工程的进一步实施,宁夏森林生态系统将发挥巨大的固碳潜力.  相似文献   

7.
鄱阳湖生态经济区植被固碳研究   总被引:1,自引:0,他引:1  
对鄱阳湖生态经济区的植被固碳研究表明,该区森林碳储量364.3×106 t,草地植被固碳量90.65×104 t,水稻固碳量18.51×106 t,其他农作物固碳量20.64×106 t;鄱阳湖湿地固定CO2量为609 120 t/a。因此,建议对现有森林进行科学抚育与合理采伐,进而形成合理的树种结构、林龄结构与林层结构,提高森林生态系统的稳定性与碳汇能力;运用保护性耕作、灌溉节水和合理施肥技术,培育新型氮素高效利用的农作物新品种,提高光合作用率,从而提高该区农作物的固碳能力;进行合理放牧和草地资源生态监测,严格控制养殖数量和规模,实现草地生态系统减少与固定CO2的重要功能;严禁围湖造田,健全水域环境监测网络,保护湿地生态功能。  相似文献   

8.
青海省森林乔木层碳储量现状及固碳潜力   总被引:1,自引:0,他引:1       下载免费PDF全文
为阐明青海省森林生态系统乔木层植被碳储量现状及其分布特征, 该研究利用240个标准样地实测的乔木数据, 估算出青海省森林生态系统不同林型处于不同龄级阶段的平均碳密度, 并结合青海省森林资源清查资料所提供的不同龄级的各林型面积, 估算了青海省森林生态系统乔木层的固碳现状、速率和潜力。结果表明: 1) 2011年青海省森林乔木层平均碳密度为76.54 Mg·hm -2, 总碳储量为27.38 Tg。云杉(Picea spp.)林、柏木(Cupressus funebris)林、桦木(Betula spp.)林、杨树(Populus spp.)林是青海地区的主要林型, 占青海省森林面积的96.23%, 占青海省乔木层碳储量的86.67%, 其中云杉林的碳储量(14.78 Tg)和碳密度(106.93 Mg·hm -2)最高。按龄级划分, 乔木层碳储量表现为过熟林>中龄林>成熟林>近熟林>幼龄林。2)青海省乔木层总碳储量从2003年的23.30 Tg增加到2011年的27.38 Tg, 年平均碳增量为0.51 Tg·a -1。乔木层固碳速率为1.06 Mg·hm -2·a -1, 其中柏木林的固碳速率最大(0.44 Mg·hm -2·a -1); 桦木林的固碳速率为负值(-1.06 Mg·hm -2·a -1)。3)青海省乔木层植被固碳潜力为8.50 Tg, 其中云杉林固碳潜力最高(3.40 Tg)。该研究结果表明青海省乔木层具有较大的固碳潜力, 若对现有森林资源进行合理管理和利用, 将会增加青海省森林的碳固存能力。  相似文献   

9.
《植物生态学报》2018,42(8):831
为阐明青海省森林生态系统乔木层植被碳储量现状及其分布特征, 该研究利用240个标准样地实测的乔木数据, 估算出青海省森林生态系统不同林型处于不同龄级阶段的平均碳密度, 并结合青海省森林资源清查资料所提供的不同龄级的各林型面积, 估算了青海省森林生态系统乔木层的固碳现状、速率和潜力。结果表明: 1) 2011年青海省森林乔木层平均碳密度为76.54 Mg·hm -2, 总碳储量为27.38 Tg。云杉(Picea spp.)林、柏木(Cupressus funebris)林、桦木(Betula spp.)林、杨树(Populus spp.)林是青海地区的主要林型, 占青海省森林面积的96.23%, 占青海省乔木层碳储量的86.67%, 其中云杉林的碳储量(14.78 Tg)和碳密度(106.93 Mg·hm -2)最高。按龄级划分, 乔木层碳储量表现为过熟林>中龄林>成熟林>近熟林>幼龄林。2)青海省乔木层总碳储量从2003年的23.30 Tg增加到2011年的27.38 Tg, 年平均碳增量为0.51 Tg·a -1。乔木层固碳速率为1.06 Mg·hm -2·a -1, 其中柏木林的固碳速率最大(0.44 Mg·hm -2·a -1); 桦木林的固碳速率为负值(-1.06 Mg·hm -2·a -1)。3)青海省乔木层植被固碳潜力为8.50 Tg, 其中云杉林固碳潜力最高(3.40 Tg)。该研究结果表明青海省乔木层具有较大的固碳潜力, 若对现有森林资源进行合理管理和利用, 将会增加青海省森林的碳固存能力。  相似文献   

10.
深圳市森林植被碳储量特征及其空间分布   总被引:1,自引:0,他引:1  
基于2005年深圳市森林资源二类调查资料数据,采用材积源生物量法,计测深圳市森林植被碳储量和碳密度,分析了深圳市森林植被碳储量空间分布格局.结果表明,2005年深圳市森林植被总碳储量为225.04×104Mg,平均碳密度为25.63MgC·hm-2.深圳市各区的森林植被碳储量空间分布上有显著差异.表现为龙岗区(123.13×104Mg)>宝安区(46.70×104Mg)>盐田区(20.49×104Mg)>罗湖区(14.75×104Mg)>南山区(12.79×104Mg)>福田区(5.63×104Mg)>保护区(1.57×104Mg).各区碳密度分布为盐田区(46.18MgC·hm-2)>福田区(37.63 MgC·hm-2)>罗湖区(36.78MgC·hm-2)>龙岗区(26.60MgC·hm-2)>保护区>(24.19 MgC·hm-2)>宝安区(19.53MgC·hm-2),与碳储量大小分布无明显相关.深圳市乔木林碳储量为146.11×104Mg,以中幼龄林为主,占73.2%,平均碳密度为30.76MgC·hm-2.根据森林植被碳储量与碳密度的空间差异性对深圳市森林进行了区划,并分区提出了提高深圳市森林碳吸存能力的有效措施.  相似文献   

11.
中国国家森林公园碳储量及固碳速率的时空动态   总被引:1,自引:0,他引:1  
森林生态系统在调节气候变化和维持碳平衡中具有重要作用。国家森林公园是森林保护的主要载体,探明其碳储量和固碳速率的变化对于森林生态系统的固碳能力评估和可持续经营管理具有重要意义。本研究采用生态系统过程模型CEVSA2模型,模拟了1982—2017年中国881处国家森林公园的碳密度、碳储量和固碳速率的空间分布特征。结果表明: 国家森林公园平均碳密度为255.18 t C·hm-2,高于中国森林生态系统平均碳密度。2017年,国家森林公园总碳储量为3.56 Pg C,占全国森林生态系统总碳储量的11.0%~12.2%。1982—2017年国家森林公园平均固碳速率达到0.45 t C·hm-2·a-1,各地区国家森林公园固碳速率都在0.30 t C·hm-2·a-1以上。东北和西南地区国家森林公园的总碳储量最高。东北地区国家森林公园的土壤有机碳固碳速率最高,而华东和中南地区国家森林公园的植被碳固碳速率最高。国家森林公园面积占中国森林总面积的5.8%,在森林碳汇管理中占据着重要地位。准确评估国家森林公园的森林生长状况、固碳潜力和碳吸收特征,可为我国森林公园生态系统服务功能的总体评估提供借鉴和参考。  相似文献   

12.
彭怡  王玉宽  傅斌  马飞 《生态学报》2013,33(3):798-808
通过建立汶川地震灾区碳储存功能评估指标体系,利用ArcGIS平台计算了灾区四大碳库(地上部分碳、地下部分碳、死亡有机碳和土壤碳)碳储存密度,分析了碳储存空间格局和规律.结果表明:灾区碳储存总量3.97×108t,平均碳密度52.2t/hm2,其中亚高山常绿针叶林碳密度和碳储存最高.碳储存量随坡度增加而增加,大于35.地区碳储存量达1.3×108t,占灾区碳存总量的33.9%.碳储量随海拔增加呈现波动的曲线,0-750m区域碳储量随海拔增加而增加,在750-1750m区域段碳储量因地震对植被的破坏出现下降,然后又随海拔增加而增加,到3250m时出现碳储存量高峰,储碳量达7273t,之后又逐渐下降.此外,通过对比地震前后灾区生态系统碳储存功能得出研究区生态系统碳储存功能总体减少为9.98×106t,而地震对碳储存功能的影响主要是植被破坏导致的碳储存降低,其中退化最严重的地区在彭州和什邡的北部山区,并沿龙门山向西南方向延伸.研究结果直观反映了灾区碳储量空间格局,为决策者实施破坏区植被恢复策略以及地震灾区碳管理等提供依据.  相似文献   

13.
天童国家森林公园植被碳储量估算   总被引:1,自引:0,他引:1  
郭纯子  吴洋洋  倪健   《生态学杂志》2014,25(11):3099-3109
以典型木荷-栲树群落、含苦槠的木荷-栲树群落、含杨梅叶蚊母树的木荷-栲树群落、披针叶茴香-南酸枣群落、枫香-马尾松群落、黄毛耳草-毛竹群落6种群落类型样地实测数据为基础,结合文献资料汇总,采用生物量相对生长方程法,研究了天童国家森林公园森林生态系统的植被碳储量、碳密度及其组分和空间分布特征.结果表明:野外调查的6种群落类型中,含苦槠的木荷-栲树群落碳储量(12113.92 Mg C)和碳密度(165.03 Mg C·hm-2)均最高,披针叶茴香 南酸枣群落碳储量最低(680.95 Mg C),其碳密度为101.26 Mg C·hm-2.各群落类型中,常绿树种的碳储量均显著高于落叶树种,其碳密度范围分别为76.08~144.95和0.16~20.62 Mg C·hm-2.各群落类型的乔木层各组分中,植株干的碳储量均最高.各林分类型中,常绿阔叶林碳储量最高,为23092.39 Mg C,占天童林区森林生态系统碳储量的81.7%,碳密度为126.17 Mg C·hm-2.天童国家森林公园植被总碳储量为28254.22 Mg C,碳密度为96.73 Mg C·hm-2.  相似文献   

14.
黄土高原地区生态系统碳储量空间分布及其影响因素   总被引:4,自引:0,他引:4  
李妙宇  上官周平  邓蕾 《生态学报》2021,41(17):6786-6799
准确估算生态系统碳储量,探明其空间分布及其影响因素对区域生态管理具有重要意义,但黄土高原地区碳储量现状、空间格局及其驱动因素尚不清楚。选择黄土高原地区森林(包括乔木林和灌木林),草地和农田生态系统为对象,基于大量实测样点通过克里金插值和地统计方法,评估了三种生态系统地上生物量碳密度、地下生物量碳密度和0-100 cm土壤有机碳密度空间分布,并通过路径分析探讨了各碳库的主要影响因素。结果表明:黄土高原地区约占全国总面积的6.7%,其生态系统总碳储量约为2.29 Pg,仅占我国生态系统碳储量的2.3%。生态系统各碳库中,地上生物量碳储量、地下生物量碳储量、土壤有机碳储量分别为0.44、0.32和1.52 Pg;森林、草地、农田(仅指土壤)生态系统碳储量分别为0.98、1.09和0.21 Pg。气候(年均温度、年均降水)、海拔、坡度、土壤质地(砂粒、粉粒、粘粒含量)、植被覆盖状况(用NDVI表示)等因子可解释地上生物量碳密度、地下生物量碳密度、农田土壤有机碳密度空间变异的12%、8%和32%,其中,年均降水、海拔、粘粒含量是黄土高原地区生态系统碳储量空间格局的主要影响因素。本研究表明,由于黄土高原地区独特的气候、地形和土壤条件,其生态系统虽然具有较大的碳储量,但是低于我国生态系统碳储量的平均水平。  相似文献   

15.
黄土丘陵区是中华文明的起源地,而原有植被却遭受严重破坏。因此,自20世纪70年代末开始的三北防护林工程、退耕还林工程和天然林保护工程等大型生态恢复工程,在本区均有大面积分布。这些工程已经对生态恢复起到重要作用,并将对全球碳素循环起到积极作用。以黄土丘陵区的主要造林树种--油松(Pinus tabulaeformis Carr.)和刺槐(Robinia pseudoacacia L.)为研究对象,共设置样方28个,测定森林乔木、灌木、草本生物量及凋落物碳储量;钻取并分析土样516份,获得土壤有机碳储量。结合文献数据和农田碳储量数据,建立0-86年生油松林和0-56年生刺槐纯林生态系统碳储量-林龄序列;在此基础上分析造林对生态系统碳储量和固碳潜力的影响。结果表明,造林后的油松林和刺槐林生态系统的植被、凋落物及土壤碳储量逐渐增加;在没有人为干扰的情况下,19、27、36、86年生油松林生态系统碳储量分别为70.76、143.43、167.30、271.23-332.26 Mg/hm2;8、17、39年生刺槐林生态系统碳储量分别为80.37、94.08、140.77 Mg/hm2。受间伐干扰、45\,52年生油松林生态系统碳储量分别为136.42\,168.56 Mg/hm2,相对于没有人为干扰的油松林,其植被碳储量明显下降,而土壤碳储量保持稳定甚至升高。受乱砍滥伐干扰的71年生油松林和56年生刺槐林的生态系统碳储量分别为118.87\,76.99 Mg/hm2,相对于没有人为干扰的森林,其植被碳储量和土壤碳储量均呈明显下降趋势。种植油松林之后的86a时间内,其生态系统固碳潜力为211.61-272.64 Mg/hm2;而种植刺槐林、在39a时间内的生态系统固碳潜力为81.15 Mg/hm2。  相似文献   

16.
甘肃省森林碳储量现状与固碳速率   总被引:1,自引:0,他引:1       下载免费PDF全文
针对森林碳平衡再评估的重要性和区域尺度森林生态系统碳库量化分配的不确定性, 该研究依据全国森林资源连续清查结果中甘肃省各森林类型分布的面积与蓄积比重以及林龄和起源等要素, 在甘肃省布设212个样地, 经野外调查与采样、室内分析, 并对典型样地信息按照面积权重进行尺度扩展, 估算了甘肃省森林生态系统碳储量及其分布特征。结果表明: 甘肃省森林生态系统总碳储量为612.43 Tg C, 其中植被生物量碳为179.04 Tg C, 土壤碳为433.39 Tg C。天然林是甘肃省碳储量的主要贡献者, 其值为501.42 Tg C, 是人工林的4.52倍。天然林和人工林的植被碳密度均表现为随林龄的增加而增加的趋势, 同一龄组天然林植被碳密度高于人工林。天然林土壤碳密度从幼龄林到过熟林逐渐增加, 但人工林土壤碳密度最大值主要为近熟林。全省森林植被碳密度均值为72.43 Mg C·hm-2, 天然林和人工林分别为90.52和33.79 Mg C·hm-2。基于森林清查资料和标准样地实测数据, 估算出全省天然林和人工林在1996年的植被碳储量为132.47和12.81 Tg C, 2011年分别为152.41和26.63 Tg C, 平均固碳速率分别为1.33和0.92 Tg C·a-1。甘肃省幼、中龄林面积比重较大, 占全省的62.28%, 根据碳密度随林龄的动态变化特征, 预测这些低龄林将发挥巨大的碳汇潜力。  相似文献   

17.
内蒙古森林生态系统碳储量及其空间分布   总被引:2,自引:0,他引:2       下载免费PDF全文
内蒙古森林面积居全国第一位, 林木蓄积量居第五位, 准确地估算该区域森林碳储量对于评估中国森林碳储量以及制定森林资源管理措施均具有重要意义。该研究基于内蒙古森林资源野外样方调查和室内分析, 评估了内蒙古森林生态系统的固碳现状, 估算了内蒙古森林生态系统不同林型和不同碳库(乔木、灌木、草本、凋落物和土壤碳库)的碳密度大小, 揭示了其空间分布特征。在此基础上估算了内蒙古森林碳储量大小及空间格局。结果表明: 1)内蒙古森林植被层碳储量为787.8 Tg C, 乔木层、凋落物层、草本层和灌木层分别占植被层总碳储量的93.5%、3.0%、2.7%和0.8%。内蒙古森林植被层平均碳密度为40.4 t·hm-2, 其中, 乔木层、凋落物层、草本层和灌木层的碳密度分别为35.6 t·hm-2、2.9 t·hm-2、1.2 t·hm-2和0.6 t·hm-2。2)内蒙古森林土壤层(0-100 cm)碳储量为2449.6 Tg C, 其中0-30 cm的土壤碳储量最高, 占总碳储量的79.8%。0-10 cm、10-20 cm和20-30 cm的土壤碳储量分别占0-30 cm土壤碳储量的38.8%、34.1%和27.1%。内蒙古森林土壤平均碳密度为144.4 t·hm-2。黑桦(Betula davurica)林土壤碳密度最高, 云杉(Picea asperata)林最小。土壤碳密度随土壤深度的增加而降低。3)内蒙古森林生态系统碳储量为3237.4 Tg C, 植被层和土壤层碳储量分别占森林生态系统碳储量的24.3%和75.7%。落叶松(Larix gmelinii)林总碳储量最高, 其次为白桦(Betula platyphylla)林、夏栎(Quercus robur)林、黑桦林、榆树(Ulmus pumila)疏林和山杨(Populus davidiana)林。内蒙古森林生态系统平均碳密度为184.5 t·hm-2。土壤碳密度与植被碳密度呈显著正相关关系。4)内蒙古森林生态系统碳储量和碳密度的空间分布总体上为东部地区高、西部地区低的趋势。在降水量充沛的东部地区和降水偏少的中西部地区, 有针对性地开展森林保护区建设和人工造林, 可显著提升区域的碳汇能力。  相似文献   

18.
生态系统服务热冷点的识别及其空间格局特征研究对生态保护规划有着重要的意义。目前有关生态系统服务热冷点的识别多采用直接分类法,缺乏对空间关系特征的综合研究。以延河流域为例,综合集成多源数据来模拟4种生态系统服务(土壤保持、植被碳固定、产水、洪水调节)的热点与冷点时空格局变化特征。主要结论为:(1)2001—2012年,延河流域土壤保持服务在流域下游高于上游,中游地区增长较快。植被碳固定服务和洪水调节服务在流域南部地区较强,且在中下游呈上升趋势。产水服务呈现"南北低、中间高"的分布格局,在流域上游呈下降趋势,在中下游呈上升趋势。(2)生态系统服务热点主要分布在延河中下游南部地区,冷点主要分布在延河上游地区。延河中下游南部地区4种生态系统服务均较强。生态系统服务保护效率最高的是延河上游。(3)延河流域林地的土壤保持服务、植被碳固定服务和洪水调节服务均强于其他土地利用类型,而产水服务较弱,湿地则相反。草地的土壤保持服务和植被碳固定服务相对较强。耕地的4种服务强于裸露地,裸露地的4种服务均较弱。湿地的土壤保持服务、植被碳固定服务和洪水调节服务保护效率最高,林地的产水服务保护效率最高。研究结果以期为流域生态系统服务保护与恢复决策提供理论支撑。  相似文献   

19.
陕西省森林生态系统碳储量分布格局分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为明晰陕西省森林生态系统碳储量分布格局, 基于2009年森林资源清查资料和2011年调查所得样地实测数据, 对陕西省森林生态系统碳储量、碳密度及其空间分布特征进行了研究分析。结果表明: 陕西省森林生态系统总碳储量为790.75 Tg, 土壤层、植被层和枯落物层碳储量分别占总碳储量的72.14%、26.52%和1.34%; 其中, 栎类碳储量在各森林类型中所占比重最大(44.17%), 中、幼龄林是陕西省森林生态系统碳储量的主要贡献者, 约占总碳储量的49%。陕西省森林生态系统平均碳密度为123.70 t·hm-2, 土壤层最大, 枯落物层最小, 植被层居中; 碳密度均随龄级增加而升高, 同一龄级表现为天然林高于人工林生态系统。此外, 陕西省森林生态系统碳储量、碳密度分布格局不尽一致, 反映了森林覆盖面积及森林质量对碳储量的影响。未来应加强林地抚育管理水平, 增加造林再造林面积以增加碳储存, 应对全球气候变化。  相似文献   

20.
辽宁省森林植被碳储量和固碳速率变化   总被引:2,自引:0,他引:2  
利用CBM-CFS3模型,结合森林资源相关数据,研究辽宁省森林植被碳储量和固碳速率;并基于是否造林的两种假设情境,预测了未来辽宁省森林植被碳储量、碳密度和固碳速率的时空变化趋势.结果表明: 2005年辽宁省森林植被碳储量为133.94 Tg,碳密度为25.08 t·hm-2,其中,栎类的碳储量最大,刺槐碳储量最小;落叶松和阔叶林碳密度较大,油松、栎类和刺槐碳密度基本相当.全省森林植被碳密度呈东高西低的分布规律,辽东地区由于森林多为成熟林和过熟林,未来植被碳密度增加潜力不大,辽宁南部和北部的中幼龄林未来将成为植被碳密度增长的高值区.在假设未来不造林的情景下,辽宁省森林植被碳储量上升缓慢,固碳速率下降较快;在无林地造林情景下,全省森林植被碳储量、固碳速率将明显提高.说明造林在增加森林植被碳储量和碳密度、提高森林的固碳速率中起到了重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号