首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
一氧化氮(nitric oxide,NO)、一氧化碳(carbon monoxide,CO)和硫化氢(hydrogen sulfide,H2S)这三种大气组分相继被发现具有重要的生物活性,参与多种病理生理过程。近年来,关于NO、CO的研究日趋成熟,而H2S作为新发现的气体信号分子在各个系统中的作用也日益受到重视。这三种信号分子的生物学特性具有很多异同点,且相互调控。本文将在合成代谢、生物学功能、分子靶标和信号机制等方面系统地介绍这三种分子在生命和医学领域的研究进展。  相似文献   

2.
气体信号分子是由生物体内生成的、具有生物学效应的气态分子。目前已经发现一氧化氮(NO)、一氧化碳(CO)和硫化氢(H_2S) 3种气体信号分子。气体信号分子具有抗炎、抗氧化、抑制细胞凋亡、舒张血管、保护心脏等作用。线粒体在维持心肌细胞正常能量代谢中发挥重要作用,其功能紊乱会导致多种心血管系统疾病的发生。气体信号分子通过对线粒体的呼吸作用、线粒体的融合与分裂、线粒体自噬,以及活性氧生成等方面进行调控,介导线粒体功能,使心肌细胞维持正常生理功能。本文就3种气体信号分子对心血管系统线粒体的作用予以综述。  相似文献   

3.
一氧化氮(NO)作为一种具有生物活性的气体自由基分子,它的功能代表了生物学系统中信号传递的新途径。大量证据表明,NO在浮游植物细胞中的功能和在高等动植物中类似,具有调节生长和参与抗逆性的作用,NO和ROS可能作为信号分子参与介导浮游植物程序性死亡(PCD)过程。文章较全面地介绍了NO在浮游植物中的产生途径、测定方法、生理功能和PCD的关系及作为信号分子的作用,并对该领域今后的研究进行了展望。  相似文献   

4.
内源性H2S --一种新的气体信号分子   总被引:37,自引:2,他引:35  
20世纪90年代中期,发现半胱氨酸代谢生成气体分子硫化氢(H2S),对神经系统特别是海马的功能具有调节作用,并可以调节消化道和血管平滑肌的张力,而其作用特点有别于另外两种气体信号分子NO及CO,但H2S的信号转导途径一直未能阐明,直到最近研究证实,内源性H2S直接作用于KATP通道实现对血管的调节作用;而且可以刺激神经细胞cAMP水平增加,提高NMDA受体介导的突触后兴奋性电位,提高诱导海马长时程增强。越来越多的证明表明,内源性H2S是一种新的气体信号分子,对其研究是当前生物学领域的崭新课题,具有重要的理论和临床意义。  相似文献   

5.
硫化氢(hydrogen sulfide,H_2S)是一种无色、具有臭鸡蛋气味的气体,过去认为只是一种有毒的气体。近年来大量研究证实H_2S是继一氧化氮(nitric oxide,NO)和一氧化碳(carbon oxide,CO)后第三种内源性气体信号分子,同时,H_2S在心血管系统疾病发生、发展过程中起关键的调控作用,但其机制还不明确,已有报道主要通过抗凋亡、抗氧化、调节内皮一氧化氮合酶活性、促进血管新生等;而本文总结了H_2S在缺血性心脏病、动脉粥样硬化等心血管疾病中免疫炎症调节作用及其机制,从而为H_2S生物学功能以及相关心血管疾病的防治提供新的思路。  相似文献   

6.
一氧化氮(nitric oxide, NO)是有机体内一种重要的气体信号小分子,通过介导S-亚硝基化修饰、酪氨酸硝基化修饰等翻译后修饰,影响蛋白的稳定性和活性.在植物中, NO调控生长发育和胁迫响应等多个生物学过程,并与植物激素、活性氧等信号分子之间形成复杂的交互调控网络,精细调控植物生长发育的各阶段,以维持植物的正常生命活动.本文概述了NO的合成与代谢、作用机制,以及NO在植物生长发育、胁迫响应中的重要生物学功能.  相似文献   

7.
硫化氢(hydrogen sulfide,H2S)是一种具有臭鸡蛋刺激性气味的无色有毒气体,目前被认为是继一氧化氮和一氧化碳之后的第三个气体信号分子,参与体内多种生理及病理过程,具有广泛的生物学效应。H2S已成为当前生物学及医学领域一项崭新的研究课题,受到越来越多科研人员和制药企业的重视。本文就H2S近年来的研究进展做一综述。  相似文献   

8.
含硫气体信号分子硫化氢(hydrogen sulfide,H2S)和二氧化硫(sulfur dioxide,SO2)过去被认为是废气,但是研究先后发现这两种含硫气体能在哺乳动物体内通过含硫氨基酸代谢内源性生成。心血管系统存在H2S和SO2的生成体系,并且H2S和SO2具有重要的心血管生理学效应,包括舒张血管和心肌负性肌力作用。H2S和SO2的心血管病理生理学效应也逐渐被认识,如缓解高血压和肺动脉高压、抑制动脉粥样硬化进展、保护心肌缺血再灌注损伤和异丙肾诱导的心肌损伤。ATP敏感性钾通道、L型钙通道、c GMP、NF-κB信号通路及MAPK信号通路等都参与H2S和SO2的生物学效应。以上发现表明H2S和SO2是重要的心血管内源性气体信号分子,为阐明心血管疾病的发病机制和治疗靶点提供新的思路。  相似文献   

9.
表皮生长因子受体(epidermal growth factor receptor, EGFR)的配体作为一类重要的信号分子参与了细胞功能的调节,并且和机体发育、器官形成、组织修复与稳态维持,以及疾病的发生密切相关。虽然这些信号分子具有序列和结构上的相似性,但由于这些信号分子结构上的细微差异以及它们受体信号传导上的复杂性,造成了这些信号分子(配体)生物学效应的多样性。目前,从结构和机制上,对于单个信号分子的生物学效应已有较为深入的研究,但这些信号分子之间以及信号分子与受体之间的调控网络较为复杂,并且这种调控网络对信号的精细、有序和多样化转导至关重要。本文对EGFR配体的结构及配体生物学效应多样性的分子机制进行回顾,并对未来的研究方向提出展望。  相似文献   

10.
表皮生长因子受体(epidermal growth factor receptor, EGFR)的配体作为一类重要的信号分子参与了细胞功能的调节,并且和机体发育、器官形成、组织修复与稳态维持,以及疾病的发生密切相关。虽然这些信号分子具有序列和结构上的相似性,但由于这些信号分子结构上的细微差异以及它们受体信号传导上的复杂性,造成了这些信号分子(配体)生物学效应的多样性。目前,从结构和机制上,对于单个信号分子的生物学效应已有较为深入的研究,但这些信号分子之间以及信号分子与受体之间的调控网络较为复杂,并且这种调控网络对信号的精细、有序和多样化转导至关重要。本文对EGFR配体的结构及配体生物学效应多样性的分子机制进行回顾,并对未来的研究方向提出展望。  相似文献   

11.
微生物信号分子降解酶研究进展   总被引:1,自引:0,他引:1  
微生物细胞之间存在的信息交流称为群体感应。群体感应在实现微生物的生物学功能方面具有重要作用,包括调节致病性、参与生物膜的形成等。微生物能够分泌特定的信号分子,通过对信号分子的检测及应答,调控目的基因的表达。抑制信号分子的积累,能够干扰群体感应系统,使微生物丧失生物学功能。研究较为全面的一类信号分子是酰基高丝氨酸内酯(acylhomoserine lactone,AHL),此类信号分子可以通过酶法降解。目前已鉴定出的AHL降解酶主要分为AHL内酯酶和AHL酰化酶两类。综述了信号分子降解酶的来源、筛选方法、纯化技术、酶学性质、作用机制及在病害防治方面的应用。对信号分子降解酶的研究有助于完善群体感应系统的调控机制,并为微生物疾病的防治提供新策略。  相似文献   

12.
Wnt信号分子是一类在无脊椎与脊椎动物的多种组织中广泛表达且进化上高度保守的信号刺激因子,由于它们在生长、发育、代谢和干细胞调节等多种生物学过程中的重要生物学功能而被广泛重视。根据其激活的信号通路不同,Wnt分子可分为经典和非经典两类。经典类和非经典类Wnt分子分别通过激活β-catenin、Ca2+及JNK信号通路而发挥作用。近年来的研究显示,经典和非经典Wnt信号通路均在造血干细胞的自我更新和功能维持的调控中发挥关键作用。该文通过对经典和非经典Wnt信号通路的分子调控机理的探讨,对近年来有关Wnt信号通路在HSC自我更新调控中的研究进展进行了综述,对Wnt信号通路与造血微环境中其他信号通路在造血发生、维持和重建中的关系进行了讨论。  相似文献   

13.
动物中存在众多多肽信号分子,它们在信号转导方面发挥重要作用。近几年,对植物中多肽信号分子的研究取得了重大突破,它们积极参与调控植物生长发育的众多过程,同时也表明多肽信号分子在细胞之间的"交流"过程中发挥作用在进化上是保守的。CLE(CLAVATA3/EMBRYO SURROUNDING REGION)家族是目前植物领域研究较热的多肽信号分子家族,通过对拟南芥CLV3和百日草TDIF等CLE多肽信号分子的研究发现,CLE蛋白在成为有功能活性的信号分子之前,存在翻译后蛋白剪切和修饰的过程,这方面与动物中多肽信使的成熟过程相似。对CLE家族成员的分子特征、生物学功能、翻译后的加工修饰和研究中出现的问题进行综述,并对本领域未来的发展方向作出展望。  相似文献   

14.
肿瘤坏死因子信号传导的分子机理   总被引:8,自引:0,他引:8  
肿瘤坏死因子(tumor necrosis factor,TNF)是一种具有多种生物学效应的细胞因子,其生物学效应包括促进细胞生长、分化、凋亡及炎症诱发等.TNF的生物学效应都是通过细胞表面的两种TNF受体引发的.TNF的信号传导通路主要包括细胞凋亡及转录因子NF-kB和JNK蛋白激酶的激活.这3条信号传导通路之间及各通路内部含有各种调节机制,使TNF的各种生物学功能协调发挥出来.从1994年到现在,对肿瘤坏死因子信号传导通路的分子机理研究取得了一系列突破性进展,在细胞信号传导研究领域中树立了成功的典范.  相似文献   

15.
一氧化氮是一个有较高活性的自由基气体分子,无论在动植物还是微生物中,作为一个细胞内和细胞间的信号传导分子,它在许多的生理和病理过程中都发挥着双向的调节作用.研究发现真菌细胞可以合成一氧化氮,适当浓度的一氧化氮在真菌细胞内发挥多种重要的生物学功能,一旦一氧化氮过量累积,这个自由基分子会对细胞造成伤害,导致细胞凋亡.一氧化氮介导生成的环鸟苷酸(cGMP)作为一种重要的第二信使分子涉及到真菌细胞内多种信号途径的调控,调节了整个真菌类群的生长发育、形态发生、孢子形成和萌发、繁殖和细胞凋亡的过程,影响了真菌整个生命周期的生理活动.到目前为止,尽管一氧化氮在动植物中作用的机制得到了广泛的研究,但一氧化氮在真菌中的研究报道很有限.关于一氧化氮在真菌中的合成和降解途径,一氧化氮介导的信号传导机制的研究还不透彻,它在真菌细胞内的功能和毒理还有待于更深入的研究.  相似文献   

16.
TNF-α信号传导通路的分子机理   总被引:6,自引:0,他引:6  
肿瘤坏死因子α(tumor necrosis factor-alpha,TNF-α)是一种具有多效生物学效应的细胞因子.TNF的生物学效应都是通过细胞表面的2种TNF受体(TNFR)引发,其信号传导通路主要包括caspase家族介导的细胞凋亡、衔接蛋白TRAF介导的转录因子NF-κB和JNK蛋白激酶的活化.TNFR1和TNFR2的生物学功能不是独立的,许多生物学活性由二者共同完成.3条信号传导通路之间及各通路内部含有各种调节机制,使TNF的各种生物学功能协调发挥出来.本文评述了3条信号传导通路最新进展、关键激酶的研究状况及其在整个信号网络中的作用机理,如IKK的激活以及重要的信号转导分子RIP、TRAF2、TRUSS的结构、相互作用的方式等  相似文献   

17.
在脊椎动物中,甲状腺激素信号通路是调控生长、发育和机体能量代谢必不可少的信号通路之一,并且参与了两栖类和鱼类的变态反应。近来,越来越多的证据表明,在海洋无脊椎动物中存在内源性的甲状腺激素、甲状腺激素受体等信号通路的成员分子,而且这些分子参与了海洋无脊椎动物的发育和变态过程。这表明在海洋无脊椎动物中存在与脊椎动物类似的甲状腺激素信号通路。综述了海洋无脊椎动物中甲状腺激素信号通路的相关研究进展,旨在为研究甲状腺激素在海洋无脊椎动物的生物学功能及其作用机制提供基础资料。  相似文献   

18.
Wangrui通过总结近年相继发现的两种内源性气体信号分子———一氧化氮和一氧化碳的特点 ,即它们都属于小分子量的气体分子 ;不通过受体起作用 ;其产生受到内源性关键酶的调节 ;生理浓度时有很明确的特殊作用 ;都有明确的细胞或分子作为作用靶点等等 ,进一步认为这些共同点可作为内源性气体信号分子的标准 ,从而把最近新发现具有多种生理调节作用的硫化氢 (H2 S)归为第三类内源性气体信号分子。H2 S是蛋氨酸等含硫氨基酸的代谢终末产物 ,在哺乳动物 ,多种细胞都可以产生。实验表明 ,H2 S在海马LTP的产生、脑发育和血压调节…  相似文献   

19.
植物的环境信号分子茉莉酸及其生物学功能   总被引:3,自引:0,他引:3  
李梦莎  阎秀峰 《生态学报》2014,34(23):6779-6788
茉莉酸信号分子参与植物生长发育众多生理过程的调控,尤其是作为环境信号分子能有效地介导植物对生物及非生物胁迫的防御反应。迄今已知具有信号分子生理功能的至少包括茉莉酸(jasmonic acid,JA)以及茉莉酸甲酯(methyl jasmonate,Me JA)和茉莉酸-异亮氨酸复合物(jasmonoyl-isoleucine,JA-Ile)等茉莉酸衍生物,统称为茉莉酸类化合物(jasmonates,JAs)。从环境信号分子角度介绍了茉莉酸信号的启动(环境信号感知与转导、茉莉酸类化合物合成)、传递(局部传递、维管束传输、空气传播)和生物学功能(茉莉酸信号受体、调控的转录因子、参与的生物学过程)。  相似文献   

20.
硫化氢在血压调节中的作用   总被引:1,自引:0,他引:1  
内源性硫化氢(H2S)是新近发现的第三种气体信号分子,它具有重要的生理意义。在心血管系统,它有舒张血管、降低血压、抑制血管平滑肌细胞增殖以及减轻血管重构等多种生物学效应。研究发现,硫化氢能直接作用于ATP敏感性钾通道实现对血管的调节作用;能通过作用于丝裂原激活蛋白激酶(MAPK)途径抑制平滑肌细胞增殖。现已证明,硫化氢还与高血压、肺动脉高压等疾病关系密切。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号