首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinoblastoma-binding protein 1 (RBBP1), also named AT-rich interaction domain containing 4A (ARID4A), is a tumor and leukemia suppressor involved in epigenetic regulation in leukemia and Prader-Willi/Angelman syndromes. Although the involvement in epigenetic regulation is proposed to involve its chromobarrel and/or Tudor domains because of their potential binding to methylated histone tails, the structures of these domains and their interactions with methylated histone tails are still uncharacterized. In this work, we first found that RBBP1 contains five domains by bioinformatics analysis. Three of the five domains, i.e. chromobarrel, Tudor, and PWWP domains, are Royal Family domains, which potentially bind to methylated histone tails. We further purified these domains and characterized their interaction with methylated histone tails by NMR titration experiments. Among the three Royal Family domains, only the chromobarrel domain could recognize trimethylated H4K20 (with an affinity of ~3 mm), as well as recognizing trimethylated H3K9, H3K27, and H3K36 (with lower affinities). The affinity could be further enhanced up to 15-fold by the presence of DNA. The structure of the chromobarrel domain of RBBP1 determined by NMR spectroscopy has an aromatic cage. Mutagenesis analysis identified four aromatic residues of the cage as the key residues for methylated lysine recognition. Our studies indicate that the chromobarrel domain of RBBP1 is responsible for recognizing methylated histone tails in chromatin remodeling and epigenetic regulation, which presents a significant advance in our understanding of the mechanism and relationship between RBBP1-related gene suppression and epigenetic regulation.  相似文献   

2.
Polycomb group (PcG) and trithorax group (trxG) proteins are key regulators of homeotic genes and have central roles in cell proliferation, growth and development. In animals, PcG and trxG proteins form higher order protein complexes that contain SET domain proteins with histone methyltransferase activity, and are responsible for the different types of lysine methylation at the N-terminal tails of the core histone proteins. However, whether H3K4 methyltransferase complexes exist in Arabidopsis thaliana remains unknown. Here, we make use of the yeast two-hybrid system and the bimolecular fluorescence complementation assay to provide evidence for the self-association of the Arabidopsis thaliana SET-domain-containing protein SET DOMAIN GROUP 26 (SDG26), also known as ABSENT, SMALL, OR HOMEOTIC DISCS 1 HOMOLOG 1 (ASHH1). In addition, we show that the ASHH1 protein associates with SET-domain-containing sequences from two distinct histone lysine methyltransferases, the ARABIDOPSIS HOMOLOG OF TRITHORAX-1 (ATX1) and ASHH2 proteins. Furthermore, after screening a cDNA library we found that ASHH1 interacts with two proteins from the heat shock protein 40?kDa (Hsp40/DnaJ) superfamily, thus connecting the epigenetic network with a system sensing external cues. Our findings suggest that trxG complexes in Arabidopsis thaliana could involve different sets of histone lysine methyltransferases, and that these complexes may be engaged in multiple developmental processes in Arabidopsis.  相似文献   

3.
4.
5.
Post-translational modifications (PTMs) of histones play important roles in regulating the structure and function of chromatin in eukaryotes. Although histone PTMs were considered to mainly occur at the N-terminal tails of histones, recent studies have revealed that PTMs also exist in the histone-fold domains, which are commonly shared among the core histones H2A, H2B, H3, and H4. The lysine residue is a major target for histone PTM, and the lysine to glutamine (KQ) substitution is known to mimic the acetylated states of specific histone lysine residues in vivo. Human histones H3 and H4 contain 11 lysine residues in their histone-fold domains (five for H3 and six for H4), and eight of these lysine residues are known to be targets for acetylation. In the present study, we prepared 11 mutant nucleosomes, in which each of the lysine residues of the H3 and H4 histone-fold domains was replaced by glutamine: H3 K56Q, H3 K64Q, H3 K79Q, H3 K115Q, H3 K122Q, H4 K31Q, H4 K44Q, H4 K59Q, H4 K77Q, H4 K79Q, and H4 K91Q. The crystal structures of these mutant nucleosomes were determined at 2.4-3.5 ? resolutions. Some of these amino acid substitutions altered the local protein-DNA interactions and the interactions between amino acid residues within the nucleosome. Interestingly, the C-terminal region of H2A was significantly disordered in the nucleosome containing H4 K44Q. These results provide an important structural basis for understanding how histone modifications and mutations affect chromatin structure and function.  相似文献   

6.
7.
8.
9.
Using peptide arrays and binding to native histone proteins, we show that the ADD domain of Dnmt3a specifically interacts with the H3 histone 1–19 tail. Binding is disrupted by di- and trimethylation of K4, phosphorylation of T3, S10 or T11 and acetylation of K4. We did not observe binding to the H4 1–19 tail. The ADD domain of Dnmt3b shows the same binding specificity, suggesting that the distinct biological functions of both enzymes are not related to their ADD domains. To establish a functional role of the ADD domain binding to unmodified H3 tails, we analyzed the DNA methylation of in vitro reconstituted chromatin with Dnmt3a2, the Dnmt3a2/Dnmt3L complex, and the catalytic domain of Dnmt3a. All Dnmt3a complexes preferentially methylated linker DNA regions. Chromatin substrates with unmodified H3 tail or with H3K9me3 modification were methylated more efficiently by full-length Dnmt3a and full-length Dnmt3a/3L complexes than chromatin trimethylated at H3K4. In contrast, the catalytic domain of Dnmt3a was not affected by the H3K4me3 modification. These results demonstrate that the binding of the ADD domain to H3 tails unmethylated at K4 leads to the preferential methylation of DNA bound to chromatin with this modification state. Our in vitro results recapitulate DNA methylation patterns observed in genome-wide DNA methylation studies.  相似文献   

10.
Plants control expression of their genes in a way that involves manipulating the chromatin structural dynamics in order to adapt to environmental changes and carry out developmental processes. Histone modifications like histone methylation are significant epigenetic marks which profoundly and globally modify chromatin, potentially affecting the expression of several genes. Methylation of histones is catalyzed by histone lysine methyltransferases (HKMTs), that features an evolutionary conserved domain known as SET [Su(var)3–9, E(Z), Trithorax]. This methylation is directed at particular lysine (K) residues on H3 or H4 histone. Plant SET domain group (SDG) proteins are categorized into different classes that have been conserved through evolution, and each class have specificity that influences how the chromatin structure operates. The domains discovered in plant SET domain proteins have typically been linked to protein-protein interactions, suggesting that majority of the SDGs function in complexes. Additionally, SDG-mediated histone mark deposition also affects alternative splicing events. In present review, we discussed the diversity of SDGs in plants including their structural properties. Additionally, we have provided comprehensive summary of the functions of the SDG-domain containing proteins in plant developmental processes and response to environmental stimuli have also been highlighted.  相似文献   

11.
12.
《Epigenetics》2013,8(5):273-276
Residue and degree-specific methylation of histone lysines along with other epigenetic modifications organizes chromatin into distinct domains and regulates almost every aspect of DNA metabolism. Identification of histone methyltransferases and demethylases, as well as proteins that recognize methylated lysines, has clarified the role of each methylation event in regulating different biological pathways. Methylation of histone H4 lysine 20 (H4K20me) plays critical roles in diverse cellular processes such as gene expression, cell cycle progression and DNA damage repair, with each of the three degrees of methylation (mono- di- and tri-methylation) making a unique contribution. Here we discuss recent studies of H4K20me that have greatly improved our understanding of the regulation and function of this fascinating histone modification.  相似文献   

13.
Pluripotent embryonic stem cells (ESCs) are characterized by distinct epigenetic features including a relative enrichment of histone modifications related to active chromatin. Among these is tri‐methylation of lysine 4 on histone H3 (H3K4me3). Several thousands of the H3K4me3‐enriched promoters in pluripotent cells also contain a repressive histone mark, namely H3K27me3, a situation referred to as “bivalency”. While bivalent promoters are not unique to pluripotent cells, they are relatively enriched in these cell types, largely marking developmental and lineage‐specific genes which are silent but poised for immediate action. The H3K4me3 and H3K27me3 modifications are catalyzed by lysine methyltransferases which are usually found within, although not entirely limited to, the Trithorax group (TrxG) and Polycomb group (PcG) protein complexes, respectively, but these do not provide selective bivalent specificity. Recent studies highlight the family of ATP‐dependent chromatin remodeling proteins as regulators of bivalent domains. Here, we discuss bivalency in general, describe the machineries that catalyze bivalent chromatin domains, and portray the emerging connection between bivalency and the action of different families of chromatin remodelers, namely INO80, esBAF, and NuRD, in pluripotent cells. We posit that chromatin remodeling proteins may enable “bivalent specificity”, often selectively acting on, or selectively depleted from, bivalent domains.  相似文献   

14.
15.
16.
In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex. However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up- and down-regulates expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of histone methylation, and their correlation with gene expression, upon deletion of the swm1(+) gene. Using hyper-geometric probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1 deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated in the swm1Delta strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone demethylase, deacetylase and chromatin remodelling activities in the regulation of gene expression.  相似文献   

17.
表观遗传学主要包括DNA甲基化、组蛋白修饰和非编码RNA,组蛋白甲基化作为组蛋白修饰中的一种重要修饰,在植物体的发育和环境适应中发挥着重要作用。组蛋白甲基化主要发生在赖氨酸残基上,同时根据不同的赖氨酸位点和每个赖氨酸位点甲基化程度的不同,形成了不同的赖氨酸甲基化修饰。根据对基因的不同功能,通常将组蛋白赖氨酸甲基化修饰分为2大类:(1)能够促进基因表达的,如H3K4me3和H3K36me3;(2)能够抑制基因表达的,如H3K9me2和H3K27me3。不同的组蛋白赖氨酸甲基化去甲基化过程需要相应的阅读(reader)、书写(writer)和擦除(eraser)3种蛋白。同时,组蛋白赖氨酸甲基化的遗传性质目前还不是很清楚。综述了植物中组蛋白赖氨酸甲基化建立与去除过程,以及对组蛋白赖氨酸甲基化可遗传性的探讨。  相似文献   

18.
Bivalent histone modifications in early embryogenesis   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
The functional significance of mono-, di-, and trimethylation of lysine residues within histone proteins remains unclear. Antibodies developed to selectively recognize each of these methylated states at histone H3 lysine 9 (H3 Lys9) demonstrated that mono- and dimethylation localized specifically to silent domains within euchromatin. In contrast, trimethylated H3 Lys9 was enriched at pericentric heterochromatin. Enzymes known to methylate H3 Lys9 displayed remarkably different enzymatic properties in vivo. G9a was responsible for all detectable H3 Lys9 dimethylation and a significant amount of monomethylation within silent euchromatin. In contrast, Suv39h1 and Suv39h2 directed H3 Lys9 trimethylation specifically at pericentric heterochromatin. Thus, different methylated states of H3 Lys9 are directed by specific histone methyltransferases to "mark" distinct domains of silent chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号