首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to map the microbiota distribution along the gut and establish whether colon/faecal samples from diabetic rats adequately reflect the diabetic alterations in the microbiome. Streptozotocin-treated rats were used to model type 1 diabetes mellitus (T1D). Segments of the duodenum, ileum and colon were dissected, and the microbiome of the lumen material was analysed by using next-generation DNA sequencing, from phylum to genus level. The intestinal luminal contents were compared between diabetic, insulin-treated diabetic and healthy control rats. No significant differences in bacterial composition were found in the luminal contents from the duodenum of the experimental animal groups, whereas distinct patterns were seen in the ileum and colon, depending on the history of the luminal samples. Ileal samples from diabetic rats exhibited particularly striking alterations, while the richness and diversity obscured some of the modifications in the colon. Characteristic rearrangements in microbiome composition and diversity were detected after insulin treatment, though the normal gut flora was not restored. The Proteobacteria displayed more pronounced shifts than those of the predominant phyla (Firmicutes and Bacteroidetes) in the rat model of T1D. Diabetes and insulin replacement affect the composition of the gut microbiota in different, gut region-specific manners. The luminal samples from the ileum appear more suitable for diagnostic purposes than the colon/faeces. The Proteobacteria should be at the focus of diagnosis and potential therapy. Klebsiella are recommended as biomarkers of T1D.  相似文献   

2.
ObjectivesAmoxicillin is a beta-lactam antibiotic largely used in childhood. However only few studies described its impact on composition of children gut microbiota, in particular on Bifidobacterium populations considered as beneficial microorganisms. In this study, the impact on faecal Bifidobacterium species of a seven-day amoxicillin treatment was quantitatively and qualitatively assessed in infants during an episode of acute respiratory infection.MethodsFaecal samples from 31 infants were obtained on day 0 (just before amoxicillin therapy) and on day 7 (the end of therapy). Total DNA was extracted and bifidobacteria were quantified using real-time PCR. Predominant Bifidobacterium species were then identified using specific PCR-TTGE.ResultsBifidobacteria concentrations were not significantly altered by amoxicillin compared to the healthy group. However, amoxicillin treatment induced a complete disappearance of Bifidobacterium adolescentis species (occurrence rate of 0% versus 36.4% in healthy group, P < 0.001), a significant decrease in the occurrence rate of Bifidobacterium bifidum (23% versus 54.5% in healthy group, P < 0.05), but did not affect Bifidobacterium longum (93.5% versus 100% in healthy group) and Bifidobacterium pseudocatenulatum/B. catenulatum (about 55% in both groups). The number of Bifidobacterium species per microbiota significantly decreased from 2.5 ± 1 for healthy group to 1.8 ± 0.9 for treated infants (P < 0.05).ConclusionsThis study showed that a 7 day amoxicillin treatment did not alter the counts of Bifidobacterium. However amoxicillin can have an impact by changing the microbiota at the species level and decreased the diversity of this population.  相似文献   

3.
Liu J  Wu D  Ahmed A  Li X  Ma Y  Tang L  Mo D  Ma Y  Xin Y 《Current microbiology》2012,65(1):7-13
Human liver was closely associated with gut through various biological mechanisms, such as bacterium-gut interactions. Alterations of gut microbiota seemed to play an important role in induction and promotion of liver damage progression. The aim of this study was to characterize the gut microbiota in liver cirrhosis patients and assess whether there are alterations in the diversity and similarity of intestinal flora in cirrhotic patients when compared with healthy individuals. PCR-denaturing gradient gel electrophoresis (DGGE) with universal primers targeting V3 region of the 16S rRNA gene was employed to characterize the overall intestinal microbiota composition, and some excised gel bands were cloned for sequencing. Real-time PCR was further utilized to quantitatively analyze the subpopulation of microbiota using group-specific primers targeting the Enterobacteriaceae, Enterococcus and Bifidobacterium genus. The DGGE profiles of two groups demonstrated significant differences between cirrhotic and healthy groups (P?相似文献   

4.
Microorganisms within the gastrointestinal tract significantly influence metabolic processes within their mammalian host, and recently several groups have sought to characterise the gastrointestinal microbiota of individuals affected by metabolic disease. Differences in the composition of the gastrointestinal microbiota have been reported in mouse models of type 2 diabetes mellitus, as well as in human patients. Diabetes mellitus in cats has many similarities to type 2 diabetes in humans. No studies of the gastrointestinal microbiota of diabetic cats have been previously published. The objectives of this study were to compare the composition of the faecal microbiota of diabetic and non-diabetic cats, and secondarily to determine if host signalment and dietary factors influence the composition of the faecal microbiota in cats. Faecal samples were collected from insulin-treated diabetic and non-diabetic cats, and Illumina sequencing of the 16S rRNA gene and quantitative PCR were performed on each sample. ANOSIM based on the unweighted UniFrac distance metric identified no difference in the composition of the faecal microbiota between diabetic and non-diabetic cats, and no significant differences in the proportions of dominant bacteria by phylum, class, order, family or genus as determined by 16S rRNA gene sequencing were identified between diabetic and non-diabetic cats. qPCR identified a decrease in Faecalibacterium spp. in cats aged over ten years. Cat breed or gender, dietary carbohydrate, protein or fat content, and dietary formulation (wet versus dry food) did not affect the composition of the faecal microbiota. In conclusion, the composition of the faecal microbiota was not altered by the presence of diabetes mellitus in cats. Additional studies that compare the functional products of the microbiota in diabetic and non-diabetic cats are warranted to further investigate the potential impact of the gastrointestinal microbiota on metabolic diseases such as diabetes mellitus in cats.  相似文献   

5.
Statin response shows great interindividual variations. Recently, emerging studies have shown that gut microbiota is linked to therapeutic responses to drugs, including statins. However, the association between the gut bacteria composition and statin response is still unclear. In this study, gut microbiota of 202 hyperlipidemic patients with statin sensitive (SS) response and statin resistant (SR) response in East China were investigated by high throughput sequencing to compare the gut bacteria composition and biodiversity in distinct statin response patients. Higher biodiversity was detected in Group SS than Group SR. Specifically, group SS showed significantly increased proportion of genera Lactobacillus (P = 0.001), Eubacterium (P = 0.004), Faecalibacterium (P = 0.005), and Bifidobacterium (P = 0.002) and decreased proportion of genus Clostridium (P = 0.001) compared to Group SR. The results indicated that higher gut biodiversity was associated with statin sensitive response. The increased genera Lactobacillus, Eubacterium, Faecalibacterium, Bifidobacterium, and decreased genus Clostridium in patient gut microbiota may predict patient's statin response, and hence may guide statin dosage adjustments.  相似文献   

6.
Epidemiological studies and healthy eating guidelines suggest a positive correlation between ingestion of whole grain cereal and food rich in fibre with protection from chronic diseases. The prebiotic potential of whole grains may be related, however, little is known about the microbiota modulatory capability of oat grain or the impact processing has on this ability. In this study the fermentation profile of whole grain oat flakes, processed to produce two different sized flakes (small and large), by human faecal microbiota was investigated in vitro. Simulated digestion and subsequent fermentation by gut bacteria was investigated using pH controlled faecal batch cultures inoculated with human faecal slurry. The different sized oat flakes, Oat 23’s (0.53–0.63 mm) and Oat 25’s/26’s (0.85–1.0 mm) were compared to oligofructose, a confirmed prebiotic, and cellulose, a poorly fermented carbohydrate. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation, and short chain fatty acid (SCFA) production monitored by gas chromatography. Significant changes in total bacterial populations were observed after 24 h incubation for all substrates except Oat 23’s and cellulose. Oats 23’s fermentation resulted in a significant increase in the BacteroidesPrevotella group. Oligofructose and Oats 25’s/26’s produced significant increases in Bifidobacterium in the latter stages of fermentation while numbers declined for Oats 23’s between 5 h and 24 h. This is possibly due to the smaller surface area of the larger flakes inhibiting the simulated digestion, which may have resulted in increased levels of resistant starch (Bifidobacterium are known to ferment this dietary fibre). Fermentation of Oat 25’s/26’s resulted in a propionate rich SCFA profile and a significant increase in butyrate, which have both been linked to benefiting host health. The smaller sized oats did not produce a significant increase in butyrate concentration. This study shows for the first time the impact of oat grain on the microbial ecology of the human gut and its potential to beneficially modulate the gut microbiota through increasing Bifidobacterium population.  相似文献   

7.
Probiotics are live microorganisms that potentially confer beneficial outcomes to host by modulating gut microbiota in the intestine. The aim of this study was to comprehensively investigate effects of probiotics on human intestinal microbiota using 454 pyrosequencing of bacterial 16S ribosomal RNA genes with an improved quantitative accuracy for evaluation of the bacterial composition. We obtained 158 faecal samples from 18 healthy adult Japanese who were subjected to intervention with 6 commercially available probiotics containing either Bifidobacterium or Lactobacillus strains. We then analysed and compared bacterial composition of the faecal samples collected before, during, and after probiotic intervention by Operational taxonomic units (OTUs) and UniFrac distances. The results showed no significant changes in the overall structure of gut microbiota in the samples with and without probiotic administration regardless of groups and types of the probiotics used. We noticed that 32 OTUs (2.7% of all analysed OTUs) assigned to the indigenous species showed a significant increase or decrease of ≥10-fold or a quantity difference in >150 reads on probiotic administration. Such OTUs were found to be individual specific and tend to be unevenly distributed in the subjects. These data, thus, suggest robustness of the gut microbiota composition in healthy adults on probiotic administration.  相似文献   

8.
The human gut microbiota is transmitted from mother to infant through vaginal birth and breastfeeding. Bifidobacterium, a genus that dominates the infants’ gut, is adapted to breast milk in its ability to metabolize human milk oligosaccharides; it is regarded as a mutualist owing to its involvement in the development of the immune system. The composition of microbiota, including the abundance of Bifidobacteria, is highly variable between individuals and some microbial profiles are associated with diseases. However, whether and how birth and feeding practices contribute to such variation remains unclear. To understand how early events affect the establishment of microbiota, we develop a mathematical model of two types of Bifidobacteria and a generic compartment of commensal competitors. We show how early events affect competition between mutualists and commensals and microbe-host-immune interactions to cause long-term alterations in gut microbial profiles. Bifidobacteria associated with breast milk can trigger immune responses with lasting effects on the microbial community structure. Our model shows that, in response to a change in birth environment, competition alone can produce two distinct microbial profiles post-weaning. Adding immune regulation to our competition model allows for variations in microbial profiles in response to different feeding practices. This analysis highlights the importance of microbe–microbe and microbe–host interactions in shaping the gut populations following different birth and feeding modes.  相似文献   

9.
Colonizing commensal bacteria after birth are required for the proper development of the gastrointestinal tract. It is believed that bacterial colonization pattern in neonatal gut affects gut barrier function and immune system maturation. Studies on the development of faecal microbiota in infants showed that the neonatal gut was first colonized with enterococci followed by other microbiota such as Bifidobacterium. Other studies showed that babies who developed allergy were less often colonized with Enterococcus during the first month of life as compared to healthy infants. Many studies have been conducted to elucidate how bifidobacteria or lactobacilli, some of which are considered probiotic, regulate infant gut immunity. However, fewer studies have been focused on enterococi. In our study, we demonstrate that E. faecalis, isolated from healthy newborns, suppress inflammatory responses activated in vivo and in vitro. We found E. faecalis attenuates proinflammatory cytokine secretions, especially IL-8, through JNK and p38 signaling pathways. This finding shed light on how the first colonizer, E.faecalis, regulates inflammatory responses in the host.  相似文献   

10.

Background  

Lactic acid bacteria of the genus Lactobacillus and Bifidobacterium are one of the most important health promoting groups of the human intestinal microbiota. Their protective role within the gut consists in out competing invading pathogens for ecological niches and metabolic substrates. Among the features necessary to provide health benefits, commensal microorganisms must have the ability to adhere to human intestinal cells and consequently to colonize the gut. Studies on mechanisms mediating adhesion of lactobacilli to human intestinal cells showed that factors involved in the interaction vary mostly among different species and strains, mainly regarding interaction between bacterial adhesins and extracellular matrix or mucus proteins. We have investigated the adhesive properties of Lactobacillus plantarum, a member of the human microbiota of healthy individuals.  相似文献   

11.
Acquired immune deficiency syndrome (AIDS), caused by infection with human immunodeficiency virus (HIV), is associated with gastrointestinal disease, systemic immune activation and changes in the gut microbiota. Here, we aim to investigate the gut microbiota patterns of HIV‐infected individuals and HIV‐uninfected individuals in populations from South China. We enrolled 33 patients with HIV (14 participants treated with highly active antiretroviral therapy [HAART] for more than 3 months; the remaining 19 individuals had not received treatment) and 35 healthy controls (HC) for a cross‐sectional comparison of gut microbiota using stool samples. Gut microbial communities were profiled by sequencing the bacterial 16S rRNA genes. Dysbiosis was more common among patients with AIDS compared with healthy individuals. Dysbiosis was characterized by decreased α‐diversity, low mean counts of Bacteroidetes, Faecalibacterium, Prevotella, Bacteroides vulgatus, Dialister and Roseburia inulnivorans, and high mean counts of Proteobacteria, Enterococcus, Streptococcus, Lactobacillus, Lachnociostridium, Ruminococcus gnavus and Streptococcus vestibularis. Increased abundance of Bacilli was observed in homosexual patients. Proteobacteria were higher among heterosexual patients with HIV infections. Tenericutes were higher among patients with history of intravenous drug abuse. Restoration of gut microbiota diversity and a significant increase in abundance of Faecalibacterium, Blautia and Bacteroides were found in patients receiving HAART compared to those who did not receive. HIV infection‐associated dysbiosis is characterized by decreased levels of α‐diversity and Bacteroidetes, increased levels of Proteobacteria and the alterations of gut microbiota correlate with the route of HIV transmission. The imbalanced faecal microbiota of HIV infection is partially restored after therapy.  相似文献   

12.
High-altitude (HA) visitors like pilgrims, trackers, scientists and military personnel face a group of nonspecific gastrointestinal (GI) symptoms during acclimatization to hypobaric hypoxia. In order to investigate the alteration of indigenous gastrointestinal microbiota in the development of such GI symptoms, an experiment was conducted for the enumeration of dominant cultivable faecal microbiota of 15 soldiers at base level (Delhi) and during their 15-day acclimatization at 3,505 m HA (Leh). At HA, faecal microbiota analysis revealed that total aerobes decreased significantly with increase of total and facultative anaerobes. The strict anaerobes like Bifidobacterium sp., Bacteroidetes sp. and Lactobacillus sp. exhibited positive growth direction index (GDI) like other predominant obligate anaerobes Clostridium perfringens and Peptostreptococcus sp. Different enzymes like amylase, proteinase and polyphenol hydrolase produced by different bacterial populations showed positive GDI, whereas phosphatase producers exhibited negative GDI. The levels of microbe-originated enzymes like amylase, proteinase, alkaline phosphatase and β-glucuronidase were also elevated during HA acclimatization. In addition, in vitro gas production ability was enhanced with increase of faecal immunoglobulins IgA and IgG. We demonstrated that hypoxic environment at HA had the potential to alter the gut microbial composition and its activities that may cause GI dysfunctions.  相似文献   

13.
Ma C  Wu X  Nawaz M  Li J  Yu P  Moore JE  Xu J 《Current microbiology》2011,63(3):259-266
The study provides molecular analyses of fecal microbiota of diarrhea patients infected with four different types of viruses. Fecal specimens from 52 patients with viral diarrhea (13 each of adenovirus, norovirus, rotavirus, and astrovirus) and six healthy individuals were collected and etiological viral agent was confirmed by enzyme immunoassay and specific PCR. To assess the changes in microbial diversity in patients with viral diarrhea, DNA from stool were extracted and characterized by PCR-denaturing gradient gel electrophoresis (DGGE) with universal primers specific for the V3 region of 16S rRNA gene. The strongest bands of the DGGE profiling were excised and sequenced to identify the dominant groups. Bacteroides vulgatus, Bifidobacterium, and Lactobacillus genera were also enumerated by real time PCR. The results revealed that bacterial diversity and similarity in feces from viral diarrhea groups were significantly lower (mean H/ H max H_{ \max }^{\prime } 0.89–0.94, 29–43, respectively) as compared with those of healthy individuals (mean H/ H max H_{ \max }^{\prime } 1.36, 59, respectively). Sequencing of dominant bands affirmed that diarrhea groups were mainly comprised of phylum Firmicutes, such as genera Enterococcus, Peptostreptococcaceae incertae sedi, Streptococcus, Weissella, and Clostridium, and opportunistically pathogenic genus Shigella, while dominant group in healthy individuals was phylum Bacteroidetes. Copy number of Bacteroides vulgatus, Bifidobacterium, and Lactobacillus genera was also reduced significantly in viral diarrhea groups as compared to healthy group. It is concluded that opportunistic pathogens increases, while other species of commensal microbiota decrease significantly in the viral diarrhea patients and dysbacteriosis is dependent on type of virus infection.  相似文献   

14.
Gut microbiota compositional alteration may have an association with immune dysfunction in patients with Behcet’s disease (BD). We conducted a fecal metagenomic analysis of BD patients. We analyzed fecal microbiota obtained from 12 patients with BD and 12 normal individuals by sequencing of 16S ribosomal RNA gene. We compared the relative abundance of bacterial taxa. Direct comparison of the relative abundance of bacterial taxa demonstrated that the genera Bifidobacterium and Eggerthella increased significantly and the genera Megamonas and Prevotella decreased significantly in BD patients compared with normal individuals. A linear discriminant analysis of bacterial taxa showed that the phylum Actinobacteria, including Bifidobacterium, and the family Lactobacillaceae exhibited larger positive effect sizes than other bacteria in patients with BD. The phylum Firmicutes and the class Clostridia had large effect sizes in normal individuals. There was no significant difference in annotated species numbers (as numbers of operational taxonomic unit; OTU) and bacterial diversity of each sample (alpha diversity) between BD patients and normal individuals. We next assigned each sample to a position using three axes by principal coordinates analysis of the OTU table. The two groups had a significant distance as beta diversity in the 3-axis space. Fecal sIgA concentrations increased significantly in BD patients but did not correlate with any bacterial taxonomic abundance. These data suggest that the compositional changes of gut microbes may be one type of dysbiosis (unfavorable microbiota alteration) in patients with BD. The dysbiosis may have an association with the pathophysiology of BD.  相似文献   

15.
This study aimed to investigate in vitro effects of the selected prebiotics alone, and in combination with two potential probiotic Lactobacillus strains on the microbial composition of Apis cerana gut microbiota and acid production. Four prebiotics, inulin, fructo-oligosaccharides, xylo-oligosaccharides, and isomalto-oligosaccharides were chosen, and glucose served as the carbon source. Supplementation of this four prebiotics increased numbers of Bifidobacterium and lactic acid bacteria while decreasing the pH value of in vitro fermentation broth inoculated with A. cerana gut microbiota compared to glucose. Then, two potential probiotics derived from A. cerana gut at different dosages, Lactobacillus helveticus KM7 and Limosilactobacillus reuteri LP4 were added with isomalto-oligosaccharides in fermentation broth inoculated with A. cerana gut microbiota, respectively. The most pronounced impact was observed with isomalto-oligosaccharides. Compared to isomalto-oligosaccharides alone, the combination of isomalto-oligosaccharides with both lactobacilli strains induced the growth of Bifidobacterium, LAB, and total bacteria and reduced the proliferation of Enterococcus and fungi. Consistent with these results, the altered metabolic activity was observed as lowered pH in in vitro culture of gut microbiota supplemented with isomalto-oligosaccharides and lactobacilli strains. The symbiotic impact varied with the types and concentration of Lactobacillus strains and fermentation time. The more effective ability was observed with IMO combined with L. helveticus KM7. These results suggested that isomalto-oligosaccharides could be a potential prebiotic and symbiotic with certain lactobacilli strains on A. cerana gut microbiota.  相似文献   

16.
We first used human flora–associated (HFA) piglets, a significantly improved model for research on human gut microbiota, to study the effects of short-chain fructo-oligosaccharides (scFOS) on the gut bacterial populations. Ten neonatal HFA piglets were assigned to receive basal diets alone or supplemented with scFOS (0.5 g/kg body weight/day) from 1 to 37 days after birth (DAB). The impact of scFOS on the fecal bacterial populations of the piglets before (12 DAB), during (17 DAB), and after (25 and 37 DAB) weaning were monitored by PCR-denaturing gradient gel electrophoresis and real-time quantitative PCR. The Bifidobacterium genus was stimulated consistently, except during weaning, confirming the bifidogenic property of scFOS. At 12 DAB, the Clostridium leptum subgroup was decreased and two unknown Bacteroides-related species were increased; at 25 DAB, the C. leptum subgroup and Subdoligranulum variabile-like species were elevated, whereas one unknown Faecalibacterium-related species was suppressed; and at 37 DAB, the Bacteroides genus was decreased. The results showed that effects of scFOS on non-bifidobacteria varied at different developmental stages of the animals, warranting further investigation into the host-development-related effects of prebiotics on the gut microbiota and the host physiology using the HFA piglets as a model for humans.  相似文献   

17.
The microbiota that colonizes the human intestinal tract is complex and its structure is specific for each of us. In this study we expand the knowledge about the stability of the subject‐specific microbiota and show that this ecosystem is stable in short‐term intervals (< 1 year) but also during long periods of time (> 10 years). The faecal microbiota composition of five unrelated and healthy subjects was analysed using a comprehensive and highly reproducible phylogenetic microarray, the HITChip. The results show that the use of antibiotics, application of specific dietary regimes and distant travelling have limited impact on the microbiota composition. Several anaerobic genera, including Bifidobacterium and a number of genera within the Bacteroidetes and the Firmicutes phylum, exhibit significantly higher similarity than the total microbiota. Although the gut microbiota contains subject‐specific species, the presence of which is preserved throughout the years, their relative abundance changes considerably. Consequently, the recently proposed enterotype status appears to be a varying characteristic of the microbiota. Our data show that the intestinal microbiota contains a core community of permanent colonizers, and that environmentally introduced changes of the microbiota throughout adulthood are primarily affecting the abundance but not the presence of specific microbial species.  相似文献   

18.
C. difficile infection is associated with disturbed gut microbiota and changes in relative frequencies and abundance of individual bacterial taxons have been described. In this study we have analysed bacterial, fungal and archaeal microbiota by denaturing high pressure liquid chromatography (DHPLC) and with machine learning methods in 208 faecal samples from healthy volunteers and in routine samples with requested C. difficile testing. The latter were further divided according to stool consistency, C. difficile presence or absence and C. difficile ribotype (027 or non-027). Lower microbiota diversity was a common trait of all routine samples and not necessarily connected only to C. difficile colonisation. Differences between the healthy donors and C. difficile positive routine samples were detected in bacterial, fungal and archaeal components. Bifidobacterium longum was the single most important species associated with C. difficile negative samples. However, by machine learning approaches we have identified patterns of microbiota composition predictive for C. difficile colonization. Those patterns also differed between samples with C. difficile ribotype 027 and other C. difficile ribotypes. The results indicate that not only the presence of a single species/group is important but that certain combinations of gut microbes are associated with C. difficile carriage and that some ribotypes (027) might be associated with more disturbed microbiota than the others.  相似文献   

19.
BackgroundThe dysregulation of gut microbiota can be found in patients with type 2 diabetes mellitus (T2DM)-related diabetic nephropathy (DN). Inhibitors of sodium-glucose co-transporter 2 (SGLT2) were reported to affect gut microbiota. This study aimed to identify whether empagliflozin (EMPA) attenuated DN via regulating gut microbiota.Materials and methodsThe high-fat diet (HFD) combining streptozocin (STZ) injection was performed to induce DN in mice. The therapeutic effects of EMPA were observed by staining of renal tissues and urine albumin/creatinine ratio (UACR). Mouse feces were collected for 16S rRNA sequencing. Fecal short-chain fatty acids (SCFAs) and fecal and serum lipopolysaccharide (LPS) were determined. An antibiotic-ablated model was established to confirm the role of the gut microbiota in the actions of EMPA.ResultsEMPA reduced the elevation of blood glucose and UACR caused by HFD/STZ. It inhibited the thickening of the colonic crypt and restored goblet cells and the expressions of ZO-1 and Occludin. The 16S rRNA sequencing showed that the diversity of gut microbiota was reduced after HFD/STZ treatment, while it was restored after EMPA treatment. The LPS-producing bacteria, Oscillibacter, and the SCFA-producing bacteria, Bateroid and Odoribacter, were changed after EMPA administration. The therapeutic effects of EMPA on ABX-treated mice were reduced. Meanwhile, the level of fecal SCFAs was decreased, while the levels of fecal and serum LPS were elevated, in T2DM mice, and they were negated by the administration of EMPA.ConclusionEMPA ameliorates T2DM-related DN via altering the gut microbiota, especially reducing LPS-producing bacteria and increasing SCFA-producing bacteria.  相似文献   

20.
Variation of maternal gut microbiota may increase the risk of autism spectrum disorders(ASDs) in offspring. Animal studies have indicated that maternal gut microbiota is related to neurodevelopmental abnormalities in mouse offspring, while it is unclear whether there is a correlation between gut microbiota of ASD children and their mothers. We examined the relationships between gut microbiome profiles of ASD children and those of their mothers, and evaluated the clinical discriminatory power of discovered bacterial biomarkers. Gut microbiome was profiled and evaluated by 16S ribosomal RNA gene sequencing in stool samples of 59 mother–child pairs of ASD children and 30 matched mother–child pairs of healthy children. Significant differences were observed in the gut microbiome composition between ASD and healthy children in our Chinese cohort. Several unique bacterial biomarkers, such as Alcaligenaceae and Acinetobacter, were identified. Mothers of ASD children had more Proteobacteria, Alphaproteobacteria, Moraxellaceae, and Acinetobacter than mothers of healthy children. There was a clear correlation between gut microbiome profiles of children and their mothers; however, children with ASD still had unique bacterial biomarkers, such as Alcaligenaceae, Enterobacteriaceae, and Clostridium. Candidate biomarkers discovered in this study had remarkable discriminatory power. The identified patterns of mother–child gut microbiome profiles may be important for assessing risks during the early stage and planning of personalized treatment and prevention of ASD via microbiota modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号