首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shrub species Psychotria tenuinervis (Rubiaceae) is native to the Brazilian Atlantic forest and is largely found within natural and disturbed forest fragments. Aiming to develop studies on population genetic structure of forest fragment species, eigth microsatellite markers were developed for P. tenuinervis. Also, 15 loci already developed for Coffea (Rubiaceae) were tested for transferability to this species. We utilized 45 individuals from natural populations of three different fragments-anthropic edge, interior fragment and natural edge, within the Brazilian Atlantic forest. The average number of alleles per locus was 2.5 (two–four alleles/locus). These loci will be useful for future population genetic studies aiming to the conservation and management of this species.  相似文献   

2.
Aim Understanding the processes that drive invasion success of alien species has received considerable attention in current ecological research. From an evolutionary point of view, many studies have shown that the phylogenetic similarity between the invader species and the members of the native community may be an important aspect of invasiveness. In this study, using a coarse‐scale systematic sampling grid of 1 km2, we explore whether the occupancy frequency of two groups of alien species, archaeophytes and neophytes, in the urban angiosperm flora of Brussels is influenced by their phylogenetic relatedness to native species. Location The city of Brussels (Belgium). Methods We used ordinary least‐squares regressions and quantile regressions for analysing the relationship between the occupancy frequency of alien species in the sampled grid and their phylogenetic distance to the native species pool. Results Alien species with high occupancy frequency in the sampled grid are, on average, more phylogenetically related to native species than are less frequent aliens, although this relationship is significant only for archaeophytes. In addition, as shown by the quantile regressions, the relationship between phylogenetic relatedness to the native flora and occupancy frequency is much stronger for the most frequent aliens than for rare aliens. Main conclusions Our data suggest that it is unlikely that species with very low phylogenetic relatedness to natives will become successful invaders with very high distribution in the area studied. To the contrary, under future climate warming scenarios, present‐day urban aliens of high occupancy frequency are likely to become successful invaders even outside urban areas.  相似文献   

3.
Until now, analytical studies on European urban floras have mostly concentrated on the central and north‐western parts of the continent. In this paper, factors determining species richness of urban flora were studied for the city of Rome, Italy, based on a comprehensive floristic survey carried out between 1985 and 1994, and updated in 2005. All species were recorded in grid cells of 1.6 km2 and classified into native and alien (the latter divided into archaeophytes and neophytes). The grids were classified with respect to the prevailing habitat type, area available to vegetation, level of disturbance and geographical position within the city. Data were analysed using minimal adequate models. Total species number was determined by habitat and its interaction with position on the north‐west gradient; other variables explained much less variance. Holding other variables constant, the average species number per grid cell was highest in archaeological sites and parks, followed by woodlands and rivers, and grasslands and recent developments. Residential areas and the historical centre were poorest in species number. Towards the north of the city, species richness in corresponding habitats increases because of higher landscape heterogeneity and closer association with diaspore pools in the surroundings. Native species make up on average 84% of the total species numbers, and trends opposite to those for the total number of species were found for the proportional representation of aliens. The occurrence of alien and native species in the flora of Rome is driven by similar factors, but factors that increase representation of aliens decrease that of natives and vice versa. The representation of neophytes and native species in grid cells was easier to explain (74% of variation accounted for) than that of archaeophytes (27%); this result reflects that in terms of ecology and response to factors, archaeophytes take an intermediate position between native plants and neophytes. Proportional representation of neophytes decreased with increasing area available to vegetation, reflecting that semi‐natural vegetation is better developed where less fragmented.  相似文献   

4.
Obituaries     
Background: Although impacts of edge effects on forest ecosystems are well known, their consequences on savannas have rarely been explored.

Aims: To investigate the influence of edge effects on the plant community and microclimate of a cerrado fragment in south-eastern Brazil.

Methods: Several plant community variables (density, basal area, richness and cover by each vegetation layer) and microclimatic variables (light, air temperature and humidity), were measured in 10 transects across a savanna fragment surrounded by exotic grasses, and were used to fit semi-parametric models relating these variables with the distance from the habitat edge.

Results: Differences in microclimate and tree communities were poorly related to distance from the edge. On the other hand, there were detectable edge effects on the ground layer community (i.e. plants less than 50 cm in height). Edges had a negative effect on native plants of this layer (density and richness of all species and cover of native grasses), while favouring invasive grasses.

Conclusions: Unlike reports for edge effects in forest ecosystems, microclimate does not explain changes in this cerrado fragment. The most significant edge effect threatening the conservation of cerrado vegetation is the widespread invasion by African grasses. Starting from the fragment borders, this invasion causes changes in the structure and composition of the native plant community, thus jeopardising the population dynamics and persistence of native species.  相似文献   

5.
Species from natural communities show different capacities for moving across contrasting habitats, and they may gradually respond along the transition between forests and anthropogenic areas. Because beetles are effective bioindicators, we analyzed the Coleoptera assemblage structure in the transition between sugarcane matrices and forest fragment. The study was conducted in an Atlantic rainforest fragment and sugarcane matrices after 2 and 6 months of replantation. Beetles were sampled in linear transects that were 50, 100, and 200 m from the forest edge and toward both forest core and matrices. We analyzed beetle abundance, species richness and composition, and diversity numbers. The abundance and species richness were higher in the forest, and species richness was higher at the sampling site 100 m inside the forest than at the gradients within the sugarcane matrices. The species composition differed between the forest and matrices, but not between the matrices with different replantation ages. Alpha diversity based on the number of species was higher in the forest, and alpha diversity based on the Shannon index was higher in the forest and matrix after 6 months of replantation. Our results suggest that the sugarcane matrices, chiefly the matrix after 2 months of replantation, sustain an impoverished beetle assemblage when compared with the forest fragment. Despite the strong habitat distinction, the beetle fauna in the sugarcane matrices was not affected by the horizontal distance from the forest. Here, we have highlighted the importance of forest fragments embedded in harsh matrices for the maintenance of biodiversity.  相似文献   

6.
Abstract

Our study had the objective to examine whether the number of forest vascular plants in a forest-poor region may be indicative of total plant species richness and of the number of threatened plant species. We also related forest plant species richness to geological and soil variables. The analysis was based on a regional flora atlas from the Weser-Elbe region in northwestern Germany including incidence data of species in a total of 1109 grid cells (each ca. 2.8 × 2.8 km2). All taxa were classified either as forest or non-forest species. Total species richness in the grid cells ranged from 65 to 597, with a mean value of 308. The number of forest species varied between 20 and 309 (mean 176). Grid cells with or without particular geological units differed in total and forest species richness, with those containing peatland and marshland being particularly species-poor. Indicator value analysis showed that both total and forest species richness in the grid cells were related to soil acidity and nitrogen in a hump-backed manner, with the highest number of species found at moderately low values for nitrogen and at intermediate values of pH. Forest species richness was highly positively correlated with the number of non-forest species and threatened non-forest species. Indicators for high species richness were primarily those species that are confined to closed semi-natural forests with a varied topography and relatively base- and nutrient-rich soils. Grid cells including historically ancient forest exhibited a higher species richness than grid cells lacking ancient forest, indicating the importance of a long habitat continuity for a high phytodiversity. The “habitat coincidence” of high species richness is best explained by similar responses of forest species and species of other habitats to the main environmental gradients. It is suggested that the regional patterns found for the Weser-Elbe region can be transferred also to other forest-poor regions in Central Europe.  相似文献   

7.
S. MANU  W. PEACH  & W. CRESSWELL 《Ibis》2007,149(2):287-297
Almost nothing is known of the effects of forest fragmentation on bird diversity within the heavily degraded and fragmented forest remnants in West Africa. We examined the effects of edge, fragment size and isolation on bird species richness in southwestern Nigeria where forest fragmentation is pronounced. In total, 122 km of line transects were used to survey birds and vegetation within 45 forest patches between January 2000 and March 2002: 197 species were recorded. Avian species number and total counts in forest patches were unrelated to fragment area (within the observed range of 14–445 ha), but were negatively influenced by degree of isolation and increasing distance from the edge. As the total area of forested land within 15 km of a patch fell from 4 to 0%, so 21% of species were lost. In total, six and zero species (of 154 recorded more than once) were consistently recorded in the larger and smaller forest fragments, respectively, and four and two bird species were consistently recorded in unisolated and isolated forest fragments, respectively, suggesting that the addition of ‘edge’ species did not compensate for loss of species sensitive to fragmentation. Diversity index was not affected by either fragment area or degree of isolation, but decreased with distance from the edge. When individual species counts were considered, 68% of species (n = 62) showed no significant effect of distance to edge. Of those 20 species which showed an effect, 12 were less common close to the edge. Most species (65%) did not respond significantly to increasing isolation but of those 22 species that did, 20 were less common in more isolated fragments. Ninety‐seven per cent of species showed no significant response to area. As avian diversity and species composition, but not species number, were apparently insensitive to forest fragmentation, our findings suggest that fragmentation reduces the probability of occurrence of a wide range of West African bird species, rather than a subset of fragmentation‐sensitive species. The greater apparent sensitivity of present‐day West African forest bird communities to fragmentation rather than patch size might reflect previous extinctions of area‐sensitive species. Minimizing further forest fragmentation might be the most effective means of conserving avian diversity in current West African landscapes where most remaining forest patches are small (i.e. < 500 ha).  相似文献   

8.
Euglossine fauna of a large remnant of Brazilian Atlantic forest in eastern Brazil (Reserva Natural Vale) was assessed along an edge-forest gradient towards the interior of the fragment. To test the hypotheses that the structure of assemblages of orchid bees varies along this gradient, the following predictions were evaluated: (i) species richness is positively related to distance from the forest edge, (ii) species diversity is positively related to distance from the edge, (iii) the relative abundance of species associated with forest edge and/or open areas is inversely related to the distance from edge, and (iv) relative abundance of forest-related species is positively related to distance from the edge. A total of 2264 bees of 25 species was assessed at five distances from the edge: 0 m (the edge itself), 100 m, 500 m, 1000 m and 1500 m. Data suggested the existence of an edge-interior gradient for euglossine bees regarding species diversity and composition (considering the relative abundance of edge and forest-related species as a proxy for species composition) but not species richness.  相似文献   

9.
Many contemporary landscapes have vast areas of production land-uses within landscape mosaics, which may impact species dispersal and occurrence. Here, we determined the extent to which commercial exotic plantation forests affect arthropod diversity associated with natural Afrotemperate forests in the southern Cape Afrotemperate landscape mosaic, South Africa. Natural forests and fynbos vegetation naturally coexist here, with the addition of exotic plantation forests to form a heterogeneous landscape. Epigaeic arthropods were collected by means of pitfall trapping at stations along transects from inside natural Afrotemperate forest, across the edge and into the surrounding land use, which included natural fynbos vegetation, mature forestry plantation blocks (Pinus radiata) and areas where plantations have been clear-felled. Stations were set at 5, 10, 20, 30 and 50 m to both sides of the forest edge with the addition of 100 m stations situated in the natural forest. Arthropod assemblages were distinct in all land-use types. Natural edge effect between forest and fynbos, as measured by arthropod compositional changes, was 20 m into natural forests, yet when bordered by plantations this edge increased up to 30 m into the forest. Once plantations were clear-felled, edge effects increased up to 50 m into natural forests. Responses in terms of assemblage composition and species richness were however taxon specific. Results show that (1) pine plantations are not alternative habitat for native Afrotemperate forest arthropods, (2) there were stark changes in arthropod assemblage composition at edges between these land-use types and (3) that the effects of timber plantation practices (re: clear-felling) also penetrate deep into surrounding natural forests and need to be considered in regional landscape planning. The need for an effective rehabilitation strategy of clear-felled areas is identified as key priority for bordering natural forests. Ongoing monitoring in both the disturbed area and the adjoining natural forest should be undertaken to ensure sufficient recovery.  相似文献   

10.
The increasing rate of urban sprawl continues to fragment European landscapes threatening the persistence of native woodland plant communities. The dynamics of woodland edges depend on the characteristics of woodland patches and also on landscape context. Our aim was to assess the extent of edge influences on the understorey vegetation of small native woodlands in rural and urban landscapes. The study was carried out in two cities of north-western France. Ten comparable woodlands, each of about 1.5 ha, were surveyed; five were situated adjacent to crops and five adjacent to built-up land. Vascular plant species were recorded in 420 3 × 3 m plots placed at seven different distances from the edge (from 0 to about 45 m from the edge). Soil pH, light levels, level of disturbance and tree and shrub cover were also recorded. Plant species were first classified as non-indigenous or indigenous and then three groups of indigenous species were distinguished according to their affinity for forest habitat (forest specialists, forest generalists and non-forest species). We inferred certain ecological characteristics of understorey vegetation by using Ellenberg values. An inter-class correspondence analysis was carried out to detect patterns of variation in plant community composition. Linear mixed models were used to test the effects of adjacent land use, distance from the edge and their interactions on the species richness of the different groups and on the ecological characteristics of vegetation. Total species richness, richness of forest generalists and of non-forest species decreased from edge to interior in both urban and rural woodlands. The number of non-indigenous species depended mainly on urban–rural landscape context. Urban woodland edges were not as rich in forest specialists as rural edges. More surprisingly, the number of forest specialists was higher in rural edges than in rural interiors. Community composition was mainly affected by urban–rural context and to a lesser degree by the edge effect: the community composition of urban edges resembled that of urban interiors whereas in rural woodlands vegetation near edges (up to 10 m) strongly differed from interiors with a pool of species specific to edges. Urban woodland vegetation was more nitrophilous than rural vegetation in both edges and interiors. A major difference between urban and rural vegetation was the distribution of basiphilous species according to distance from the edge. Generally edge vegetation was more basiphilous than interior vegetation however the presence of basiphilous species fell off quickly with distance from the edge in rural woodlands (in the first 10–15 m) and more slowly (from 25 m onwards) in urban woodlands. This pattern was linked to variation in measured soil pH. As regards the conservation of flora in small native woodlands, it appeared that invasion of exotic and non-forest species was currently limited in both urban and rural landscape contexts but might pose problems in the future, especially in urban woodlands. Forest species were not negatively affected by the edge effect and indeed edges seemed to provide important habitats for this group. Hence conservationists should pay particular attention to the protection of edges in urban woodlands.  相似文献   

11.
We conducted single- and mixed-litter experiments in a hardwood forest in Long Island, New York, using leaf litter from phylogenetically paired native and invasive species. We selected long-established, abundant invasive species with wide-ranging distributions in the eastern United States that likely make substantial contributions to the litter pool of invaded areas. Overall, leaf litter from invasive species differed from native litter, though differences varied by phylogenetic grouping. Invasive litter had lower carbon:nitrogen ratios (30.9 ± 1.96 SE vs. 32.8 ± 1.36, P = 0.034) and invasive species lost 0.03 ± 0.007 g of nitrogen and had 23.4 ± 4.9 % of their starting mass remaining at the end of 1 year compared with a loss of 0.02 ± 0.003 g nitrogen and 31.1 ± 2.6 % mass remaining for native species. Mixing litter from two species did not alter decomposition rates when native species were mixed with other native species, or when invasive species were mixed with other invasive species. However, mixing litter of native and invasive species resulted in significantly less mass and nitrogen loss than was seen in unmixed invasive litter. Mixtures of native and invasive litter lost all but 47 ± 2.2 % of initial mass, compared to 37 ± 5.8 % for invasive litter and 50 ± 5.1 % for native litter. This non-additive effect of mixing native and invasive litter suggests that an additive model of metabolic characteristics may not suffice for predicting invasion impacts in a community context, particularly as invasion proceeds over time. Because the more rapid decomposition of invasive litter tends to slow to rates typical of native species when native and invasive litters are mixed together, there may be little impact of invasive species on nutrient cycling early in an invasion, when native leaf litter is abundant (providing litter deposition is the dominant control on nutrient cycling).  相似文献   

12.
The paper provides quantitative information on the occurrence of alien species in Central European cities and analyses factors determining the richness of alien and native floras in this habitat type. Data for 54 cities (25 Polish, 24 German, 4 Czech and 1 Austrian) were gathered, and the representation of archaeophytes (i.e. aliens introduced before 1500 ad ), neophytes (introduced after that date) and native species was expressed. In an average city there were 87.4 archaeophytes (15.2% of the city flora) and 172.4 neophytes (25.2%) giving a total of 259.7 for alien species (40.3%). The number of native species averaged 386.5. The numbers of species in each category of immigration status increased significantly with city size. For neophytes, the species-area relationship showed a higher slope (0.49) on log–log axes than for both archaeophytes (0.16) and native species (0.30). Not only the number, but also the relative contribution of neophytes to the total flora, increased with city size, indicating that neophytes are the group which are most closely associated with human activity. On the other hand, archaeophytes were better represented in smaller cities, as they were confined to rural environment. A step-wise multiple regression was used to test for environmental variables acting as significant predictors, and explained between 40 and 65% of variation in the species numbers for particular categories of immigration status, providing the best fit for neophytes. City size was the best predictor for each characteristic, except of the proportion of total aliens, where the percentage of explained variability was low (8.2%), with latitude being the only significant predictor. Temperature was another highly significant predictor for the number of archaeophytes and total aliens, reflecting the origin of aliens in warmer areas. There was an effect of region on some flora characteristics. Polish cities had significantly higher proportion of archaeophytes and of total aliens than German cities. It is concluded that the occurrence of native and alien species in urban floras follows rather different pattern.  相似文献   

13.
Habitat loss is a major driver of bee declines worldwide, and is of key relevance in the tropics given high deforestation rates, but we continue to have a poor understanding of the impact of land-cover change on tropical bee communities. Orchid bees (Apidae: Euglossini) are critical long-distance pollinators and may be highly susceptible to forest fragmentation given their reliance on forest habitat. Previous studies on the impact of forest fragmentation on euglossines have been geographically limited, have largely ignored β-diversity, and have not compared fragments with continuous forest. To contribute to addressing these gaps, we sampled male euglossine bees in 18 forest fragments (area range: 2.5–33 ha) and at eight locations within a large (3500 ha) continuous forest in the Chocó biodiversity hotspot of Ecuador during the dry season in 2014. We assessed how euglossine abundance, richness, and evenness related to fragment area, isolation, and edge:area ratio. We also compared fragments to continuous forest, in terms of α- and β-diversity. In fragments, a single species (Euglossa tridentata) comprised 78% of captures, and we found no significant effect of fragment area, isolation, or edge on abundance, richness, or evenness among fragments. Forest fragments and continuous forest differed in both community composition and evenness, but not in abundance or species richness. Spatial turnover (β-diversity) showed a non-significant trend toward changing more rapidly in continuous forest relative to fragments. These results underscore the conservation value of continuous forest for orchid bee diversity.  相似文献   

14.
ABSTRACT

Background: Highly modified landscapes offer the opportunity to assess how environmental factors influence the integration of alien plant species into native vegetation communities and determine the vulnerability of different communities to invasion.

Aims: To examine the importance of biotic and abiotic drivers in determining whether alien plant species segregate spatially from native plant communities or become integrated and lead to biotic homogenisation.

Methods: Ordination and classification of a floristic survey of over 1200 systematically located 6 m × 6 m plots were used to examine how plant community segregation, nestedness and homogenisation varied in relation to climate, environmental and human-related factors across Banks Peninsula, New Zealand.

Results: The analyses of community structure indicated that native and alien plant communities were spatially and ecologically segregated due to different responses primarily to an anthropogenic impact gradient and secondly to environmental factors along an elevation gradient. Human-land use appeared most strongly linked to the distribution of alien species and was associated with increased vegetation homogenisation. However, despite spatial segregation of alien and native plant communities, biotic homogenisation not only occurred in highly managed grasslands but also in relatively less managed shrublands and forest.

Conclusions: The role played by anthropogenic factors in shaping alien and native plant species community structure should not be ignored and, even along a marked environmental gradient, if the recipient sites have a long history of human-related disturbance, biotic homogenisation is often strong.  相似文献   

15.
Worldwide, intense forest fragmentation has resulted in mosaic landscapes in which biodiversity and a number of important ecological processes are threatened. Insect parasitism is a vital component of herbivore population regulation, hence the study of parasitism and parasitoid richness in fragmented forests embedded in an agricultural matrix is relevant from conservation and management perspectives. Here, we investigated through experimental field exposure of the leafminer Liriomyza commelinae (Diptera: Agromyzidae) the effects of forest remnant size and edge/interior location on parasitism, species richness and parasitoid community composition. Two consecutive experiments were performed in which pots with mined plants were placed in remnants of Chaco Serrano forests in Central Argentina. Parasitism levels (on average above 50 %) and number of parasitoids species (in total, 20 species) were independent of forest remnant size. However, higher parasitism and species richness were found at the forest edge compared with the interior although the differences in species richness failed to reach statistical significance. Parasitoid community composition was not related to forest size whereas assemblages from interior habitats showed closer similarity than those from the edges. The results suggest forest remnants could play an important role as reservoirs of parasitoids with potential to control crop pests, a possibility heightened by the positive edge effects which could facilitate the transfer of this valuable ecosystem service to the adjacent cultivated land.  相似文献   

16.
The study determined linear edge effects on liana and tree community assemblages in moist semi-deciduous (Afram Headwaters Forest Reserve) and upland evergreen (Tano Offin Forest Reserve) forests in Ghana. Fifteen plots (20 × 20 m2) were randomly set up at each habitat in the forests: edge habitat (0–40 m) and interior habitat (≥500 m). Lianas (diameter at 1.30 m from rooting base ≥1 cm) and trees (diameter at breast height, dbh ≥5 cm) were identified and enumerated in the plots. In the forest ecosystems, liana and tree species composition differed significantly between the two habitats. Liana and tree diversity did not differ significantly between edge and interior habitats. Nevertheless, edge habitat in moist semi-deciduous forest supported significantly higher liana abundance and basal area than its interior habitat, whereas edge habitat in upland evergreen forest harboured significantly lower liana basal area than its corresponding interior habitat. Edge habitat in moist semi-deciduous and upland evergreen forests had significantly lower tree abundance and basal area, respectively, than interior habitat. The results suggest that overall, linear edge effects on liana and tree assemblages were more pronounced in moist semi-deciduous forest than upland evergreen forest. Lianas exhibited dominance over trees in edge habitat within moist semi-deciduous forest, implying that they can have serious implications on tree diversity and ecosystem functioning in the forest. As our study is the first of its kind in the tropics with respect to edge type and forest ecosystems studied, our findings can contribute towards edge theory development.  相似文献   

17.
Species assemblages in disturbed habitats vary as a function of the interaction between species requirements and the spatial configuration of the habitat. There are many reports accounting for the presence of howler monkeys in fragments where other mammals are absent, suggesting that they are more resilient. In the present study we explored this idea and predicted that if howler monkeys were more resilient to habitat loss and fragmentation than other mammals, mammal assemblages in fragments occupied by howler monkeys should include fewer species with decreasing amount of habitat (smaller fragment size and less habitat in the landscape) and increasing number of forest fragments. We explored these relationships by additionally considering the feeding and life habits of mammal species, as well as the isolation and proximity of each fragment to human settlements and roads. We sampled the presence of mammals in five fragments occupied by black howler monkeys (Alouatta pigra) in the Mexican state of Campeche. Through direct sights performed during 240 h in each fragment, we observed 23 species. At the landscape scale, higher fragmentation was associated with a decrease in herbivores, omnivores and total number of species. At the fragment scale semiarboreal, omnivore, and total number of species increased with increasing fragment size. This study supports the idea that howler monkeys are more resilient to forest loss and fragmentation than other native mammals, and our exploratory analyses suggest that the specific mammal assemblages that are found in fragments are related to both landscape and fragment scale spatial attributes, as well as with species-specific characteristics.  相似文献   

18.
Human alteration of habitat has increased the proportion of forest edge in areas of previously continuous forest. This edge habitat facilitates invasion of exotic species into remaining fragments. The ability of native species to resist invasion varies and may depend on intrinsic variables such as dispersal and reproductive rates as well as external factors such as rate of habitat change and the density of populations of introduced species in edge habitat. We examined the distributional and competitive relationships of two members of the class Chilopoda, Scolopocryptops sexspinosus, a centipede native to the eastern US, and Lithobius forficatus, an exotic centipede introduced from Europe. We found that L. forficatus was most abundant in edge habitat and S. sexspinosus was most abundant in the interior habitat at our field sites. Although L. forficatus was present in habitat interiors at 11 of 12 sites, there was no correlation between fragment size and numbers of L. forficatus in interior habitat. The native centipede was rarely found occupying fragment edges. We used laboratory microcosms to examine potential competitive interactions and to indirectly assess prey preferences of the two species. In microcosms both species consumed similar prey, but the native centipede, S. sexspinosus, acted as an intraguild predator on the introduced centipede. Native centipedes were competitively superior in both intraspecific and interspecific pairings. Our results suggest that intraguild predation may aid native centipedes in resisting invasion of introduced centipedes from edge habitat.  相似文献   

19.
Spangenberg  A.  Utschig  H.  Preuhsler  T.  Pretzsch  H. 《Plant and Soil》2004,262(1-2):337-349
This paper studies the effects of high ammonia emissions and nitrogen deposition on tree growth. Wood cores of 125 Norway spruces were analysed along a transect (800 m) from forest edge to forest interior. The forest edge was exposed to a strong ammonia emission source (poultry farm, less than 50 m). Atmospheric nitrogen bulk deposition, ammonia concentration, soil solution concentration, soil nutrient content, foliar N concentration and C/N ratio of the humus layer were measured at five plots along the transect. The tree growth increment of two clusters of trees close to the forest edge and forest interior was compared. The results indicate extremely high nitrogen load at the forest edge. All nitrogen variables show an `edge effect' with increasing values from forest interior to the forest edge. The growth of nitrogen-influenced spruce trees generally increases. Trees with excessive long-term nitrogen load appear to loose increment after a long-term nitrogen impact. The average gain of increment at the edge appears to be related to the amount of nitrogen emission.  相似文献   

20.
Native forests on oceanic islands are among the most threatened ecosystems. The forests formed on Sekimon uplifted limestone in Haha-jima Island (Ogasawara Islands) have not yet been destroyed by human activities and remain as primary forests harboring several narrow endemic endangered plants. In this paper, we described the plant species diversity, community structure, and status of invasion by alien plants in the mesic forests of Sekimon. The Sekimon forest was characterized by low tree diversity (37 species), high stem density (1731 ha?1), and high basal area (63.9 m2 ha?1), comparing with natural forests in world islands. The forests were dominated in the number of stems by the sub-tree Ardisia sieboldii followed by the trees Pisonia umbellifera and Elaeocarpus photiniifolius. The invasive tree Bischofia javanica ranked fourth for basal area and third for the number of stems (DBH?≥?10 cm), and its distribution expanded, especially near a past plantation site. Surveys of forest floor vegetation revealed that species richness of vascular plants was 109 species and that many alien plants had already invaded the forests. Despite the low species richness of alien (16% for vascular flora and 8% for trees), the high frequency of aliens on the forest floor suggests that they have colonized successfully in the Sekimon forest. Extrapolation analysis based on the rarefaction curves predicted that the vascular plants in the Sekimon (25 ha) accounted for 135 species (29.9% of the vascular flora of the Ogasawara Islands) and endemic plants were 85 species (62.0%). The fact that the 39 vascular species recorded in our plots were listed in Japanese Red List suggests that the Sekimon forest should be conserved as a sanctuary of biodiversity. Because alien plants are invading the forests without apparent anthropogenic disturbance, immediate action to eradicate these invaders is highly needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号