首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   5篇
  2023年   2篇
  2021年   6篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   7篇
  2014年   7篇
  2013年   7篇
  2012年   8篇
  2011年   10篇
  2010年   8篇
  2009年   6篇
  2008年   7篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1996年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1986年   1篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
1.
2.
For over a century microbiologists and immunologist have categorized microorganisms as pathogenic or non-pathogenic species or genera. This definition, clearly relevant at the strain and species level for most bacteria, where differences in virulence between strains of a particular species are well known, has never been probed at the strain level in fungal species. Here, we tested the immune reactivity and the pathogenic potential of a collection of strains from Aspergillus spp, a fungus that is generally considered pathogenic in immuno-compromised hosts. Our results show a wide strain-dependent variation of the immune response elicited indicating that different isolates possess diverse virulence and infectivity. Thus, the definition of markers of inflammation or pathogenicity cannot be generalized. The profound understanding of the molecular mechanisms subtending the different immune responses will result solely from the comparative study of strains with extremely diverse properties.  相似文献   
3.
Hsp70s are a class of ubiquitous and highly conserved molecular chaperones playing a central role in the regulation of proteostasis in the cell. Hsp70s assist a myriad of cellular processes by binding unfolded or misfolded substrates during a complex biochemical cycle involving large-scale structural rearrangements. Here we show that an analysis of coevolution at the residue level fully captures the characteristic large-scale conformational transitions of this protein family, and predicts an evolutionary conserved–and thus functional–homo-dimeric arrangement. Furthermore, we highlight that the features encoding the Hsp70 dimer are more conserved in bacterial than in eukaryotic sequences, suggesting that the known Hsp70/Hsp110 hetero-dimer is a eukaryotic specialization built on a pre-existing template.  相似文献   
4.
Attracted by the possibility to optimize time and yield of the synthesis of difficult peptide sequences by MW irradiation, we compared Fmoc/tBu MW‐assisted SPPS of 1–34 N‐terminal fragment of parathyroid hormone‐related peptide (PTHrP) with its conventional SPPS carried out at RT. MWs were applied in both coupling and deprotection steps of SPPS protocol. During the stepwise elongation of the resin‐bound peptide, monitoring was conducted by performing MW‐assisted mini‐cleavages and analyzing them by UPLC‐ESI‐MS. Identification of some deletion sequences was helpful to recognize critical couplings and as such helped to guide the introduction of MW irradiations to these stages. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
5.
Kenny-Caffey syndrome (KCS) and the similar but more severe osteocraniostenosis (OCS) are genetic conditions characterized by impaired skeletal development with small and dense bones, short stature, and primary hypoparathyroidism with hypocalcemia. We studied five individuals with KCS and five with OCS and found that all of them had heterozygous mutations in FAM111A. One mutation was identified in four unrelated individuals with KCS, and another one was identified in two unrelated individuals with OCS; all occurred de novo. Thus, OCS and KCS are allelic disorders of different severity. FAM111A codes for a 611 amino acid protein with homology to trypsin-like peptidases. Although FAM111A has been found to bind to the large T-antigen of SV40 and restrict viral replication, its native function is unknown. Molecular modeling of FAM111A shows that residues affected by KCS and OCS mutations do not map close to the active site but are clustered on a segment of the protein and are at, or close to, its outer surface, suggesting that the pathogenesis involves the interaction with as yet unidentified partner proteins rather than impaired catalysis. FAM111A appears to be crucial to a pathway that governs parathyroid hormone production, calcium homeostasis, and skeletal development and growth.  相似文献   
6.
The immune system is essential to maintain the mutualistic homeostatic interaction between the host and its micro- and mycobiota. Living as a commensal, Saccharomyces cerevisiae could potentially shape the immune response in a significant way. We observed that S. cerevisiae cells induce trained immunity in monocytes in a strain-dependent manner through enhanced TNFα and IL-6 production upon secondary stimulation with TLR ligands, as well as bacterial and fungal commensals. Differential chitin content accounts for the differences in training properties observed among strains, driving induction of trained immunity by increasing cytokine production and direct antimicrobial activity both in vitro and in vivo. These chitin-induced protective properties are intimately associated with its internalization, identifying a critical role of phagosome acidification to facilitate microbial digestion. This study reveals how commensal and passenger microorganisms could be important in promoting health and preventing mucosal diseases by modulating host defense toward pathogens and thus influencing the host microbiota-immune system interactions.  相似文献   
7.
Vino Santo is a sweet wine produced from late harvesting and pressing of Nosiola grapes in a small, well‐defined geographical area in the Italian Alps. We used metagenomics to characterize the dynamics of microbial communities in the products of three wineries, resulting from spontaneous fermentation with almost the same timing and procedure. Comparing fermentation dynamics and grape microbial composition, we show a rapid increase in a small number of wine yeast species, with a parallel decrease in complexity. Despite the application of similar protocols, slight changes in the procedures led to significant differences in the microbiota in the three cases of fermentation: (i) fungal content of the must varied significantly in the different wineries, (ii) Pichia membranifaciens persisted in only one of the wineries, (iii) one fermentation was characterized by the balanced presence of Saccharomyces cerevisiae and Hanseniaspora osmophila during the later phases. We suggest the existence of a highly winery‐specific ‘microbial‐terroir’ contributing significantly to the final product rather than a regional ‘terroir’. Analysis of changes in abundance during fermentation showed evident correlations between different species, suggesting that fermentation is the result of a continuum of interaction between different species and physical–chemical parameters.  相似文献   
8.
Nutritional systems biology may be defined as the ultimate goal of molecular nutrition research, where all relevant aspects of regulation of metabolism in health and disease states at all levels of its complexity are taken into account to describe the molecular physiology of nutritional processes. The complexity spans from intracellular to inter-organ dynamics, and involves iterations between mathematical modelling and analysis employing all profiling methods and other biological read-outs. On the basis of such dynamic models we should be enabled to better understand how the nutritional status and nutritional challenges affect human metabolism and health. Although the achievement of this proposition may currently sound unrealistic, many initiatives in theoretical biology and biomedical sciences work on parts of the solution. This review provides examples and some recommendations for the molecular nutrition research arena to move onto the systems level.  相似文献   
9.
Microbiology in the post-genomic era   总被引:1,自引:0,他引:1  
Genomics has revolutionized every aspect of microbiology. Now, 13 years after the first bacterial genome was sequenced, it is important to pause and consider what has changed in microbiology research as a consequence of genomics. In this article, we review the evolving field of bacterial typing and the genomic technologies that enable comparative analysis of multiple genomes and the metagenomes of complex microbial environments, and address the implications of the genomic era for the future of microbiology.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号