首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2012年   1篇
  2010年   1篇
  2008年   3篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
Electron paramagnetic resonance (EPR) was used to simultaneously study radiation-induced cofactor reduction and damaging radical formation in single crystals of the bacterial reaction center (RC). Crystals of Fe-removed/Zn-replaced RC protein from Rhodobacter ( R.) sphaeroides R26 were irradiated with varied radiation doses at cryogenic temperature and analyzed for radiation-induced free radical formation and alteration of light-induced photosynthetic electron transfer activity using high-field (HF) D-band (130 GHz) and X-band (9.5 GHz) EPR spectroscopies. These analyses show that the formation of radiation-induced free radicals saturated at doses 1 order of magnitude smaller than the amount of radiation at which protein crystals lose their diffraction quality, while light-induced RC activity was found to be lost at radiation doses at least 1 order of magnitude lower than the dose at which radiation-induced radicals exhibited saturation. HF D-band EPR spectra provide direct evidence for radiation-induced reduction of the quinones and possibly other cofactors. These results demonstrate that substantial radiation damage is likely to have occurred during X-ray diffraction data collection used for photosynthetic RC structure determination. Thus, both radiation-induced loss of photochemical activity in RC crystals and reduction of the quinones are important factors that must be considered when correlating spectroscopic and crystallographic measurements of quinone site structures.  相似文献   
2.

Background

Embolization of atherosclerotic debris from the rupture of a vulnerable atherosclerotic plaque occurs iatrogenically during percutaneous coronary interventions (PCI) and can induce myocardial necrosis. These microembolizations are detected as high intensity transient signals (HITS) using intracoronary Doppler technology.

Presentation of the hypothesis

In the presented study we will test if abciximab (ReoPro?) infusion reduces high intensity transient signals in patients with stable angina pectoris undergoing PCI in comparison to standard therapy alone.

Testing the hypothesis

The High Intensity Transient Signals ReoPro? (HITS-RP) study will enroll 60 patients. It is a prospective, single center, randomized, double-blinded, controlled trial. The study is designed to compare the efficacy of intravenous abciximab administration for reduction of microembolization during elective PCI. Patients will be randomized in a 1:1 fashion to abciximab or placebo infusion. The primary end point of the HITS-RP-Study is the number of HITS during PCI measured by intracoronary Doppler wire. Secondary endpoints are bleeding complications, elevation of cardiac biomarkers or ECG changes after percutaneous coronary interventions, changes in coronary flow velocity reserve, hs-CRP elevation, any major adverse cardio-vascular event during one month follow-up.

Implications of the hypothesis

The HITS-RP-Study addresses important questions regarding the efficacy of intravenous abciximab administration in reducing microembolization and periprocedural complications in stable angina pectoris patients undergoing PCI.

Trial registration

The trial is registered under http://www.drks-neu.uniklinik-freiburg.de/drks_web/:DRKS00000603.  相似文献   
3.
The interaction of metal ions with isolated photosynthetic reaction centers (RCs) from the purple bacteria Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis has been investigated with transient optical and magnetic resonance techniques. In RCs from all species, the electrochromic response of the bacteriopheophytin cofactors associated with Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer is slowed in the presence of Cu(2+). This slowing is similar to the metal ion effect observed for RCs from Rb. sphaeroides where Zn(2+) was bound to a specific site on the surface of the RC [Utschig et al. (1998) Biochemistry 37, 8278]. The coordination environments of the Cu(2+) sites were probed with electron paramagnetic resonance (EPR) spectroscopy, providing the first direct spectroscopic evidence for the existence of a second metal site in RCs from Rb. capsulatus and Rps. viridis. In the dark, RCs with Cu(2+) bound to the surface exhibit axially symmetric EPR spectra. Electron spin echo envelope modulation (ESEEM) spectral results indicate multiple weakly hyperfine coupled (14)N nuclei in close proximity to Cu(2+). These ESEEM spectra resemble those observed for Cu(2+) RCs from Rb. sphaeroides [Utschig et al. (2000) Biochemistry 39, 2961] and indicate that two or more histidines ligate the Cu(2+) at the surface site in each RC. Thus, RCs from Rb. sphaeroides, Rb. capsulatus, and Rps. viridis each have a structurally analogous Cu(2+) binding site that is involved in modulating the Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron-transfer process. Inspection of the Rps. viridis crystal structure reveals four potential histidine ligands from three different subunits (M16, H178, H72, and L211) located beneath the Q(B) binding pocket. The location of these histidines is surprisingly similar to the grouping of four histidine residues (H68, H126, H128, and L211) observed in the Rb. sphaeroides RC crystal structure. Further elucidation of these Cu(2+) sites will provide a means to investigate localized proton entry into the RCs of Rb. capsulatus and Rps. viridis as well as locate a site of protein motions coupled with electron transfer.  相似文献   
4.
The coordination environments of two distinct metal sites on the bacterial photosynthetic reaction center (RC) protein were probed with pulsed electron paramagnetic resonance (EPR) spectroscopy. For these studies, Cu2+ was bound specifically to a surface site on native Fe2+-containing RCs from Rhodobacter sphaeroides R-26 and to the native non-heme Fe site in biochemically Fe-removed RCs. The cw and pulsed EPR results clearly indicate two spectroscopically different Cu2+ environments. In the dark, the RCs with Cu2+ bound to the surface site exhibit an axially symmetric EPR spectrum with g(parallel) = 2.24, A(parallel) = 160 G, g(perpendicular) = 2.06, whereas the values g(parallel) = 2.31, A(parallel) = 143 G, and g(perpendicular) = 2.07 were observed when Cu(2+) was substituted in the Fe site. Examination of the light-induced spectral changes indicate that the surface Cu2+ is at least 23 A removed from the primary donor (P+) and reduced quinone acceptor (QA-). Electron spin-echo envelope modulation (ESEEM) spectra of these Cu-RC proteins have been obtained and provide the first direct solution structural information about the ligands in the surface metal site. From these pulsed EPR experiments, modulations were observed that are consistent with multiple weakly hyperfine coupled 14N nuclei in close proximity to Cu2+, indicating that two or more histidines ligate the Cu2+ at the surface site. Thus, metal and EPR analyses confirm that we have developed reliable methods for stoichiometrically and specifically binding Cu2+ to a surface site that is distinct from the well characterized Fe site and support the view that Cu2+ is bound at or near the Zn site that modulates electron transfer between the quinones QA and QB (QA-QB --> QAQB-) (Utschig, L. M., Ohigashi, Y., Thurnauer, M. C., and Tiede, D. M (1998) Biochemistry 37, 8278-8281) and proton uptake by QB- (Paddock, M. L., Graige, M. S., Feher, G., and Okamura, M. Y. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 6183-6188). Detailed EPR spectroscopic characterization of these Cu2+-RCs will provide a means to investigate the role of local protein environments in modulating electron and proton transfer.  相似文献   
5.
High-frequency electron paramagnetic resonance (HF EPR) techniques have been employed to look for localized light-induced conformational changes in the protein environments around the reduced secondary quinone acceptor (Q(B)(-)) in Rhodobacter sphaeroides and Blastochloris viridis RCs. The Q(A)(-) and Q(B)(-) radical species in Fe-removed/Zn-replaced protonated RCs substituted with deuterated quinones are distinguishable with pulsed D-band (130 GHz) EPR and provide native probes of both the low-temperature Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron-transfer event and the structure of trapped conformational substates. We report here the first spectroscopic evidence that cryogenically trapped, light-induced changes enable low-temperature Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer in the B. viridis RC and the first observation of an inactive, trapped P(+)Q(B)(-) state in both R. sphaeroides and B. viridis RCs that does not recombine at 20 K. The high resolution and orientational selectivity of HF electron-nuclear double resonance (ENDOR) allows us to directly probe protein environments around Q(B)(-) for distinct P(+)Q(B)(-) kinetic RC states by spectrally selecting specific nuclei in isotopically labeled samples. No structural differences in the protein structure near Q(B)(-) or reorientation (within 5 degrees ) of Q(B)(-) was observed with HF ENDOR spectra of two states of P(+)Q(B)(-): "active" and "inactive" states with regards to low-temperature electron transfer. These results reveal a remarkably enforced local protein environment for Q(B) in its reduced semiquinone state and suggest that the conformational change that controls reactivity resides beyond the Q(B) local environment.  相似文献   
6.
We have measured the electrochromic response of the bacteriopheophytin, BPh, and bacteriochlorophyll, BChl, cofactors during the QA QB QAQB electron transfer in chromatophores of Rhodobacter (Rb.) capsulatus and Rb. sphaeroides. The electrochromic response rises faster in chromatophores and is more clearly biexponential than it is in isolated reaction centers. The chromatophore spectra can be interpreted in terms of a clear kinetic separation between fast electron transfer and slower non-electron transfer events such as proton transfer or protein relaxation. The electrochromic response to electron transfer exhibits rise times of about 4 µs (70%) and 40 µs (30%) in Rb. capsulatus and 4 µs (60%) and 80 µs (40%) in Rb. sphaeroides. The BPh absorption band is shifted to nearly equivalent positions in the QA and nascent QB states, indicating that the electrochromic perturbation of BPh absorption from the newly formed QB state is comparable to that of QA . Subsequently, partial attenuation of the QB electrochromism occurs with a time constant on the order of 200 µs. This can be attributed to partial charge compensation by H+ (or other counter ion) movement into the QB pocket. Electron transfer events were found to be slower in detergent isolated RCs than in chromatophores, more nearly monoexponential, and overlap H+ transfer, suggesting that a change in rate-limiting step has occurred upon detergent solubilization.  相似文献   
7.
Utschig LM  Tiede DM  Poluektov OG 《Biochemistry》2010,49(45):9682-9684
Electron paramagnetic resonance (EPR) was used to study light-induced electron transfer in Photosystem I-flavodoxin complexes. Deuteration of flavodoxin enables the signals of the reduced flavin acceptor and oxidized primary donor, P(700)(+), to be well-resolved at X- and D-band EPR. In dark-adapted samples, photoinitiated interprotein electron transfer does not occur at 5 K. However, for samples prepared in dim light, significant interprotein electron transfer occurs at 5 K and a concomitant loss of the spin-correlated radical pair P(+)A(1A)(-) signal is observed. These results indicate a light-induced reorientation of flavodoxin in the PSI docking site that allows a high quantum yield efficiency for the interprotein electron transfer reaction.  相似文献   
8.
Femtosecond transient absorbance spectroscopy was applied to the study of primary electron transfer in single reaction center crystals from Rhodobacter sphaeroides. Polarized transient absorption spectra of individual crystals are shown to correlate with polarized ground-state absorption spectra and to track cofactor transition moment directions calculated from the crystallographic structure. Electron transfer from the bacteriochlorophyll dimer to the bacteriopheophytin acceptor was found to be multiphasic in crystals and approximately 2-fold slower than in solution. This work demonstrates the ability to resolve ultrafast photosynthetic function in single crystals and allows ultrafast function to be directly correlated with structure.  相似文献   
9.
Spangenberg  A.  Utschig  H.  Preuhsler  T.  Pretzsch  H. 《Plant and Soil》2004,262(1-2):337-349
This paper studies the effects of high ammonia emissions and nitrogen deposition on tree growth. Wood cores of 125 Norway spruces were analysed along a transect (800 m) from forest edge to forest interior. The forest edge was exposed to a strong ammonia emission source (poultry farm, less than 50 m). Atmospheric nitrogen bulk deposition, ammonia concentration, soil solution concentration, soil nutrient content, foliar N concentration and C/N ratio of the humus layer were measured at five plots along the transect. The tree growth increment of two clusters of trees close to the forest edge and forest interior was compared. The results indicate extremely high nitrogen load at the forest edge. All nitrogen variables show an `edge effect' with increasing values from forest interior to the forest edge. The growth of nitrogen-influenced spruce trees generally increases. Trees with excessive long-term nitrogen load appear to loose increment after a long-term nitrogen impact. The average gain of increment at the edge appears to be related to the amount of nitrogen emission.  相似文献   
10.
Utschig LM  Chen LX  Poluektov OG 《Biochemistry》2008,47(12):3671-3676
Photosystem I (PSI) is a large membrane protein that catalyzes light-driven electron transfer across the thylakoid membrane from plastocyanin located in the lumen to ferredoxin in the stroma. Metal analysis reveals that PSI isolated from the cyanobacterial membranes of Synechococcus leopoliensishas a near-stoichiometric 1 molar equiv of Zn (2+) per PSI monomer and two additional surface metal ion sites that favor Cu (2+) binding. Two-dimensional hyperfine sublevel correlation (HYSCORE) spectroscopy reveals coupling to the so-called remote nitrogen of a single histidine coordinated to one of the Cu (2+) centers. EPR and X-ray absorption fine structure (XAFS) studies of 2Cu-PSI complexes reveal the direct interaction of ferredoxin with the Cu (2+) centers on PSI, establishing the location of native metal sites on the ferredoxin docking side of PSI. On the basis of these spectroscopic results and previously reported site-directed mutagenesis studies, inspection of the PSI crystal structure reveals a cluster of three highly conserved residues, His(D95), Glu(D103), and Asp(C23), as a likely Cu (2+) binding site. The discovery of surface metal sites on the acceptor side of PSI provides a unique opportunity to probe the stromal region of PSI and the interactions of PSI with its reaction partner, the soluble electron carrier protein ferredoxin.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号