首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
禽流感特异性转移因子的制备及其免疫作用   总被引:3,自引:0,他引:3  
目的制备禽流感病毒特异性转移因子并探讨其对禽流感灭活疫苗的免疫增效作用。方法用禽流感病毒H5N1血清亚型灭活疫苗免疫鸡,用国标血凝抑制方法检测病毒特异性血凝抑制抗体效价。当抗体效价达到高峰时,翅静脉采取外周血,分离淋巴细胞并制备细胞单层、传代后获得禽流感病毒H5N1血清亚型特异性转移因子。用所获得的特异性转移因子进行疫苗免疫增效试验。结果采用本法可获得禽流感病毒特异性转移因子。免疫增效试验表明,在进行禽流感病毒灭活疫苗免疫的同时使用禽流感病毒特异性转移因子,可在一定幅度内提高禽流感病毒抗体水平并能延长抗体维持时间。不同给药途径比较试验表明,口服途径给药的疫苗增效作用优于注射途径给药。结论通过淋巴细胞体外培养可以制备禽流感病毒特异性转移因子。禽流感病毒H5N1血清亚型特异性转移因子对禽流感病毒灭活疫苗具有明显的增效作用,且口服途径给药的疫苗免疫增效作用优于注射途径给药。  相似文献   

2.
Forced by major drawbacks of egg-based influenza virus production, several studies focused on the establishment and optimization of cell-based production systems. Among numerous possible host cell lines from duck, monkey, canine, chicken, mouse, and human origin, only a few will meet regulatory requirements, accomplish industrial standards, and result in high virus titers. From primary virus isolation up to large-scale manufacturing of human vaccines, however, the most logical choice seems to be the use of human cell lines. For this reason, we evaluated the recently established CAP cell line derived from human amniocytes for its potential in influenza virus production in suspension culture in small scale shaker flask and stirred tank bioreactor experiments. Different human and animal influenza viruses could be adapted to produce hemagglutination (HA) titers of at least 2.0 log10 HA units/100 μL without further process optimization. Adjusting trypsin activity as well as infection conditions (multiplicity of infection, infection medium) resulted in HA titers of up to 3.2 log10 HA units/100 μL and maximum cell-specific virus productivities of 6,400 virions/cell (for human influenza A/PR/8/34 as a reference). Surface membrane expression of sialyloligosaccharides as well as HA N-glycosylation patterns were characterized. Overall, experimental results clearly demonstrate the potential of CAP cells for achieving high virus yields for different influenza strains and the option to introduce a highly attractive fully characterized human cell line compliant with regulatory and industrial requirements as an alternative for influenza virus vaccine production.  相似文献   

3.
Lei  Chengfeng  Yang  Jian  Hu  Jia  Sun  Xiulian 《中国病毒学》2021,36(1):141-144
正Dear Editor The most important property of a virus is its infectivity. To measure infectivity, one can assay viral replication in cells to obtain a titer for a given virus stock. A titer is defined as a given number of infectious viral units per unit volume,and an infectious unit is the smallest amount of virus that produces recognizable effects [e.g., cytopathic effect(CPE), dot blot immunoreactivity]. The median tissue culture infectious dose (TCID_(50)) is defined as the dilution of a virus required to infect 50%of a given cell culture.  相似文献   

4.
Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 107 50% tissue culture infective doses (TCID50)/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF) and Madin-Darby canine kidney (MDCK) cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo.  相似文献   

5.
Influenza is a pandemic contagious disease and causes human deaths and huge economic destruction of poultry in the world. In order to control and prevent influenza, mainly type A, influenza vaccine for human and poultry were available since the 1940s and 1920s, respectively. In the development of vaccine production, influenza viruses were cultured originally from chicken embryos to anchorage-dependent cell lines, such as MDCK and Vero. The anchorage-independent lines have also been used to produce influenza virus, such as PER.C6 and engineering modified MDCK and Vero. During the process of influenza vaccine production, the common problem faced by all producers is how to improve the titer of influenza virus. This paper focuses on the developments of cell culture for influenza virus vaccine production, limitations of cell culture, and relative strategies for improvement virus yields in cell-culture systems.  相似文献   

6.
Development of serum-free suspension cell culture processes is very important for influenza vaccine production. Previously, we developed a MDCK suspension cell line in a serum-free medium. In the present study, the growth kinetics of suspension MDCK cells and influenza virus production in the serum-free medium were investigated, in comparison with those of adherent MDCK cells in both serum-containing and serum-free medium. It was found that the serum-free medium supported the stable subculture and growth of both adherent and suspension cells. In batch culture, for both cell lines, the growth kinetics in the serum-free medium was comparable with those in the serum-containing medium and a commercialized serum-free medium. In the serum-free medium, peak viable cell density (VCD), haemagglutinin (HA) and median tissue culture infective dose (TCID50) titers of the two cell lines reached 4.51×106 cells/mL, 2.94Log10(HAU/50 μL) and 8.49Log10(virions/mL), and 5.97×106 cells/mL, 3.88Log10(HAU/50 μL), and 10.34Log10(virions/mL), respectively. While virus yield of adherent cells in the serum-free medium was similar to that in the serum-containing medium, suspension culture in the serum-free medium showed a higher virus yield than adherent cells in the serum-containing medium and suspension cells in the commercialized serum-free medium. However, the percentage of infectious viruses was lower for suspension culture in the serum-free medium. These results demonstrate the great potential of this suspension MDCK cell line in serum-free medium for influenza vaccine production and further improvements are warranted.  相似文献   

7.
Duck virus enteritis (DVE) also known as duck plague, is a viral infection of ducks caused by duck enteritis virus (DEV). The control of the disease is mainly done by vaccination with a chicken embryo-adapted live virus that is known to be poorly immunogenic and affords partial protection. Further, the risk of harboring other infectious agents in the embryo particularly the deadly and zoonotic avian influenza virus is also high. In this paper, we report propagation of a chicken embryo-adapted vaccine strain of duck enteritis virus in duck embryo fibroblast (DEF) cell line. Thirty serial passages were done in DEF cell that made the vaccine virus further attenuated which was tested in ducks. The growth behaviors of the virus in DEF cells were studied and at 30th passage level the virus titre was found to be 106.8 TCID50/ml. Ducks were immunized with this virus and challenged after 21 days with high dose of virulent DEV. All the immunized ducks withstood challenge with no clinical symptoms in any of the ducks while all the control ducks died. DEF cell which is free from other infectious agents appears to be a good system for cultivation of duck enteritis virus vaccine strain.  相似文献   

8.
There is an increased interest from the vaccine industry to use mammalian cell cultures for influenza vaccine manufacturing. Therefore, it became important to study the influenza infection mechanism, the viral–host interaction, and the replication kinetics from a bioprocessing stand point to maximize the influenza viral production yield in cell culture. In the present work, influenza replication kinetics was studied in HEK293 cells. Two infection conditions were evaluated, a low (0.01) and a high multiplicity of infection (1.0). Critical time points of the viral production cycle (infection, protein synthesis, viral assembly and budding, viral release, and host‐cell death) were identified in small‐scale cell cultures. Additionally, cell growth, viability, and viral titers were monitored in the viral production process. The infection state of the cultivated cell population was assessed by influenza immunolabeling throughout the culture period. Influenza virus production kinetics were also on‐line monitored by dielectric spectroscopy and successfully correlated to real‐time capacitance measures. Overall, this work provided insights into the mechanisms associated with the infection of human HEK293 cell line by the influenza virus and demonstrated, once again, the usefulness of multifrequency scanning permittivity for in‐line monitoring and supervision of cell‐based viral production processes. Published 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

9.
为明确广东地区分离的一株禽流感病毒H5N1的遗传背景,建立流感病毒反向遗传的平台。对该株禽流感病毒进行了空斑纯化与组织细胞培养,检测其在MDCK细胞中的增殖特性;利用H5N1病毒通用引物,通过RT-PCR对该病毒全基因组的8条片段进行全长克隆及测序分析;将H5N1的8条全长基因组片段分别插入反向遗传通用载体中,构建禽流感病毒H5N1的感染性克隆。结果表明,该H5N1毒株在MDCK细胞中可不依赖胰酶进行有效增殖与复制,可使MDCK细胞出现典型细胞病变,具有高致病性禽流感病毒的细胞增殖特征。RT-PCR克隆得到该H5N1毒株的PB2、PB1、PA、HA、NP、NA、M和NS八条全长片段,经测序分析确认该毒株的基因序列,其内部编码序列出现多处突变,其中HA连接肽为多个连续碱性氨基酸,表明该毒株可不依赖胰酶进行有效复制,与细胞培养结果一致,未出现抗药性的遗传突变。PCR与测序证明,插入H5N1八个全长基因组片段的载体序列完全正确,表明成功构建了该毒株的感染性克隆。为明确病毒遗传信息,建立流感病毒反向遗传的平台,为进一步研究禽流感病毒相关疫苗提供了研究基础。  相似文献   

10.
Understanding the growth dynamics of influenza viruses is an essential step in virus replication and cell-adaptation. The aim of this study was to elucidate the growth kinetic of a low pathogenic avian influenza H9N2 subtype in chicken embryo fibroblast (CEF) and chicken tracheal epithelial (CTE) cells during consecutive passages. An egg-adapted H9N2 virus was seeded into both cell culture systems. The amount of infectious virus released into the cell culture supernatants at interval times post-infection were titered and plaque assayed. The results as well as cell viability results indicate that the infectivity of the influenza virus was different among these primary cells. The egg-adapted H9N2 virus featured higher infectivity in CTE than in CEF cells. After serial passages and plaque purifications of the virus, a CTE cell-adapted strain was generated which carried amino acid substitutions within the HA stem region. The strain showed faster replication kinetics in cell culture resulting in an increase in virus titer. Overall, the present study provides the impact of cell type, multiplicity of infection, cellular protease roles in virus infectivity and finally molecular characterization during H9N2 virus adaptation procedure.  相似文献   

11.
Sheep pox virus initially adapted to replicate in primary lamb kidney cells was adapted to Vero cells by serial passages in monolayer cultures. After nine passages the virus was able to correctly replicate in Vero cells, virus titer achieved was 105.875 TCID50 (median tissue culture infective dose) ml−1.To optimize the production process, the effects of MOI (multiplicity of infection), TOI (time of infection) and the culture medium were investigated. Cell infection at a MOI of 0.005 concurrently with cell seeding showed the best results in terms of specific virus productivity. The effect of MEM enrichment with several components was investigated using the experimental design approach. 67 experiments were performed in 6-well plates to select the best combination. The highest titer was achieved when MEM was supplemented with 5 mM glucose, 5 mM fructose and 25 mM sucrose. Spinner culture confirms these data; virus titer was 107.375 TCID50 ml−1.In addition Vero cells were cultivated in a 7-l bioreactor in batch mode on 3 g l−1 Cytodex1, and infected at cell seeding at a MOI of 0.005. Maximal virus titer was 107.275 TCID50 ml−1. This corresponds to 44-fold factor enhancement compared to spinner cultures conducted in MEM + 2% FCS.  相似文献   

12.
International regulations prescribe that the absence of avian leucosis viruses (ALV) in avian live virus vaccines has to be demonstrated. Primary chicken embryo fibroblasts (CEF) from special SPF chicken lines are normally used for detection of ALV. The suitability of the DF-1 cell line for ALV-detection, as alternative for primary CEF, was studied in three types of experiments: (1) in titration experiments without cell passage, (2) in experiments with passages in cell cultures according to European Pharmacopoeia requirements, and (3) in experiments with commercial live avian vaccines that had been spiked with known amounts of ALV. In all tests the sensitivity of ALV-A and ALV-J detections on DF-1 cells was at least as high as on primary CEF. The sensitivity of ALV-B detection was always superior when DF-1 cells were used. ALV were detected earlier in all comparative tests when DF-1 cells were used. ALV-A, ALV-B and ALV-J all induced CPE on DF-1 cells, whereas no clear CPE was seen on CEF-cells. For reasons of sensitivity, standardisation as well as reduction of animal use, the data support the use of DF-1 cells to monitor absence of ALV in vaccine virus seed lots or finished products.  相似文献   

13.
目的建立用大鼠胶质瘤细胞系(Rat glial cell line C6)替代大鼠原代胚细胞(primary rat embryocells,RE)培养大鼠细小病毒(Toolan virus,H-1)的方法。方法 将0.8 mL H-1病毒接种C6细胞(75T培养瓶,细胞接种量为2×105/mL,培养过夜),待细胞病变CPE达++~+++时,用免疫荧光(FITC)鉴定所培养病毒的抗原,用血球凝集试验(HA)测定培养物上清效价,用DNA测序鉴定所培养的病毒,用96孔板培养法测定H-1病毒的TCID50。结果H-1在接种到C6细胞的第3~4天,细胞发生明显的病变,CPE可达++++,FITC鉴定呈H-1抗原阳性,病毒的培养上清中HA效价为1∶320。测序结果表明:该病毒序列与NCBI中H-1序列同源性达99%,确定为H-1病毒。收获的H-1的TCID50为103.2/0.1 mL。结论用大鼠胶质瘤细胞系(C6)可以替代大鼠原代胚细胞(RE)进行大鼠细小病毒的培养。  相似文献   

14.
Reassortant viruses which possessed the hemagglutinin and neuraminidase genes of wild-type human influenza A viruses and the remaining six RNA segments (internal genes) of the avian A/Pintail/Alberta/119/79 (H4N6) virus were previously found to be attenuated in humans. To study the genetic basis of this attenuation, we isolated influenza A/Pintail/79 X A/Washington/897/80 reassortant viruses which contained human influenza virus H3N2 surface glycoprotein genes and various combinations of avian or human influenza virus internal genes. Twenty-four reassortant viruses were isolated and first evaluated for infectivity in avian (primary chick kidney [PCK]) and mammalian (Madin-Darby canine kidney [MDCK]) tissue culture lines. Reassortant viruses with two specific constellations of viral polymerase genes exhibited a significant host range restriction of replication in mammalian (MDCK) tissue culture compared with that in avian (PCK) tissue culture. The viral polymerase genotype PB2-avian (A) virus, PB1-A virus, and PA-human (H) virus was associated with a 900-fold restriction, while the viral polymerase genotype PB2-H, PB1-A, and PA-H was associated with an 80,000-fold restriction of replication in MDCK compared with that in PCK. Fifteen reassortant viruses were subsequently evaluated for their level of replication in the respiratory tract of squirrel monkeys, and two genetic determinants of attenuation were identified. First, reassortant viruses which possessed the avian influenza virus nucleoprotein gene were as restricted in replication as a virus which possessed all six internal genes of the avian influenza A virus parent, indicating that the nucleoprotein gene is the major determinant of attenuation of avian-human A/Pintail/79 reassortant viruses for monkeys. Second, reassortant viruses which possessed the viral polymerase gene constellation of PB2-H, PB1-A, and PA-H, which was associated with the greater degree of host range restriction in vitro, were highly restricted in replication in monkeys. Since the avian-human influenza reassortant viruses which expressed either mode of attenuation in monkeys replicated to high titer in eggs and in PCK tissue culture, their failure to replicate efficiently in the respiratory epithelium of primates must be due to the failure of viral factors to interact with primate host cell factors. The implications of these findings for the development of live-virus vaccines and for the evolution of influenza A viruses in nature are discussed.  相似文献   

15.
Production of Aujeszky’s disease virus (ADV) from BHK 21 C13 suspension cells using a simple harvest and multiple harvest process mode was examined. We studied growth kinetics of BHK 21 C31 cells in 750 ml spinner flask containing 500 ml of culture medium. In the simple harvest process of ADV production, 425 ml of virus harvest was obtained with a virus titer of 106.4 TCID50 ml−1 which corresponds to 10,676 doses of vaccine. The multiple harvest process resulted in 850 ml of virus harvest with a virus titer of 106.5 TCID50 ml−1 corresponding to 26,877 AD vaccine doses. In conclusion, the multiple harvest process mode using BHK 21 C13 can be considered as a favorable process to produce ADV.  相似文献   

16.
Egg‐derived viruses are the only available seed material for influenza vaccine production. Vaccine manufacturing is done in embryonated chicken eggs, MDCK or Vero cells. In order to contribute to efficient production of influenza vaccines, we investigate whether the quality of inactivated vaccines is influenced by the propagation substrate. We demonstrate that H3N2 egg‐derived seed viruses (A/Brisbane/10/07, IVR147, and A/Uruguay/716/07) triggered the hemagglutinin (HA) conformational change under less acidic conditions (0.2–0.6 pH units) than antigenically similar primary isolates. This phenotype was associated with HA1 (A138S, L194P) and HA2 (D160N) substitutions, and strongly related to decreased virus stability towards acidic pH and elevated temperature. The subsequent propagation of H3N2 and H1N1 egg‐derived seed viruses in MDCK and Vero cells induced HA2 N50K (H1N1) and D160E (H3N2) mutations, improving virus growth in cell culture but further impairing virus stability. The prevention of the loss or recovery of stability was possible by cultivation at acidified conditions. Viruses carrying less stable HAs are more sensitive for HA conformational change during concentration, purification and storage. This results in decreased detectable HA antigen content – the main potency marker for inactivated influenza vaccines. Thus, virus stability can be a useful marker for predicting the manufacturing scope of seed viruses.  相似文献   

17.
In Hong Kong in 1997, a highly lethal H5N1 avian influenza virus was apparently transmitted directly from chickens to humans with no intermediate mammalian host and caused 18 confirmed infections and six deaths. Strategies must be developed to deal with this virus if it should reappear, and prospective vaccines must be developed to anticipate a future pandemic. We have determined that unadapted H5N1 viruses are pathogenic in mice, which provides a well-defined mammalian system for immunological studies of lethal avian influenza virus infection. We report that a DNA vaccine encoding hemagglutinin from the index human influenza isolate A/HK/156/97 provides immunity against H5N1 infection of mice. This immunity was induced against both the homologous A/HK/156/97 (H5N1) virus, which has no glycosylation site at residue 154, and chicken isolate A/Ck/HK/258/97 (H5N1), which does have a glycosylation site at residue 154. The mouse model system should allow rapid evaluation of the vaccine’s protective efficacy in a mammalian host. In our previous study using an avian model, DNA encoding hemagglutinin conferred protection against challenge with antigenic variants that differed from the primary antigen by 11 to 13% in the HA1 region. However, in our current study we found that a DNA vaccine encoding the hemagglutinin from A/Ty/Ir/1/83 (H5N8), which differs from A/HK/156/97 (H5N1) by 12% in HA1, prevented death but not H5N1 infection in mice. Therefore, a DNA vaccine made with a heterologous H5 strain did not prevent infection by H5N1 avian influenza viruses in mice but was useful in preventing death.  相似文献   

18.
Highly pathogenic avian influenza H5N1 viruses can result in poultry and occasionally in human mortality. A safe and effective H5N1 vaccine is urgently needed to reduce the pandemic potential. Hemagglutinin (HA), a major envelope protein accounting for approximately 80% of spikes in influenza virus, is often used as a major antigen for subunit vaccine development. In this study, we conducted a systematic study of the immune response against influenza virus infection following immunization with recombinant HA proteins expressed in insect (Sf9) cells, insect cells that contain exogenous genes for elaborating N-linked glycans (Mimic) and mammalian cells (CHO). While the antibody titers are higher with the insect cell derived HA proteins, the neutralization and HA inhibition titers are much higher with the mammalian cell produced HA proteins. Recombinant HA proteins containing tri- or tetra-antennary complex, terminally sialylated and asialyated-galactose type N-glycans induced better protective immunity in mice to lethal challenge. The results are highly relevant to issues that should be considered in the production of fragment vaccines.  相似文献   

19.
MedImmune Vaccines has engineered a live, attenuated chimeric virus that could prevent infections caused by parainfluenza virus type 3 (PIV3) and respiratory syncytial virus (RSV), causative agents of acute respiratory diseases in infants and young children. The work here details the development of a serum-free Vero cell culture production platform for this virus vaccine candidate. Efforts to identify critical process parameters and optimize culture conditions increased infectious virus titers by approximately 2 log10 TCID50/ml over the original serum-free process. In particular, the addition of a chemically defined lipid concentrate to the pre-infection medium along with the shift to a lower post-infection cultivation temperature increased virus titers by almost 100-fold. This improved serum-free process achieved comparable virus titers to the serum-supplemented process, and demonstrated consistent results upon scale-up: Vero cultures in roller bottles, spinner flasks and bioreactors reproducibly generated maximum infectious virus titers of 8 log10 TCID50/ml.  相似文献   

20.
Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process has been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号